From Modeling to RTM and Inversion: interfacing SEAMX and TSOpt

William Symes

The Rice Inversion Project

February 20, 2009
Concept

Goal: Make SEAMX capabilities - large-scale, parallel, extensible FD modeling - available for research on inversion driven by time-domain simulation

Method: embed SEAMX in Rice Vector Library (RVL) Operator type, use RVL utilities (linear algebra, construction of least squares functions, etc.) and algorithms (CG, NLCG, LBFGS,...) to construct inversion applications.

RVL = latest incarnation of TRIP OO framework for linking complex simulation with optimization.

- originated with Hilbert Class Library (Mark Gockenbach, mid-90’s)
- thesis work of Tony Padula, Shannon Scott, Hala Dajani
- design paper to appear in ACM TOMS March 09 (pdf of final draft on AR web page)
Structure of SEAMX

Common modules:

- **iwave** - defines internal details of simulation data structures, *given* modeling specs - *state* of system at one time
 - arrays, grids, utilities
 - MPI data exchange
 - “virtual functions” (pointers) defining specific models, called to organize internal details

- **term** - organizes sampling of traces, movie frames, input of source data - *time* of simulation, initializing structure.

Completed by selection of functions with specific interfaces defining an *individual time step* of a specific model, also initialization of arrays and other data structures - `init` function copies function pointers to `iwave` struct members (“concrete subclass”).
Structure of TSOpt

- Based on Algorithm package - generic framework for iterative algorithms (A. Padula PhD 05)

  ```
  while ( term.query() ) step.run();
  ```

 Standard loop algorithm - term is a Terminator, determines whether a stop condition has been attained; step is another Algorithm.

- TSOpt::Sim synthesizes TimeStep and TimeTerm into loop algorithm for time-domain modeler.

- TSOpt::Jet combines TSOpt::Sim for reference evolution (“source field” in RTM) with components for single steps of linearized (Born modeling) and adjoint evolution to create single object holding coherent implementations.

- TSOpt::SimOp and similar constructions combine TSOpt::Jet with RVL vector interface to create plug-in to RVL optimization code.
Linking SEAMX to TSOpt

Design of SEAMX consistent with TSOpt:

- time step code (iwave) separated from time control code (term)
- both “object oriented”, with implementing constructor, destructor, core attributes

Wrapping of iwave as TSOpt::TimeStep and term as Terminator relatively straightforward.

RVL interface required construction of out-of-core RVL::Space classes - just what RVL was designed for!

Current status: basic wrappers finished and tested, space classes in testing.

Initial goal: acoustic RTM for use in Rami, Chao projects, plane wave operator for Dong’s project.