Discontinuous Galerkin methods (DG) for waves and comparison with Finite Difference methods

Xin Wang

The Rice Inversion Project

TRIP Annual Meeting 2009

- discontinuous Galerkin method (DG) for acoustic wave equation in heterogeneous material (Hesthaven-Warburton) comparison between DG and finite difference method (FD)
- validity and convergence tests in 2-D
 - plane waves
 - point source wave propagation
- unstructured mesh techniques

mesh misalignment can cause numerical error, e.g., Ricker's wavelet simulation on $[0, 1800 m] \times [-15, 15 m]$ with interface at 900 m,

traces of the true and numerical solutions at 500 m, h = 10 m, fifth-order DG scheme

First peak → trace of the transmitted wave
 second peak → trace of the reflected wave

traces of the true and numerical solutions at 500 m, h = 10 m, fifth-order DG scheme

First peak → trace of the transmitted wave
 second peak → trace of the reflected wave

traces of the true and numerical solutions at 500 m, h = 10 m, fifth-order DG scheme

• first peak \rightarrow trace of the transmitted wave

 \blacktriangleright second peak \rightarrow trace of the reflected wave

I will propose two techniques to reduce this error:

- mesh alignment for unstructured mesh
- local mesh refinement

2 Validity and Convergence Tests

3 Unstructured Mesh Techniques

2 Validity and Convergence Tests

3 Unstructured Mesh Techniques

Acoustic Wave Equation in Heterogeneous Material

2-D case:

$$\rho(x,y)\frac{\partial u}{\partial t} + \frac{\partial p}{\partial x} = 0$$

$$\rho(x,y)\frac{\partial v}{\partial t} + \frac{\partial p}{\partial y} = 0$$

$$\frac{1}{\kappa(x,y)}\frac{\partial p}{\partial t} + \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = S(x,y,t)$$

subject to initial conditions and boundary conditions

- p: acoustic pressure
- ▶ (*u*, *v*): particle velocity
- S: a source term

- \triangleright ρ : density; κ : bulk modulus
- t: time variable
- $(x, y) \in \Omega$: spatial variables **RICE**

Numerical Method

FD (iwave by Igor Terentyev, 2008)

- v easy to implement
- 🗸 high-order scheme
- $\sqrt{}$ explicit semi-discrete form
- \times complex geometry

 finite element method - spectral element method (Tromp-Komatitsch)

- $\times\,$ easy to implement
- $\sqrt{}$ high-order scheme
- $(\sqrt{)}$ explicit semi-discrete form
 - ▶ usually FEM ~→ linear system in each time step
 - ▶ mass lumping ~→ explicit semi-discrete form (Igor's talk)

 \checkmark complex geometry

discontinuous Galerkin method (DG) (Hesthaven-Warburton)

- $\times\,$ easy to implement
- $\sqrt{}$ high-order scheme
- $\sqrt{}$ explicit semi-discrete form

the support of each basis function over only one element and several basis functions defined on one element

 \rightsquigarrow block diagonal mass matrix

 $\sqrt{}$ complex geometry

support of a linear FEM basis

support of a linear DG basis SRICE

accuracy comparison:

- different order schemes
- different grid size

efficiency comparison:

- mesh generation and mesh structure
- computation load for updating in each time step
- constraints on the time step size
- memory consumption, memory access pattern and frequency
- parallelism (MPI, CUDA)

2 Validity and Convergence Tests

3 Unstructured Mesh Techniques

computation domain:

blue and green stand for two material: (ρ_L c_L),(ρ_R c_R)
 true solution,

$$\begin{array}{lll} x < 0 & : \\ p(x,y,t) & = & f(t - \frac{x}{c_L}) - \frac{\rho_L c_L - \rho_R c_R}{\rho_L c_L + \rho_R c_R} f(t + \frac{x}{c_L}) \\ u(x,y,t) & = & \frac{1}{\rho_L c_L} (f(t - \frac{x}{c_L}) + \frac{\rho_L c_L - \rho_R c_R}{\rho_L c_L + \rho_R c_R} f(t + \frac{x}{c_L})) \\ x \ge 0 & : \\ p(x,y,t) & = & \frac{2\rho_R c_R}{\rho_L c_L + \rho_R c_R} f(t - \frac{x}{c_R}) \\ u(x,y,t) & = & \frac{2}{\rho_L c_L + \rho_R c_R} f(t - \frac{x}{c_R}) \end{array}$$

dimensionless example

• computation domain: $[-3,3] \times [-1,1]$

$$\rho_L = 1.0 \ \rho_R = 0.5$$

 $\kappa_L = 1.0 \ \kappa_R = 2$

 $time = 2$

- sine wave: $f = \sin(2\pi x)$
- source term S = 0;
- ▶ initial conditions: true solution at *time* = 0
- boundary conditions:
 - \blacktriangleright upper and lower \rightarrow reflection boundary condition
 - \blacktriangleright left \rightarrow inflow boundary condition
 - \blacktriangleright right \rightarrow outflow boundary condition

convergence test								
h	Ν	$\ p_h - p\ _\infty$	$\ u_h - u\ _{\infty}$	$\ v_h - v\ _{\infty}$	R			
0.2	1	0.2865	0.3232	0.1123	1.84			
0.1	1	0.0799	0.1009	0.0303	1.98			
0.05	1	0.0203	0.0265	0.0078	-			
0.2	2	0.0402	0.0628	0.0204	2.61			
0.1	2	0.0066	0.0094	0.0030	2.91			
0.05	2	8.76e-4	0.0012	3.95e-4	-			

h: grid size

- N: polynomial order in DG
- N = 1: piecewise linear basis function \Rightarrow second order scheme
- N = 2: piecewise quadratic basis function \Rightarrow third order scheme

$$R = \frac{\log \|p_{H} - p\| - \log \|p_{h} - p\|}{\log H - \log h}$$

dimensional example

▶ computation domain: $[0, 1800 m] \times [-15 m, 15 m]$

$$\rho_L = 2100 \ kg/m^3 \ c_L = 2.3 \ m/ms$$

 $\rho_R = 2300 \ kg/m^3 \ c_R = 3.0 \ m/ms$

time = 600ms

▶ *f* is a Ricker's wavelet with central frequency $f_0 = 10$ Hz:

$$f(t) = (1 - 2(\pi f_0(t - t_0))^2)e^{-(\pi f_0(t - t_0))^2},$$

source term S = 0;

initial conditions: true solution at time = 0

- boundary conditions:
 - \blacktriangleright upper and lower \rightarrow reflection boundary condition
 - \blacktriangleright left \rightarrow inflow boundary condition
 - \blacktriangleright right \rightarrow outflow boundary condition

convergence test								
h	Ν	$\ p_h - p\ _{\infty}$	$\ u_h - u\ _{\infty}$	$\ v_h - v\ _{\infty}$	R			
10	1	0.0125	0.0154	0.0045	2.51			
5	1	0.0022	0.0037	0.0012	1.86			
2.5	1	6.04e-4	1.00e-3	3.14e-4	-			
10	2	9.81e-4	0.0014	3.17e-4	2.96			
5	2	1.26e-4	1.85e-4	4.14e-5	2.96			
2.5	2	1.62e-5	2.34e-5	5.23e-6	-			

h: grid size

- N: polynomial order in DG
- N = 1: piecewise linear basis function \Rightarrow second order scheme
- N = 2: piecewise quadratic basis function \Rightarrow third order scheme

$$R = \frac{\log \|p_{H} - p\| - \log \|p_{h} - p\|}{\log H - \log h}$$

traces of the true and numerical solutions at 500 m, h = 10 m N = 1 (second-order scheme)

traces of the true and numerical solutions at 500 m, h = 10 m N = 1 (second-order scheme)

traces of the true and numerical solutions at 500 m, h = 10 m N = 2 (third-order scheme)

traces of the true and numerical solutions at 500 m, h = 10 m N = 2 (third-order scheme)

Point Source Wave + Free Surface Boundary

- computation domain: $[-0.5, 0.5] \times [-0.5, 0.5]$
- > zero initial conditions; $\rho = 1.0$, $\kappa = 1.0$
- point source at $x_s = (0, 1/4)$, $f_0 = 10$, $t_0 = 1.2/f_0$

$$S(x,t) = (t - t_0)e^{-(\pi f_0(t-t_0))^2}\delta(x - x_s)$$

Point Source Wave + Free Surface Boundary

- computation domain: $[-0.5, 0.5] \times [-0.5, 0.5]$
- > zero initial conditions; $\rho = 1.0$, $\kappa = 1.0$
- point source at $x_s = (0, 1/4)$, $f_0 = 10$, $t_0 = 1.2/f_0$

$$S(x,t) = (t - t_0)e^{-(\pi f_0(t-t_0))^2}\delta(x - x_s)$$

Point Source Wave + Free Surface Boundary

Dr. Warburton

20/29

RICE

trace error of analytic solution and numerical solution, N = 5 (sixth-order scheme)

Point Source Wave + PML Boundary

▶ computation domain: [-0.7, 0.7] × [-0.7, 0.7] non-PML domain: [-0.5, 0.5] × [-0.5, 0.5]

▶ computation domain: [-0.7, 0.7] × [-0.7, 0.7] non-PML domain: [-0.5, 0.5] × [-0.5, 0.5]

Onstructured Mesh Techniques

numerical error associated with FD of wave propagation in discontinuous media (Symes and Vdovina, 2008):

- higher order component corresponding to the truncation error
- a first-order error due to the misalignment between numerical grids and material interfaces

numerical examples show the numerical error of DG has the same components

- the setting is the same
- mesh grid does not align with material interface

traces of the true and numerical solutions at 500 m, h = 10 m N = 1 (second-order scheme)

- the setting is the same
- mesh grid does not align with material interface

traces of the true and numerical solutions at 500 m, h = 10 m N = 1 (second-order scheme)

- the setting is the same
- mesh grid does not align with material interface

traces of the true and numerical solutions at 500 m, h = 10 m N = 2 (third-order scheme)

- the setting is the same
- mesh grid does not align with material interface

traces of the true and numerical solutions at 500 m, h = 10 m N = 2 (third-order scheme)

- the setting is the same
- mesh grid does not align with material interface

traces of the true and numerical solutions at 500 m, h = 10 m N = 4 (fifth-order scheme)

- the setting is the same
- mesh grid does not align with material interface

traces of the true and numerical solutions at 500 m, h = 10 m N = 4 (fifth-order scheme)

two techniques to reduce the error caused by mesh misalignment

curved element

Marmousi model

difficulties: complex structure, highly curved interface

Iocal mesh refinement near the interface (SPICE project)

refinement procedure

1 initial mesh $\{\mathcal{T}_k\}_k$, $\Omega = \bigcup_k \mathcal{T}_k$

2 compute material contrast indicator \mathcal{I}_k on \mathcal{T}_k

- **3** if $\mathcal{I}_k > \text{threshold}$, refine \mathcal{T}_k
- 4 assemble the new mesh $\{ ilde{\mathcal{T}}_{ ilde{k}}\}_{ ilde{k}}$

traces of the true and numerical solutions at 500 m, h = 10 N = 1 (second-order scheme)

traces of the true and numerical solutions at 500 m, h = 10 N = 1 (second-order scheme)

traces of the true and numerical solutions at 500 m, h = 10 N = 2 (third-order scheme)

RICE

traces of the true and numerical solutions at 500 m, h = 10 N = 2 (third-order scheme)

summary:

- discontinuous Galerkin method for solving acoustic wave equation
- convergence tests: plane wave and point source wave
- mesh techniques for reducing numerical error

future work:

- a framework for comparison between FD and DG
- local mesh refinement
- 3-D examples

Thank You!

▶ Prof. Tim Warburton (CAAM, Rice Univ.)

