Operator-Based Upscaling for the Elastic Wave Equation

Tetyana Vdovina Susan Minkoff, Sean Griffith

The Rice Inversion Project vdovina@rice.edu

February 20, 2009

Operator-Based Upscaling

• Upscaling in the Context of Multiscale Methods

- Upscaling for the Elastic Wave Equation
 - Description of the Method
 - Numerical Implementation
 - Numerical Experiment
- Current and Future Work

Multiscale Methods

- Why do we need multiscale methods?
 - Many processes in nature involve multiple scales.
- Goal: to design a numerical technique that
 - produces accurate solution on the coarse scale;
 - is more efficient than solving full fine scale problem.

Multiscale problems:

- flow in porous media $(10^{-2} 10^4 \text{ m})$,
- composite materials (10⁻⁹ m - large scales depend on applications),
- protein folding $(10^{-15} 10^{-1} s).$

http://www.ticam.utexas.edu/Groups/SubSurfMod/ACTI/IPARS.htm

T. Vdovina, TRIP, Rice University

Upscaling Methods

Highly detailed physical models Upscaling Feasible simulation grids

Upscaling is the process of converting the problem from the fine scale where physical parameters are defined to a coarse scale.

- Averaging: Review by Renard and Marsily (1997).
- Renormalization: King (1989).
- Homogenization: Bensoussan, Lions, Papanicolaou (1978).
- Multiscale FEM: Hou, Wu (1997).
- Mortar Upscaling: Peszynska, Wheeler, Yotov (2002).
- Variational Multiscale Method: Hughes (1995).
- Operator Upscaling: Arbogast, Minkoff, Keenan (1998).
- Metric Upscaling: Owhadi et al. (2006).

Numerical Simulation of Seismograms

SEG Advanced Modeling "SEAM" project, Phase 1 model:

- simulates typical deep water sub-salt exploration regime,
- \bullet 28 km (W-E) \times 30 km (N-S) \times 15 km (depth) and 15 s.

Computational cost:

- 10 m grid \implies 10¹⁰ spatial grid points,
- source bandwidth: 0 30 Hz \implies 30000 time steps,
- number of simulations: 100000.

Acoustic: 20 FLOP per point $\implies 10^{20}$ FLOP:

3000 years on a 1 GFLOPS desktop

Elastic: 100 FLOP per point $\implies 5 \cdot 10^{20}$ FLOP:

15000 years on a 1 GFLOPS desktop

Model problem: The Elastic Wave Equation

• Velocity/displacement formulation of the elastic equation:

$$\rho(\mathbf{x})\frac{\partial \mathbf{v}(t,\mathbf{x})}{\partial t} = \nabla \cdot \boldsymbol{\sigma} + \mathbf{f},$$
$$\rho(\mathbf{x})\frac{\partial \mathbf{u}(t,\mathbf{x})}{\partial t} = \rho(\mathbf{x})\mathbf{v}(t,\mathbf{x}),$$

 ρ is density, $\pmb{\sigma}$ is the stress tensor.

• Weak formulation, Komatitsch et al. (1999):

$$\begin{pmatrix} \rho \frac{\partial \mathbf{v}}{\partial t}, \mathbf{w} \end{pmatrix} = -(\boldsymbol{\sigma}, \nabla \mathbf{w}) + (\mathbf{f}, \mathbf{w}), \\ \begin{pmatrix} \rho \frac{\partial \mathbf{u}}{\partial t}, \mathbf{w} \end{pmatrix} = (\rho \mathbf{v}, \mathbf{w}).$$

• Eliminate components of the stress tensor:

$$\sigma_{i,j} = \lambda \sum_{k}^{3} \frac{\partial u_{k}}{\partial x_{k}} \delta_{ij} + \mu \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right)$$

T. Vdovina, TRIP, Rice University

Upscaling Wave Equation

٠

Weak Formulation (continued)

• First component of velocity:

$$\begin{pmatrix} \rho \frac{\partial \mathbf{v}_{1}}{\partial t}, \mathbf{w} \end{pmatrix} = -\left((\lambda + 2\mu) \frac{\partial u_{1}}{\partial x} + \lambda \frac{\partial u_{2}}{\partial y} + \lambda \frac{\partial u_{3}}{\partial z}, \frac{\partial \mathbf{w}}{\partial x} \right) - \left(\mu \frac{\partial u_{1}}{\partial y} + \mu \frac{\partial u_{2}}{\partial x}, \frac{\partial \mathbf{w}}{\partial y} \right) - \left(\mu \frac{\partial u_{1}}{\partial z} + \mu \frac{\partial u_{3}}{\partial x}, \frac{\partial \mathbf{w}}{\partial z} \right) + (f_{1}, \mathbf{w}).$$

• First component of displacement:

$$\left(\rho \frac{\partial u_1}{\partial t}, w\right) = \left(\rho v_1, w\right).$$

• Upscale both variables.

Two-Scale Decomposition

Goal: Capture fine-scale behavior on the coarse grid. **Idea:** Use a two-scale decomposition of solutions.

• Two-scale grid:

• Two-scale decomposition:

$$\mathbf{v} = \mathbf{v}^c + \delta \mathbf{v},$$
$$\mathbf{u} = \mathbf{u}^c + \delta \mathbf{u},$$

- \mathbf{v}^c , \mathbf{u}^c are the coarse-scale unknowns,
- $\delta \mathbf{v}$, $\delta \mathbf{u}$ are the subgrid unknowns internal to each block.
- Simplifying assumption: Subgrid solutions are equal to zero on coarse block boundaries.

T. Vdovina, TRIP, Rice University

Two-Scale Decomposition

Goal: Capture fine-scale behavior on the coarse grid. **Idea:** Use a two-scale decomposition of solutions.

• Two-scale grid:

• Two-scale decomposition:

$$\mathbf{v} = \mathbf{v}^c + \delta \mathbf{v},$$
$$\mathbf{u} = \mathbf{u}^c + \delta \mathbf{u},$$

- \mathbf{v}^c , \mathbf{u}^c are the coarse-scale unknowns,
- $\delta \mathbf{v}$, $\delta \mathbf{u}$ are the subgrid unknowns internal to each block.
- Simplifying assumption: Subgrid solutions are equal to zero on coarse block boundaries.

T. Vdovina, TRIP, Rice University

Two-stage Algorithm

Step 1: On each coarse element solve the subgrid problem:

- Zero boundary conditions
- Basis: piecewise trilinear functions
- Quadrature: trapezoid rule
- Mass matrix: diagonal

Step 2: Use the subgrid solutions to solve the coarse-grid problem:

- Original boundary conditions
- Original fine-scale parameter fields
- Basis: piecewise trilinear functions
- Quadrature: subgrid trapezoid rule
- Mass matrix: banded (27 diagonals) and sparse

Parallel Implementation

Preprocessing:

- read input data and split it among processes,
- construct coarse grid system matrix.

Time-step loop:

- Subgrid problems: embarrassingly parallel
 - no communication between processors,
 - no additional ghost-cell memory allocations,
 - diagonal linear system.

• Coarse problem:

- Construct rhs locally and assemble global copy on all processes:
 - 3 velocity load vectors, 10 inner products each,
 - 3 displacement load vectors, 3 inner products each,
 - example: $20 \times 20 \times 20$ coarse grid blocks $20^3 \cdot (3 \cdot 10 + 3 \cdot 3) = 169,744$ triple integrals.
- Solve linear system using SuperLU_DIST or UMFPACK.

Postprocessing: reconstruct $\mathbf{v} = \mathbf{v}^c + \delta \mathbf{v}$, $\mathbf{u} = \mathbf{u}^c + \delta \mathbf{u}$.

Parallel Performance

Number of	Time-step	Subgrid	Coarse
processes	loop	problems	problem
1	238.07	17.00	220.23
2	119.41	8.39	110.63
4	60.03	4.22	55.62
8	30.61	2.23	28.28
16	17.07	1.00	16.02
32	8.17	0.51	7.63
64	4.51	0.25	4.24
128	2.88	0.13	2.74

- Discretization: 320 × 320 × 320 fine grid blocks, 32 × 32 × 32 coarse grid blocks, 20 time steps.
- Full finite element code on a single process: 140.30 seconds.

Acoustic Numerical Example

• Pressure-acceleration formulation:

$$\mathbf{u}(x,z,t) = -\nabla p(x,z,t),$$

$$\frac{1}{c^2(x,z)} \frac{\partial^2 p(x,z,t)}{\partial t^2} + \nabla \cdot \mathbf{u}(x,z,t) = w(t)\delta(x,z)$$

- Upscale acceleration only
- Domain: 1000×1000 m and 250 ms
- Source: Ricker wavelet, peak frequency 15 Hz
- Fine grid: 200 × 200, coarse grid: 20 × 20

Acoustic Numerical Example: Pressure

play

T. Vdovina, TRIP, Rice University

Acoustic Numerical Example: Horizontal Acceleration

play

T. Vdovina, TRIP, Rice University

Numerical Experiment I

- Domain: $12 \times 12 \times 12$ km and 1.56 seconds.
- Source: $\mathbf{f}(t, \mathbf{x}) = Ah(t)g(|\mathbf{x} \mathbf{x}_s|^2)\mathbf{a}$,
 - h(t) is Ricker wavelet with peak frequency 1.7 Hz,
 - $g(|\mathbf{x} \mathbf{x}_s|^2)$ is Gaussian.
- Fine grid: $120 \times 120 \times 120$, coarse grid $24 \times 24 \times 24$.
- Layered medium.

Compressional Velocity

T. Vdovina, TRIP, Rice University

1st Component of the Velocity Solution (yz-plane), 3.7 km

Reconstructed upscaled solution $v_1^c + \delta v_1$

T. Vdovina, TRIP, Rice University

1st Component of the Velocity Solution (yz-plane), 4.0 km

T. Vdovina, TRIP, Rice University

Summary

What do we have?

- Elastic wave equation:
 - velocity/displacement formulation, 3D,
 - serial and parallel implementations,
 - numerical convergence.
 - Vdovina, Griffith, Minkoff (in revision)
- Acoustic wave equation:
 - pressure/acceleration formulation, 2D,
 - serial and parallel implementations,
 - convergence analysis confirmed by numerical experiments.
 - Vdovina, Minkoff, Korostyshevskaya (2005), Korostyshevskaya, Minkoff (2006), Vdovina, Minkoff (2008)

Where do we go with this?

• Seismic inversion: progress report in my second talk

Numerical Convergence

- Homogeneous medium
- Source function is chosen to produce closed form solutions
- Both fine and coarse grids are refined

Number of fine blocks	Number of coarse blocks	Number of time steps	$\frac{ V_1 - v_1 _{\infty}}{ V_1 _{\infty}}$	Rate
50 imes 50 imes 50	5 imes 5 imes 5	50	2.4554e-01	-
100 imes 100 imes 100	10 imes 10 imes 10	100	5.5976e-02	2.1
$200\times200\times200$	20 imes 20 imes 20	200	1.5578e-02	1.9
$400\times400\times400$	$40\times40\times40$	400	3.8776e-03	2.0

Numerical Convergence (cont.)

• Fine grid is fixed, coarse grid is refined

Number of fine blocks	Number of coarse blocks	Number of time steps	$\frac{ V_1 - v_1 _{\infty}}{ V_1 _{\infty}}$	Rate
$200\times200\times200$	$5 \times 5 \times 5$	200	2.4770e-01	_
$200\times200\times200$	10 imes 10 imes 20	200	5.6439e-02	2.1
$200\times200\times200$	20 imes 20 imes 20	200	1.5578e-02	1.9
$200\times200\times200$	40 imes 40 imes 40	200	3.7272e-03	2.1

• Fine grid is refined, coarse grid is fixed

Number of fine blocks	Number of coarse blocks	Number of time steps	$\frac{ V_1 - v_1 _{\infty}}{ V_1 _{\infty}}$	Rate
$50 \times 50 \times 50$	10 imes 10 imes 10	50	5.5967e-02	-
$100\times100\times100$	10 imes 10 imes 10	100	5.7067e-02	_
$200\times 200\times 200$	10 imes 10 imes 10	200	5.6439e-02	_
$400\times400\times400$	10 imes 10 imes 10	400	5.7506e-02	_

T. Vdovina, TRIP, Rice University