Solving Interface Problems with Finite Elements

Tommy L. Binford, Jr.

The Rice Inversion Project

February 20, 2009
Introduction

Solve the acoustic wave equation (AWE) accurately in 3d on regular grids without aligning interfaces.

▶ Solve for Reflected Waves
▶ Validate Inversion Algorithms
Overview of Interface Methods

Finite Difference IBM & IIM

- Peskin, 1972
- Leveque and Li, 1994
- Zhang and Leveque, 1997

FD is State-of-the-art
Poor Accuracy without IIM, Symes and Vdovina, 2008
Complicated Implementation
Convergence Theory Messy
Overview of Interface Methods

Immersed Finite Element

- Li, 1998
- Kafafy, 2005

Elliptic and Parabolic Problems
Second Order
Acoustic Wave Equation in 1d

\[
\frac{1}{\kappa} \frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial x} \left(\frac{1}{\rho} \frac{\partial u}{\partial x} \right) = 0
\]

- Bulk Modulus \(\kappa \)
- Density \(\rho \)

Density and bulk modulus piecewise constant.
- Homogeneous Dirichlet B.C.
- Ricker Wavelet I.C.
Ricker Wavelet
Basic FE Approach

Grid spacing $x_k - x_{k-1} = h$.

Uniformly Discretize

Uniformly

Grid spacing $x_k - x_{k-1} = h$.

Basic FE Approach

Grid spacing $x_k - x_{k-1} = h$.

Uniformly Discretize

Uniformly
Basic FE Approach

Basis property: $\phi_k(x_j) = \delta_{kj}$.
Semi-discrete Equation

\[\mathcal{M} \frac{d^2 U}{dt^2} + SU(t) = 0 \]

or

\[\frac{d^2 U}{dt^2} = -\mathcal{M}^{-1}SU(t) \]
Basic FE Approach - Problem

\[x_k - 2 \leq x \leq x_k - 1 \leq x_k \leq x_k + 1 \leq x_k + 2 \leq L \]

Diagram with points labeled: 0, \(x_{k-2} \), \(x_{k-1} \), \(x_k \), \(\xi \), \(x_{k+1} \), \(x_{k+2} \), and \(L \).
Goals

- Local Modification
- No Grid Tinkering
- Simple Implementation
- Good Convergence Theory

Owhadi and Zhang, 2006 harmonic coordinates.
ρ-Harmonic Coordinates

Solve

$$\frac{d}{dx} \left(\frac{1}{\rho} \frac{dF}{dx} \right) = 0,$$

$$F(0) = 0,$$

$$F(L) = L.$$
Mapping

Ω_h

$0 \quad x_{k-2} \quad x_{k-1} \quad x_k \quad x_{k+1} \quad x_{k+2} \quad L$

Θ_h

$0 \quad y_{k-2} \quad y_{k-1} \quad y_k \quad y_{k+1} \quad y_{k+2} \quad L$

Under F
Basis Functions

Construct basis in new grid:

\[\eta_{y_k - 2} y_k - 2 y_k - 1 y_k + 1 y_k + 2 \]

\[\psi_k \quad \psi_{k+1} \]

0 \quad y_{k-2} \quad y_{k-1} \quad y_k \quad \eta \quad y_{k+1} \quad y_{k+2} \quad L
Modified Basis

Map back to Ω_h

\[\psi_k \circ F \quad \psi_{k+1} \circ F \]
Li, 1998

- PWL basis
- Impose continuity
- Impose zero flux jump condition
- Proved second-order
Li and Ito, 2006

Immersed Finite Element Basis ≡ Owhadi Trick in 1d
Numerical Results
No Interface

<table>
<thead>
<tr>
<th></th>
<th>FEM</th>
<th>IFEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$e_{L_{\infty}}$</td>
<td>rate</td>
</tr>
<tr>
<td>h_1</td>
<td>1.13e-02</td>
<td>–</td>
</tr>
<tr>
<td>h_2</td>
<td>2.82e-03</td>
<td>2.00</td>
</tr>
<tr>
<td>h_3</td>
<td>7.09e-04</td>
<td>1.99</td>
</tr>
</tbody>
</table>

$\rho = 2100 \text{ kg/m}^3$

$c = 2.3 \text{ m/ms}$

$\kappa = 1.1e4 \text{ MPa}$
Symes and Vdovina, 2008 Data

<table>
<thead>
<tr>
<th></th>
<th>FEM</th>
<th>IFEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$e_{L\infty}$</td>
<td>rate</td>
</tr>
<tr>
<td>h_1</td>
<td>9.11e-03</td>
<td>–</td>
</tr>
<tr>
<td>h_2</td>
<td>2.26e-03</td>
<td>2.01</td>
</tr>
<tr>
<td>h_3</td>
<td>5.70e-04</td>
<td>1.99</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\rho_L &= 2100 \text{ kg/m}^3 \\
c_L &= 2.3 \text{ m/ms} \\
\kappa_L &= 1.1e4 \text{ MPa} \\
\rho_R &= 2300 \text{ kg/m}^3 \\
c_R &= 3.0 \text{ m/ms} \\
\kappa_R &= 2.1e4 \text{ MPa}
\end{align*}
\]
High Contrast Density: $\rho_L / \rho_R = 10$

<table>
<thead>
<tr>
<th>Method</th>
<th>t_2</th>
<th>t_4</th>
<th>t_6</th>
<th>t_8</th>
<th>t_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM L_2</td>
<td>1.12</td>
<td>1.12</td>
<td>1.13</td>
<td>1.14</td>
<td>1.14</td>
</tr>
<tr>
<td>FEM L_∞</td>
<td>1.14</td>
<td>1.14</td>
<td>1.15</td>
<td>1.16</td>
<td>1.17</td>
</tr>
<tr>
<td>IFEM L_2</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>IFEM L_∞</td>
<td>1.99</td>
<td>1.99</td>
<td>1.99</td>
<td>1.99</td>
<td>1.99</td>
</tr>
</tbody>
</table>

$\rho_L = 2300 \text{ kg/m}^3$ \hspace{2cm} $\rho_R = 230 \text{ kg/m}^3$

$c_L = 2.3 \text{ m/ms}$ \hspace{2cm} $c_R = 3.0 \text{ m/ms}$

$\kappa_L = 1.2e4 \text{ MPa}$ \hspace{2cm} $\kappa_R = 2.1e3 \text{ MPa}$
Error Behavior for Density Ratio, $h = 2.5 \text{ m}$
Error Rate for Density Ratio

![Graph showing the error rate for density ratio with a peak at a density ratio of 1.5.](image)
Mass Lumping
<table>
<thead>
<tr>
<th></th>
<th>FEM</th>
<th>IFEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$e_{L\infty}$</td>
<td>rate</td>
</tr>
<tr>
<td>h_1</td>
<td>8.52e-003</td>
<td>–</td>
</tr>
<tr>
<td>h_2</td>
<td>2.16e-003</td>
<td>1.98</td>
</tr>
<tr>
<td>h_3</td>
<td>5.57e-004</td>
<td>1.96</td>
</tr>
</tbody>
</table>
Mass Lumped Large Density Contrast

<table>
<thead>
<tr>
<th></th>
<th>FEM</th>
<th>IFEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$e_{L_{\infty}}$</td>
<td>$e_{L_{\infty}}$</td>
</tr>
<tr>
<td>h_1</td>
<td>6.30e-002</td>
<td>3.60e-002</td>
</tr>
<tr>
<td>h_2</td>
<td>2.18e-002</td>
<td>8.91e-003</td>
</tr>
<tr>
<td>h_3</td>
<td>2.23e-002</td>
<td>2.27e-003</td>
</tr>
</tbody>
</table>
Summary

- Owhadi Map + FEM in 1d is IFEM
- FEM accurate for small contrast density
- FEM $O(h)$ large contrast
- FEM Unstable for Lumping
Future Work

- Extend to Two and Three Dimensions
- Accurate Interface Model
- Harmonic Map Accuracy
- Couple IFEM and FD?
- Mixed FEM?

