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Highlights of this project

discontinuous Galerkin method (DG) for acoustic wave
equation in heterogeneous material (Hesthaven-Warburton)
comparison between DG and finite difference method (FD)

validity and convergence tests in 2-D

plane waves
point source wave propagation

unstructured mesh techniques
mesh misalignment can cause numerical error, e.g., Ricker’s
wavelet simulation on [0, 1800 m]× [−15, 15 m] with interface
at 900 m,
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Highlights of this project

traces of the true and numerical solutions at 500 m, h = 10 m,
fifth-order DG scheme

red line: true solution blue +: numerical solution

first peak → trace of the transmitted wave
second peak → trace of the reflected wave
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Highlights of this project

I will propose two techniques to reduce this error:

mesh alignment for unstructured mesh

local mesh refinement
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Outline

1 Introduction

2 Validity and Convergence Tests

3 Unstructured Mesh Techniques
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Acoustic Wave Equation in Heterogeneous Material

2-D case:

ρ(x , y)
∂u

∂t
+
∂p

∂x
= 0

ρ(x , y)
∂v

∂t
+
∂p

∂y
= 0

1

κ(x , y)

∂p

∂t
+
∂u

∂x
+
∂v

∂y
= S(x , y , t)

subject to initial conditions and boundary conditions

p: acoustic pressure

(u, v): particle velocity

S : a source term

ρ: density; κ: bulk modulus

t: time variable

(x , y) ∈ Ω: spatial variables
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Numerical Method

FD (iwave by Igor Terentyev, 2008)
√

easy to implement√
high-order scheme√
explicit semi-discrete form

× complex geometry

finite element method - spectral element method
(Tromp-Komatitsch)

× easy to implement√
high-order scheme

(
√

) explicit semi-discrete form

usually FEM  linear system in each time step
mass lumping  explicit semi-discrete form (Igor’s talk)

√
complex geometry
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Numerical Method

discontinuous Galerkin method (DG) (Hesthaven-Warburton)

× easy to implement√
high-order scheme√
explicit semi-discrete form

the support of each basis function over only one element and
several basis functions defined on one element
 block diagonal mass matrix

√
complex geometry

support of a linear FEM basis support of a linear DG basis
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Comparison between FD and DG

accuracy comparison:

different order schemes

different grid size

efficiency comparison:

mesh generation and mesh structure

computation load for updating in each time step

constraints on the time step size

memory consumption, memory access pattern and frequency

parallelism (MPI, CUDA)

...
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Plane Wave

computation domain:

blue and green stand for two material: (ρL cL),(ρR cR)
true solution,

x < 0 :

p(x , y , t) = f (t − x

cL
)− ρLcL − ρRcR

ρLcL + ρRcR
f (t +

x

cL
)

u(x , y , t) =
1

ρLcL
(f (t − x

cL
) +

ρLcL − ρRcR

ρLcL + ρRcR
f (t +

x

cL
))

x ≥ 0 :

p(x , y , t) =
2ρRcR

ρLcL + ρRcR
f (t − x

cR
)

u(x , y , t) =
2

ρLcL + ρRcR
f (t − x

cR
)
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Plane Wave: Sine Wave

dimensionless example

computation domain: [−3, 3]× [−1, 1]

ρL = 1.0 ρR = 0.5
κL = 1.0 κR = 2
time = 2

sine wave: f = sin(2πx)

source term S = 0;

initial conditions: true solution at time = 0

boundary conditions:

upper and lower → reflection boundary condition
left → inflow boundary condition
right → outflow boundary condition
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Plane Wave: Sine Wave

convergence test
h N ‖ph − p‖∞ ‖uh − u‖∞ ‖vh − v‖∞ R

0.2 1 0.2865 0.3232 0.1123 1.84
0.1 1 0.0799 0.1009 0.0303 1.98

0.05 1 0.0203 0.0265 0.0078 -

0.2 2 0.0402 0.0628 0.0204 2.61
0.1 2 0.0066 0.0094 0.0030 2.91

0.05 2 8.76e-4 0.0012 3.95e-4 -

h: grid size
N: polynomial order in DG
N = 1: piecewise linear basis function ⇒ second order scheme
N = 2: piecewise quadratic basis function ⇒ third order scheme

R =
log ‖pH − p‖ − log ‖ph − p‖

log H − log h
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Plane Wave: Ricker’s Wavelet

dimensional example

computation domain: [0, 1800 m]× [−15 m, 15 m]

ρL = 2100 kg/m3 cL = 2.3 m/ms
ρR = 2300 kg/m3 cR = 3.0 m/ms
time = 600ms

f is a Ricker’s wavelet with central frequency f0 = 10 Hz :

f (t) = (1− 2(πf0(t − t0))2)e−(πf0(t−t0))2 ,

source term S = 0;

initial conditions: true solution at time = 0
boundary conditions:

upper and lower → reflection boundary condition
left → inflow boundary condition
right → outflow boundary condition
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Plane Wave: Ricker’s Wavelet

convergence test
h N ‖ph − p‖∞ ‖uh − u‖∞ ‖vh − v‖∞ R

10 1 0.0125 0.0154 0.0045 2.51
5 1 0.0022 0.0037 0.0012 1.86

2.5 1 6.04e-4 1.00e-3 3.14e-4 -

10 2 9.81e-4 0.0014 3.17e-4 2.96
5 2 1.26e-4 1.85e-4 4.14e-5 2.96

2.5 2 1.62e-5 2.34e-5 5.23e-6 -

h: grid size
N: polynomial order in DG
N = 1: piecewise linear basis function ⇒ second order scheme
N = 2: piecewise quadratic basis function ⇒ third order scheme

R =
log ‖pH − p‖ − log ‖ph − p‖

log H − log h
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Plane Wave: Ricker’s Wavelet

traces of the true and numerical solutions at 500 m, h = 10 m
N = 1 (second-order scheme)
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Plane Wave: Ricker’s Wavelet

traces of the true and numerical solutions at 500 m, h = 10 m
N = 2 (third-order scheme)
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Plane Wave: Ricker’s Wavelet

traces of the true and numerical solutions at 500 m, h = 10 m
N = 2 (third-order scheme)
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Point Source Wave + Free Surface Boundary

computation domain: [−0.5, 0.5]× [−0.5, 0.5]
zero initial conditions; ρ = 1.0, κ = 1.0
point source at xs = (0, 1/4), f0 = 10, t0 = 1.2/f0

S(x , t) = (t − t0)e−(πf0(t−t0))2δ(x − xs)
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Point Source Wave + Free Surface Boundary

trace of analytic solution at (0,−0.25)1

1generated by FORTRAN code acfree.f by Thomas Hagstrom, provided by
Dr. Warburton 20/29



Point Source Wave + Free Surface Boundary

trace error of analytic solution and numerical solution, N = 5
(sixth-order scheme)

20/29



Point Source Wave + PML Boundary

computation domain: [−0.7, 0.7]× [−0.7, 0.7]
non-PML domain: [−0.5, 0.5]× [−0.5, 0.5]
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Unstructured Mesh Techniques

numerical error associated with FD of wave propagation in
discontinuous media (Symes and Vdovina, 2008):

higher order component corresponding to the truncation error

a first-order error due to the misalignment between numerical
grids and material interfaces

numerical examples show the numerical error of DG has the same
components
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Plane Wave: Ricker’s Wavelet

the setting is the same
mesh grid does not align with material interface

traces of the true and numerical solutions at 500 m, h = 10 m
N = 1 (second-order scheme)
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Plane Wave: Ricker’s Wavelet

the setting is the same
mesh grid does not align with material interface

traces of the true and numerical solutions at 500 m, h = 10 m
N = 4 (fifth-order scheme)
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Unstructured Mesh Techniques

two techniques to reduce the error caused by mesh misalignment

curved element

Marmousi model

difficulties: complex structure, highly curved interface
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Unstructured Mesh Techniques

local mesh refinement near the interface (SPICE project)

refinement procedure

1 initial mesh {Tk}k , Ω =
⋃

k Tk

2 compute material contrast indicator Ik on Tk

3 if Ik > threshold, refine Tk

4 assemble the new mesh {T̃k̃}k̃

26/29



Plane Wave: Ricker’s Wavelet

using the refined mesh grid

traces of the true and numerical solutions at 500 m, h = 10 N = 1
(second-order scheme)
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Plane Wave: Ricker’s Wavelet

using the refined mesh grid

traces of the true and numerical solutions at 500 m, h = 10 N = 2
(third-order scheme)
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summary:

discontinuous Galerkin method for solving acoustic wave
equation

convergence tests: plane wave and point source wave

mesh techniques for reducing numerical error

future work:

a framework for comparison between FD and DG

local mesh refinement

3-D examples

Thank You!



Thanks

Prof. Tim Warburton (CAAM, Rice Univ.)
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