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Linear Inverse Scattering

m: model (material parameters: velocity, impedance,
density ...)

Write m = mgy + dm

mq: Reference or macro model (given - result of model
building, velocity analysis, ...)

om: First order perturbation about m (to be found)

Linear (Born) modeling operator F[mg|, models primary
reflections

Linear inversion: given observed data traces $°°S,
background traces Sy, find dm so that:

F[mo]dm ~ SObS — S() =d

Form of AVO analysis
Component in FWI algorithms @RICE



Normal Equations

Interpret as least squares problem: need to solve normal
equations

N[mg|ém := F*[mg|Fmy|dm = F*[mgyld

N := F*[mg|F[my) : Normal Operator (Modeling + Migration),
b := F*d : migrated image
e Large Scale: millions of equations/unknowns, also
dm — N dm expensive

e Cannot use Gaussian elimination = need rapidly
convergent iteration = good preconditioner

e Not narrow band (like Laplace in 2D/3D) =- matrix
preconditioners ineffective

e Alternative: low order polynomial preconditioner, not

obvious @RICE



Agenda

e How to build effective low degree polynomial
preconditioner

P
Nom=b= om ~ z:c,-N’._lb7

i=1

e p number of material parameters
e ¢; operators, cheap to apply
e ¢; computable by rapidly converging iteration

e Cost: few Modeling/Migration iterations
e Justification
¢ Applicability/limitations
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WUDOs and their symbols

e N is matrix of ¥DOs for smooth (non-reflective) my
(Beylkin,1985; Rakesh,1988) = operators defined by

symbols a(x, §)
9= [ [ategute 4 dcay

e a(x,&): Scalar function of position x and wavenumber ¢

la(x, &) = O(|g]"),  as [¢] — oo;

m = ord(a) := ord(Op(a))
e Calculus of scalar symbols:
1. 0p(a1a1 + Ozzaz) = 0410[7((11) + Oézop(az), aq, 0 scalars
2. Op(aiaz) ~ Op(a1)Op(az) ~ Op(a2)Op(a1)
3. ord(a1ay) = ord(ay) + ord(az)
( ~: difference is lower order ¥DO) @P\[CE



Properties of Normal Operator

e Matrix of pseudodifferential operators, when a polarized
signal is scattered uniquely to another polarized signal
(P-P, P-S, S-S). (Beylkin and Burridge, 1989; De Hoop,
2003)

e N =0p(A), A =p x p matrix of scalar symbols

0= [ [ AGouwe 4 ag ay
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Polynomial Approximate Inverse

e A(x, &) is p x p matrix: satisfies its own characteristic

equation (Cayley-Hamilton):

I—Za,x{ ‘(x,€) =0,

where q;(x, £) are symbols

e Inverse of A(x, £): polynomial of degree p — 1 in A:

1= (Zai()gf)Ai_l(x,f)) A(xa 5)

i=1

e Symbol calculus = 3 scalar ¥DOs {c,...,c,} s.t.,

¢ = Op(a;), N ~ "polynomial” of degree p — 1:

I~ (Zop a;)op(AT") ) (iz - >

i=1
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Solved Problem ... Not Yet!

Don’t know symbol A of N
Only have ability to apply N (modeling + migration)
Not really a polynomial: coefficients are operators!

Need an independent method to determine coefficient
operators, and must be able to apply efficiently
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Polynomial Preconditioning

« Don’t need N, only need to solve Nx = b, b = F*d
e Approximation of ¢; in data adaptive way:

p
(I — Zc,N’) b
i=1

Know from Cayley-Hamilton that min ~ 0 ( for ¢; = ¢;)

2

{c1,...,¢p} = argmin
Cly..,cp€ VDO

e Get approximate solution:

p P
x=N"'ph~N"! ZciNib ~ ZciNi_l b := xim
i=1 i=1
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Approximation of ¥DO
How to represent c; ?
e The action of the ¥DO in 2D (Bao and Symes, 1996):

u(r, 2) // (x,2, &, mi(€, m)e S+ dg dn

i = Flu.
o Direct Algorithm O(N*log(N)) complexity (N = O(10%))!
e Finite Fourier series of length K:
I=K/2

a(xazagan)% Z &l(xaz)eilev

6 = arctan (Z)

e Use FFT = O(KN?[log(N) + log(K)])
e K independent of N, depends on smoothness of a @RICE
e 0 captures dip-dependence



Recap

To solve
Nx = b,

where N = F*F, b = F*d.
Given, b = F*d, ... ,NPb
e Represent ¢; = Op(a;)
e Compute {ci,...,c,} = argmin ||(I — X7, eiN') sz.

cl,...,cp€ VDO

o Approximate xj, =Y 4 c;N“1b~N"1h=x
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.p:

Scaling Methods

1:

NO = multiplication by a smooth function (Claerbout and
Nichols, 1994; Rickett, 2003)

Near Diagonal Approximation of NO (Guitton, 2004)
Special case (well defined dip): normal operator =~
multiplication by smooth function after composition with
power of Laplacian (correction to Claerbout-Nichols -
Symes, 2008)

Polynomial preconditioning reduces to this method when
p=1K=1.

Herrmann et al. (2007) derive a scaling method using
curvelets to approximate eigenvectors
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.p:

e p>

Scaling Methods

1:

NO = multiplication by a smooth function (Claerbout and
Nichols, 1994; Rickett, 2003)

Near Diagonal Approximation of NO (Guitton, 2004)
Special case (well defined dip): normal operator =~
multiplication by smooth function after composition with
power of Laplacian (correction to Claerbout-Nichols -
Symes, 2008)

Polynomial preconditioning reduces to this method when
p=1K=1.

Herrmann et al. (2007) derive a scaling method using
curvelets to approximate eigenvectors

l:
New explanation

e Old example

o New conditioning study
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Example: Multi-parameter Case, p = 2

Example: Variable density acoustics, impedance and density.
Formally the same, solve

Nx=05b

e Nis a2 x 2 matrix of pseudodifferential operators
e b = F*d consists of two images, one for each parameter
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Geometry

N calculated analytically for variable density acoustics, constant
background velocity.
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The Challenge: Separation
Build model and perturbations, use analytical formula for N to
getb = Nx

g =e

% RICE

True model: x Mig images: b



Polynomial Preconditioning

To solve
Nx=b,

where N = F*F and b = F*d € Range(N).
Given b, Nb and N?b. Compute ci, c»:

{c1,c2} = argmin ||b — ¢y Nb — ¢ N*b||>.
c1,c0€ VDO

Then,

x=N"'"b~N"Yci Nb+ cyN*b) = c1b + c3 Nb := xip,
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What to expect from N

Nb x10"

2
60 4
4| 40 4
20 p— B 2
6 6
0 0
N
-20
P R 8
-2
-a0
10 -60 10 4
-80
12 12 -6
-5 [ 5 -5 [ 5
xT x
x10"
2 2
40 3
4 4 2
20
1
3 6
0 0
w
8 -20 8 -1
-2
-a0
10 10 -3
-60
-4
12 12
=5 [ 5 =5 0 5
T T

1.l
12
-5

[ 5
x

x 10°



Conditioning of N

N
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Figure: spatial variation of the condition number of the symbol of N
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Preconditioning the Preconditioner

Compute a preconditioner P ~ N~! using full aperture. Then,
e b— Pb
e Nb — PNPb
e N’b — PNPNPb

Compute polynomial preconditioner:

e {c1,c2} = argmin ||Pb — ¢; PNPb — c; PNPNPb||?
c1,00€¥DO

e x=N"'b=(PN)"'Pb =~ c| Pb+ c; PNPb := X,
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Preconditioned Images
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Results
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Figure: Comparison between inverted and true image
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Conditioning of NP

0
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Figure: spatial variation of the condition number of the symbol of NP
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Conditioning of symbol of N, continued

Previous preconditioner specific to problem

Find more general preconditioner?

The symbol of N = op(A) for variable density acoustics has
1 sin?(

the form:
A :f(e) ( sinz(g) sin4( ; > ’f‘

Opening angle #: function of position of sources, receiver,
and spatial coordinates.

lll-conditioning of N captured by the matrix part

DD
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Goal: Optimal Weights

Study conditioning of matrices of the form

0 . 20
max 1 sin“(%) )
N:/ dor(o < ) )
0 £(0) smz(g) sm“é)
Minimize the condition number:

K= A’”‘”‘, s.t. f>0, f(0)do =1
)\min 0

Parametrize in terms of : S = \ux + Amin = trace(N) and
P= )\max)\min = det(N)

S+/S2—4P
K=
S—/S2—4P
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Reference Case

o Letf(§) = 5=
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Figure: Condition Number as a function of 6,,,,
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Optimal Low Offset/Large Offset Stack

e Look for optimal low offset/large offset stack:
f(ﬁ) = (1 —a)i(d) + a5(9 —Omax), 0<a<l

o Minimizing &, letting 3 = sin*(%u):

1
a=—,
2+

_B+1+VIFP
¢ Note: for large offset (6,,.. — ), small offsets weighted
double!
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How Much Better?
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Figure: Ratio of optimal condition number to reference
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A Closer Look

For small 6,4«
e Reference case:
* Anax =2+ O(0h)
® Npin = % + O(654)
o k= goo + O(0,5)

max
ax

e Optimal stacks:

* Xpax =2+ O(O)
® Apin = eéﬂsx + O(efnax)

® Rmin = 96T4 + O(l)
e Same asymptotics
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First Order Conditions

First variation of the condition number:

)95 _ o1

ok =0=
& s 7

Gives a different parametrization:

SZ—LP:>S—2—L
— 5=

With L > 4,

S+vVs2—4p 1+y/1-
o — _

oS-V —4P | _ [{_

Minimizing ~ < Minimizing %

NI || SN
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Figure: Condition number as a function of L = S;f

% RICE



Future Work

Derive a class of preconditioners for different geometries
Precondition a RTM code for variable density acoustics
Apply for variable density acoustics

Generalize to linear elasticity

Extend to 3D
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Summary

Multi-parameter case: Polynomial Preconditioning
e Necessity of preconditioning for success
e Apply to variable density acoustics
e Intrinsic ill-conditioning in variable density acoustics
e Linear elasticity . ..
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