Solving Interface Problems with Finite Elements

Tommy L. Binford, Jr.

The Rice Inversion Project

February 20, 2009

Introduction

Solve the acoustic wave equation (AWE) accurately in 3d on regular grids without aligning interfaces.

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへで

- Solve for Reflected Waves
- Validate Inversion Algorithms

Overview of Interface Methods

Finite Difference IBM & IIM

- Peskin, 1972
- Leveque and Li, 1994
- Zhang and Leveque, 1997

FD is State-of-the-art

Poor Accuracy without IIM, Symes and Vdovina, 2008 Complicated Implementation Convergence Theory Messy

Overview of Interface Methods

Immersed Finite Element

- ▶ Li, 1998
- ► Kafafy, 2005

Elliptic and Parabolic Problems Second Order

Acoustic Wave Equation in 1d

$$\frac{1}{\kappa}\frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial x}\left(\frac{1}{\rho}\frac{\partial u}{\partial x}\right) = 0$$

- Bulk Modulus κ
- Density ρ

Density and bulk modulus piecewise constant.

- Homogeneous Dirichlet B.C.
- Ricker Wavelet I.C.

Ricker Wavelet

RICE

Basic FE Approach

CE

Basic FE Approach

Semi-discrete Equation

$$\mathcal{M}\frac{d^{2}U}{dt^{2}}+\mathcal{S}U(t)=0$$

or

$$\frac{d^2 U}{dt^2} = -\mathcal{M}^{-1} \mathcal{S} U(t)$$

Basic FE Approach - Problem

æ

・ロト ・聞ト ・ヨト ・ヨト

Goals

- Local Modification
- No Grid Tinkering
- Simple Implementation
- Good Convergence Theory

Owhadi and Zhang, 2006 harmonic coordinates.

ρ -Harmonic Coordinates

Solve

$$\frac{d}{dx}\left(\frac{1}{\rho}\frac{dF}{dx}\right) = 0,$$

F(0) = 0,

F(L) = L.

Mapping

Basis Functions

Construct basis in new grid:

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Modified Basis

Map back to Ω_h

Li, 1998

- ► PWL basis
- Impose continuity
- Impose zero flux jump condition
- Proved second-order

Li and Ito, 2006

Immersed Finite Element Basis \equiv Owhadi Trick in 1d

Numerical Results

No Interface

	FEM		IFEM	
	$e_{L_{\infty}}$	rate	$e_{L_{\infty}}$	rate
h_1	1.13e-02	_	1.13e-02	_
h_2	2.82e-03	2.00	2.82e-03	2.00
h ₃	7.09e-04	1.99	7.09e-04	1.99

$$ho = 2100 \text{ kg/m}^3$$

 $c = 2.3 \text{ m/ms}$
 $\kappa = 1.1e4 \text{ MPa}$

RICE

◆ □ > → □

Symes and Vdovina, 2008 Data

	FEM		IFEM	
	$e_{L_{\infty}}$	rate	$e_{L_{\infty}}$	rate
h_1	9.11e-03	_	9.15e-03	_
h_2	2.26e-03	2.01	2.29e-03	2.00
h ₃	5.70e-04	1.99	5.84e-04	1.97

$$\begin{array}{ll} \rho_L = 2100 \ {\rm kg/m^3} & \rho_R = 2300 \ {\rm kg/m^3} \\ c_L = 2.3 \ {\rm m/ms} & c_R = 3.0 \ {\rm m/ms} \\ \kappa_L = 1.1 {\rm e4} \ {\rm MPa} & \kappa_R = 2.1 {\rm e4} \ {\rm MPa} \end{array}$$

RICE

High Contrast Density: $\rho_L/\rho_R = 10$

Method	t_2	t_4	t_6	t_8	t_{10}
FEM L ₂	1.12	1.12	1.13	1.14	1.14
FEM L_{∞}	1.14	1.14	1.15	1.16	1.17
IFEM L_2	2.00	2.00	2.00	2.00	2.00
IFEM L_{∞}	1.99	1.99	1.99	1.99	1.99

$$\begin{array}{ll} \rho_L = 2300 \, \mathrm{kg/m^3} & \rho_R = 230 \, \mathrm{kg/m^3} \\ c_L = 2.3 \, \mathrm{m/ms} & c_R = 3.0 \, \mathrm{m/ms} \\ \kappa_L = 1.2 \mathrm{e}4 \, \mathrm{MPa} & \kappa_R = 2.1 \mathrm{e}3 \, \mathrm{MPa} \end{array}$$

RICE < ロ > く 書 > く 書 > く 書 、 今 名 や

Error Behavior for Density Ratio, $h = 2.5 \,\mathrm{m}$

Error Rate for Density Ratio

Mass Lumping

Mass Lumped Symes and Vdovina, 2008

	FEM		IFEM	
	$e_{L_{\infty}}$	rate	$e_{L_{\infty}}$	rate
h_1	8.52e-003	—	8.36e-003	—
h_2	2.16e-003	1.98	2.10e-003	1.99
h ₃	5.57e-004	1.96	5.36e-004	1.97

Mass Lumped Large Density Constrast

	FEM		IFEM	
	$e_{L_{\infty}}$	rate	$e_{L_{\infty}}$	rate
h_1	6.30e-002	-	3.60e-002	—
h_2	2.18e-002	1.53	8.91e-003	2.01
h ₃	2.23e-002	-0.03	2.27e-003	1.97

Summary

- Owhadi Map + FEM in 1d is IFEM
- FEM accurate for small contrast density

RICE

- FEM $\mathcal{O}(h)$ large contrast
- ► FEM Unstable for Lumping

Future Work

- Extend to Two and Three Dimensions
- Accurate Interface Model
- Harmonic Map Accuracy
- ► Couple IFEM and FD?
- Mixed FEM?

- Kafafy, R., 2005, Immersed finite element particle-in-cell simulations of ion propulsion: PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
- Leveque, R. J. and Z. Li, 1994, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources: SIAM Journal on Numerical Analysis, **31**, 1019–1044.
- Li, Z., 1998, The immersed interface method using a finite element formulation: Applied Numerical Mathematics, **27**, 253–267.
- Li, Z. and K. Ito, 2006, The immersed interface method: numerical solutions of pdes involving interfaces and irregular domains, volume **FR33** *of* Frontiers in Applied Mathematics: Society for Industrial and Applied Mathematics (SIAM).
- Owhadi, H. and L. Zhang, 2006, Metric-based upscaling: Communications on Pure and Applied Mathematics, **60**, 675–723.
- Peskin, C. S., 1972, Flow patterns around heart valves: A numerical method: Journal of Computational Physics, **64**, 252–271.
- Symes, W. W. and T. Vdovina, 2008, Interface error analysis for numerical wave propagation: Technical Report TR08-22, Rice University, Department of Computational and Applied Mathematics.
- Zhang, C. and R. J. Leveque, 1997, The immersed interface method for acoustic wave equations with discontinuous coefficients: Wave Motion, **25**, 237–263.

