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INTRODUCTION

Large-scale simulation driven optimization arises in a variety of scientific and en-
gineering contexts, notably control, design, and parameter estimation. Simulation
of physical processes involves a variety of computational types and data structures
specific to physical modeling and numerical implementation. Simulator applica-
tions typically include data structures for geometric meshes or grids and rules for
their construction and refinement, functions on these grids representing physical
fields, equations relating grid functions and embodying (gridded versions of) phys-
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ical laws, and iterative or recursive algorithms which produce solutions of these
equations.

Optimization and linear algebra algorithms on the other hand generally have no
intrinsic interaction with physics and its numerical realization, involving instead
a more abstract layer of mathematical constructs: vectors, functions, gradients,...
Many such algorithms, including some of the most effective for large scale problems,
may be expressed without explicit reference to coordinates. These coordinate-free
(sometimes called matrix-free) algorithms use only the intrinsic operations of linear
algebra and calculus in Hilbert space, and form an active subject of research in the
numerical optimization community. Examples include Krylov subspace methods for
the solution of linear systems and eigenvalue problems, Newton and quasi-Newton
methods for unconstrained optimization, and many constrained optimization meth-
ods. See for example Nocedal and Wright [1999] for a comprehensive overview of
modern numerical optimization, and Ridzal [2006] for recent work on matrix-free
constrained optimization.

This discrepancy between levels of abstraction is the source of a software engi-
neering problem: in procedural programs to solve simulation driven optimization
problems, the details of simulator structure invariably intrude on the optimiza-
tion code, and vis-versa. Time-honored software “tricks” used to hide these details
within procedural code (common blocks, parameter arrays, “void *” parameters,
reverse communication,...) lead to software that is difficult to debug and maintain
and nearly impossible to modify, extend, or reuse outside of the originating context.

Object oriented programming appears to offer a way out of this dilemma. The
two principal elements of object orientation, data abstraction and polymorphism,
have immediate implications for design of reusable numerical code. Data abstrac-
tion defines data objects in terms of the operations used to manipulate them, rather
than in terms of their composition out of simpler objects. This device allows imple-
mentation details in one part of a program to be hidden completely from other parts
which do not intrinsically involve them. For example, an optimization algorithm
might manipulate only the parameters (eg. nodal values) of a finite element mesh.
Without data abstraction, the algorithm must be written to reference the entire fi-
nite element data structure; the implementation becomes dependent on data which
is foreign to the algorithm, such as element geometry, and cannot be used without
modification in a different context. An abstract data array type can expose only
those details (in this case, the array of nodal values) needed in context of a specific
algorithm or class of algorithms, via a set of operations on these details, and hide
other details entirely. Thus data abstraction frees the algorithm writer from the
necessity to refer explicitly to all aspects of a data structure.

Polymorphism complements data abstraction to enable reuse of numerical algo-
rithms across many applications. Polymorphic functions accept a variety of argu-
ment types, and perform operations dictated by the type of their arguments. This
concept is familiar: for example, the “+” operator in Fortran 77 accepts arguments
of all arithmetic types and performs the appropriate form of addition for each.
Abstract polymorphic functions take this concept a step further: they accept argu-
ments of abstract data types, and rely for their definitions only on the attributes
of these types. For example, Krylov-subspace algorithms for solution of linear sys-
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tems use only matrix-vector multiplication. Some matrices, such those generated
by time-dependent simulation, or element stiffness matrices in non-assembled form,
may define matrix-vector products while providing only indirect access to explicit
matrix elements. Other matrices may exist computationally as arrays of elements,
and matrix-vector products for these are naturally written in terms of the elements.
A polymorphic linear operator type defines the matrix-vector product as an input-
output operation on an abstract vector type, and can be realized concretely using
either type of definition, accessing the data of the vector arguments as is appro-
priate. An abstract polymorphic linear operator type does not specify the means
by which the matrix-vector product is carried out: it merely provides a promise
that it is done. An algorithm written in terms of an abstract polymorphic linear
operator type can thus be used in contexts involving either “implicit” or ordinary,
explicit matrices, without recoding: the specific instance of the type need supply
only the computations mandated by the type, without any reference to the explicit
computations by which they are carried out.

These concepts do not in themselves mandate a type system for numerical opti-
mization with any precision. Indeed, at least two major varieties of polymorphism
- parametric (compile-time) and inheritance (run-time or late-binding) polymor-
phism - offer a wide variety of possible approaches. We have elected in the work
reported in this paper to use largely (though not entirely) the runtime polymor-
phism paradigm, implemented by inheritance or subtyping. In addition, we have
attempted to model the computational types as closely as we could on the mathe-
matical types appearing in the abstract, mathematical descriptions of algorithms.
That is, when a type of mathematical object is defined by a specific set of attributes,
we have attempted to create a parallel, computational type with a comparable set of
attributes. For example, the most general abstract mathematical definition of vec-
tor does not mention the concept of dimension - dimension is neither necessary nor
sensible for the definition of many operations in linear algebra. The abstract com-
putational vector type developed in the following pages also abjures the dimension
attribute, deferring it to subtypes with additional structure for which dimension
make sense.

These design principles have led us to formulate class library presented in this
paper, the Rice Vector Library (“RVL”), an object-oriented software framework for
the expression of coordinate-free algorithms in continuous optimization and linear
algebra. RVL provides C++ classes emulating a set of core mathematical con-
cepts, entirely sufficient to express these algorithms. RVL realizes these concepts
(vectors, functions,...) computationally in a set of abstract polymorphic types or
classes, such as RVL::Space and RVL::Operator, along with implemented (con-
crete) classes constructed out of the abstract components, such as RVL::Vector,
which express related concepts. As mentioned above, the central goal of the RVL
project is to make the relationships amongst these “calculus” classes as parallel as
possible to those amongst the mathematical concepts which they represent, while
simultaneously accommodating the computational requirements of large scale sci-
entific programming. Critical to the success of our approach is the provision of
another collection of abstract “data management” classes (RVL::DataContainer
and RVL::FunctionObject in RVL), which offer uniform data abstraction methods

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



4 · Anthony Padula et al.

for hiding implementation detail.
A number of other projects have realized various aspects of an “OO numerics”

program for numerical linear algebra and/or optimization [Nichols et al. 1992; Meza
1994; Deng et al. 1996; ISIS Development Team 1997; Tech-X 2001; Tisdale 1999;
Veldhuizen 1999; Karmesin 2000; Benson et al. 2000; Langtangen 1999; Gocken-
bach et al. 1999; Heroux et al. 2003; Kolda and Pawlowski 2003; Bartlett 2003;
Dongarra et al. 2004]. RVL is a successor to one of these, the Hilbert Class Li-
brary (“HCL”, [Gockenbach et al. 1999]), and incorporates many of its innovations
and design principles. At various places throughout the paper, we will contrast
the features of RVL with those of its progenitor HCL. RVL improves over HCL in
more cleanly separating “calculus” and “data management” layers, and in provid-
ing the applications programmer with a simpler API typically requiring less coding
to achieve the same functionality. Introduction of types for function evaluations
was an important HCL innovation; RVL offers improved evaluation type semantics.

HCL and RVL are unique amongst OO numerics libraries (to our knowledge)
in offering a maximally faithful computational realization of the core concepts of
calculus in Hilbert space, and in proposing a type system which provides such re-
alization as a functionally complete framework for the target class of algorithms.
A few other OO numerics packages, such as Thyra and NOX from the Trilinos
collection, also target abstractly defined algorithms, and define types bearing some
relationship to calculus concepts. With the exception of NOX, these other packages
heavily (sometimes exclusively) concentrate on linear problems, whereas HCL and
RVL were designed from the ground up to express nonlinear problems and solution
algorithms for them. Also, other OO numerics packages do not primarily aim to
mimic the underlying mathematics of coordinate-free algorithms, but rather to pro-
vide an interoperability layer for a large variety of numerical algorithm packages
(Thyra) or an API for nonlinear equation solvers (NOX), or aim at some other
design goal. As one might therefore expect, the fundamental semantics expressed
in these packages often diverges from that of vector calculus. The thesis of the
HCL and RVL projects can be restated as follows: the mathematics itself, care-
fully emulated in a system of computational types, provides a functional API for
coordinate-free optimization and linear algebra algorithms. “Functional” in this
context means (amongst other things): allows for an effective approach to inter-
operation with other numerical libraries, and for high-performance and/or parallel
implementation.

It is important to understand that RVL is not (amongst other things) a lin-
ear algebra library of the sort represented by LAPACK [Anderson et al. 1992] or
TNT [Pozo 2004] or Blitz++ [Veldhuizen 1999]. RVL does not express dense or
sparse linear algebra or indeed any other sort of computation referring explicitly
to the coordinates of a vector in a basis. That is not its objective. It is entirely
possible and even advantageous to build RVL objects as “wrappers” around func-
tions and/or types taken from linear algebra libraries like those mentioned above or
many others, and in so doing take advantage of many person-years of development
of high-performance numerical code. We will offer several examples below in which
such wrapper constructions play a crucial role.

Also, RVL does not pretend applicability beyond the semantic scope specified in
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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the goal statement. For example, it does not model calculus in Banach space, nor
does it at present express discrete variable concepts underlying integer and mixed-
integer programming (though we have experimented with such an extension, which
seems in principle feasible). The norm function supplied in the RVL::Space base
class is intended to represent a Hilbert norm, derived from an inner product. Other
norms may be provided, of course - they are amongst the variety of functions which
may be hidden behind the RVL::FunctionObject interface. However these are not
built into the fabric of RVL::Space, which is a computational token for Hilbert
space. We make this restriction for one reason alone: calculus in Hilbert space is
the abstract framework upon which nonlinear programming is founded.

An Illustrative Example

A simple example of the abstraction dichotomy described above is apparent in the
least-squares solution of a linear thermal control problem via a Krylov subspace
iteration. We shall refer to this example throughout the paper. An individual step
in such an iteration might be expressed as

q = Ap

γ = 〈r, r〉
α = γ/〈p, q〉
r = r − αq (1)
x = x+ αp

β = 〈r, r〉/γ
p = r + βp

Here A stands for the normal operator of the control problem, application of which
involves solution of one or more partial differential equations or systems, discretized
perhaps via a finite element method.. Execution of this line typically requires sev-
eral orders of magnitude more floating point arithmetic than do the other lines,
which express generic linear algebra operations such as linear combination or inner
(dot, scalar) product (represented by 〈, 〉). Note that no mention of the coordinates
of the fields x, r, ... or of the matrix elements of A occurs in the algorithm (1). The
(absolutely vital) details of the physics and numerics incorporated in the imple-
mentation of A simply play no role in (1), which presumes only that A defines a
symmetric (Hermitian) positive definite linear operator on an appropriate Hilbert
space. A preconditioned version of this algorithm could be expressed in similar
fashion.

The intent of the RVL project is to provide a system of abstract types which
permit the expressions of algorithms such as that described in display (1), without
the intrusion of computational details extraneous to the mathematical description
of the algorithms. Such details must of course appear somewhere; RVL provides
the means to defer these details to other software layers.

Plan of the Paper

The following pages discuss the “calculus” and “data management” types, and their
use in expressing coordinate-free algorithms. Several example applications illustrate
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the use of RVL to solve simulation-driven optimization problems in both serial and
parallel environments. These examples showcase the reuse of abstract algorithm
code across disparate application domains and computing platforms, interopera-
tion with other numerics libraries, both OO and non-OO, and the feasibility of
performance on par with that of competently constructed procedural code.

The base classes which are the principal topic of this paper are entirely abstract,
and do not define data access methods. Some means to access data must be specified
in order that an actual application be written; such data access interfaces are outside
the scope of RVL proper. In appendices, we describe both a simple, portable data
access layer which we have used extensively in our own applications work, and an
adaptation of parts of Sandia National Laboratory’s Trilinos collection to form an
RVL data access layer.

This purpose of this paper is to present the essential features of RVL classes
and their use in expression of coordinate-free algorithms. We refer the reader to
the RVL reference manual for a comprehensive description of the classes and their
usage [Symes and Padula 2005], and the design document [Symes et al. 2005] for a
more complete description of the structure and design principles of the library.

All class names in the following discussion refer to RVL classes. We include the
namespace prefix RVL:: only where there is a danger of confusion with some other
namespace. We also strip comments, standard constructors, exception handling,
and other boilerplate out of code listings.

VECTORS AND SPACES

The fundamental concept of linear algebra is that of vector space, a set with asso-
ciated operations obeying certain axioms. A typical introduction of the concept,
from a standard text ([Hoffman and Kunze 1961], p. 19), reads

... a vector space... consists of the following:
(1) a field F of scalars;
(2) a set V of objects, called vectors;
(3) a rule (or operation), called vector addition,...
(4) a rule (or operation), called scalar multiplication,...

from which we see that

—the fundamental concept is actually that of vector space - a vector is merely an
element of a vector space, gets its identity from the space to which it belongs,
and is meaningless except in the context of membership in its space;

—the linear combination operation (combining vector addition and scalar multipli-
cation, and having each as a special case) is an attribute of the vector space, not
of its individual elements (vectors).

The mathematical basis of the software reported in this paper is the Hilbert
space, a mathematical structure which adds to the attributes of vector space an
inner product (also called scalar or dot product), a conjugate-symmetric (Hermi-
tian) conjugate-bilinear (or sesquilinear) positive-definite scalar-valued function.
We shall assume without further mention that all vector spaces occurring the the
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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discussion have this additional structure, that is, are Hilbert spaces.
HCL introduced vector space as a type, and RVL adopts this innovation. The

RVL vector space type Space is a class template. The (only) template parameter
identifies the “field” of scalars, i.e. numeric type which serves as a proxy for an
actual field. Any numerical type representing a subfield of the complex numbers
is in principle admissible as a template parameter. The current release of RVL
supports all of the C++ intrinsic numerical types, and the std::complex types
built upon them, as template parameters.

Unlike its mathematical homolog, the computational space does not (cannot!)
call all of its members (vectors) into existence as soon as it is instantiated. Instead,
some mechanism must be provided for creation on demand. Such creation parallels
the mathematical commonplace “...let x [vector] be a member of X [space]...”. In
many algorithm formulations, sentences like these occur in which X is a more-or-
less arbitrary vector space: that is, creation of vectors must be accomplished in
a way that hides the detailed structure of the space. Computational spaces will
thus be Abstract Factories [Gamma et al. 1994], and will in addition bind vectors
belonging to them to specific methods for carrying out the basic operations of linear
algebra.

Vectors are not simply arrays of coordinates. On the other hand, vectors have
coordinates once a basis is specified, and coordinates in a specific basis invariably
provide the sole computational access to vectors. Linear combination, inner prod-
uct, and all other operations on vectors must ultimately be realized as operations
on coordinates, implemented according to the rules provided by the space to which
the vectors belong. These requirements have a natural translation in the structure
of the RVL Vector class.

Using Space and Vector

The UML class diagram Figure 1 displays the relations between Space, Vector, and
the two base classes from the data management layer which provide an abstract
interface for interaction with data. Note that in the interest of clarity, we have
suppressed some details from the UML, notably the Scalar template which is
common to almost all of the RVL classes.
Vector instances own abstract containers for coordinate data, for which RVL pro-

vides the DataContainer base type. Creating a Vector thus entails dynamic allo-
cation of a DataContainer. Since Space is the repository of all information needed
to construct Vectors, a virtual constructor method of the Space class allocates the
DataContainer data member during Vector construction. Space also provides the
linear combination and inner product (virtual) implementations which manipulate
DataContainer instances. Vector delegates linear combination and inner product
to the corresponding Space methods, called on its DataContainer data member.
Vector must therefore retain a reference to its Space, hence “knows” which space
it is in. As will be discussed more extensively below, all manipulations of data
encapsulated in DataContainers occurs through an evaluation interface involving
a function object type, FunctionObject. Vector uses FunctionObjects through
delegation to the corresponding evaluation methods of DataContainer.

In the language of Gamma et al. [1994], RVL::Vector is a Facade: it combines
several other types to produce a new set of behaviours. It also functions as a handle
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to its dynamically allocated DataContainer member. We emphasize that Data-
Container does not constrain in any way the concrete data structures choses to
represent the coordinate data of Vectors: these could be native C arrays, standard
library containers of various sorts (vectors in the std::vector sense, lists, trees,...),
out-of-core structures provided with paging rules, or distributed structures of vari-
ous sorts, to name a few of many possibilities.

A Space subclass designer must implement five public methods (pure virtual in
the base class), along with constructors initializing whatever internal data is neces-
sary to make these work. The first of these five methods is a virtual constructor for
the DataContainer subtype encapsulating the data structures specifying Vectors
in this Space, with signature

DataContainer * Space<Scalar>::buildDataContainer() const;

Space offers the ability to compare instances:

bool Space<Scalar>::operator ==(const Space<Scalar> & sp) const;

Since few spaces appear in algorithms, in comparison to other sorts of things such
as vectors and functions, it’s appropriate to test addresses as the first step in any
implementation of Space<Scalar>::operator==.

Finally, three methods specify the algebraic character of the Space:

Scalar Space<Scalar>::inner(DataContainer const & x,
DataContainer const & y) const;

void Space<Scalar>::zero(DataContainer & x) const;
void Space<Scalar>::linComb(Scalar a, DataContainer const & x,

Scalar b, DataContainer & y) const;

The first of these implements the inner product, the characteristic attribute of
Hilbert space. The second assigns to the data container argument the data defin-
ing the zero element of the space (the additive identity). Zero is the only vector
whose coordinates are the same in all possible bases (namely, all zeroes). Typical
implementations of the DataContainer class will provide arrays (or lists, or trees,
or some other data structure) containing coordinates. Space::zero method will
typically assign the scalar zero to the components of these data structures. The
final method defines linear combinataion, that is, vector addition and scalar mul-
tiplication. Typical implementations, like those of Space::zero, will perform the
analogous operations on coordinates stored in the argument DataContainer s.

Following HCL and other OON libraries, RVL uses function-call syntax rather
than overloaded arithmetic operators to express linear algebra operations. The
efficiency-related reasoning behind this choice is well-known (see for example Bartlett
et al. [2004]).

Invocation of the RVL linear combination method Space::linComb asserts that
the vector operation y = ax + by has been performed on the underlying coordi-
nate arrays hidden by the DataContainer arguments. RVL makes no guarantee
about the correctness of any call to Space::linComb in which the output argument
(DataContainer & y) is aliased with the input argument DataContainer const
& x. Implementations can recognize various special cases (axpy, copy,...), as deter-
mined by values of the scalars a and b, and generate efficient code for these. To
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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make sure that these can be tested reliably (and for other reasons mentioned below),
RVL provides a traits class [Myers 1995] which specifies the precise type and value
of several constants (one, zero, etc.) not fully specified in std::numeric limits,
amongst other things.
Space subclasses tend to share a great deal of code. For example, linear combina-

tion works exactly the same way in all coordinate systems. RVL supplies a shortcut
to construction of Spaces, so that usually the only code that need be supplied is
the virtual DataContainer constructor, and more rarely overloads of operator==
and/or inner. This StdSpace construction is discussed below.
Vector is concrete, i.e. completely implemented. All methods delegate to meth-

ods of Space or DataContainer. The principal constructor takes a space and an
optional initialization flag:

Vector(const Space<Scalar> & sp, bool initZero = false);

Initialization of a Vector’s data (behind the abstract data container interface) is
optional - the only initialization with coordinate-free meaning is initialization by
zero, and that is the only option offered as part of construction. Construction of
vector workspace is very simple: if sp is a Space instance, then

Vector<Scalar> x(sp);
Vector<Scalar> z(sp,true);

builds two vectors, the second representing the zero vector.
Vectors know the space that they belong to, and announce their membership

publicly:

const Space<Scalar> & Vector<Scalar>::getSpace() const ;

An instance of Vector thus depends on, and exposes, a const reference to a Space,
which must necessarily refer to a pre-existing Space object. This relationship of
computational Vector and Space objects, enforced by semantics of C++ refer-
ences, mimics precisely the relationship of the corresponding mathematical objects,
that is, the membership of a vector in its space. Existence of the space logically
precedes that of the vector; a vector cannot exist in the absence of its space. This
feature of RVL contrasts with the vector-space relationship implemented in HCL,
which permits HCL Vector instantiation without reference to an existing HCL Space
object.

The only assignment with invariant meaning is assignment to the zero vector.
This assignment, the inner product, and linear combination all delegate to the
Space methods of the same names. The linear combination method

void Vector<Scalar>::linComb(Scalar a, const Vector<Scalar> & x,
Scalar b=ScalarFieldTraits<Scalar>::One() );

implements y ← ax + by, where y is represented by *this. The scalar b defaults
to 1, interpreted appropriately for the type Scalar via the aforementioned traits
class template ScalarFieldTraits.
Vector also supplies “convenience” methods (scale, copy, norm,...) by delega-

tion to Space methods of the same name, which are provided default implementa-
tions in terms of the basic Space linear algebra methods. Note that norms must
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return positive reals. Therefore the ScalarFieldTraits specializations typedef
AbsType, the return type of the absolute value function and for norm and normsq
(implementing x 7→

√
|〈x, x〉| and x 7→ |〈x, x〉| respectively).

The Vector class methods provide computational expression for every line but
one of the simple Krylov step (1):

A.applyOp(p,q);
gamma = r.inner(r);
alpha = gamma / p.inner(q);
r.linComb(-alpha, q);
x.linComb(alpha, p);
beta = r.inner(r)/gamma;
p.linComb(one, r, beta);

The first line invokes the applyOp method on an RVL::LinearOp instance - RVL
function and operator classes will be discussed in the next section. The other lines
involve only vector arithmetic expressed via the methods of Vector.

Data Access and Manipulation

Some mechanism must be supplied for manipulation of coordinate arrays, else no
actual computations can take place. For efficiency reasons, the base class DataCon-
tainer cannot mandate the precise form of data access. RVL defers data access
definition to subclasses of DataContainer. The appendices discuss some examples.

RVL’s FunctionObject base type provides a uniform interface behind which to
hide data manipulations of all sorts. Evaluation of concrete FunctionObject sub-
types uses the data access services of concrete DataContainer subtypes. However
control over the evaluation must reside in DataContainer objects owning that data,
which therefore also own information about the layout and location of the data.
Thus DataContainer is provided with a means to evaluate FunctionObjects.
DataContainer and FunctionObject together form an example of the Acyclic

Visitor design pattern [Martin et al. 1998; Martin 2002]. This function-forwarding
or double-dispatch design is inspired by the standard library’s scheme for interaction
of function objects and containers, and by Bartlett’s RTOp package [Bartlett et al.
2004]. As implied by its role in this pattern, RVL::FunctionObject is a degenerate
base: it defines only a standard reporting method (which may be overridden in
subclasses). Its interaction with DataContainer is left entirely unspecified. Child
classes of FunctionObject will define evaluation methods which access the services
provided by child classes of DataContainer. Runtime type information will be
used to properly associate FunctionObject and DataContainer subtypes, as is
characteristic of Acyclic Visitor applications.

The DataContainer::eval expresses acceptance of a Visitor (FunctionObject)
by an Element (DataContainer), per the (Acyclic) Visitor pattern. This particular
acceptance method also allows for the participation of other DataContainers:

virtual void DataContainer::eval(FunctionObject & f,
std::vector<DataContainer const *> & sources) = 0;

RVL does not support output aliasing in implementations of eval: implementations
need not assure correct results when the DataContainer, on which eval is called,
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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is aliased with any of the input arguments sources[i].
FunctionObject evaluation is the only general high-level mechanism for data

manipulation provided by RVL. Therefore an interface must be provided to evaluate
FunctionObjects from the vector level. Vector accomplishes this task via an eval
method analogous to DataContainer’s, which delegates evaluation to its DataCon-
tainer data member and its eval method. Aliasing of output with input arguments
is also unsupported for these methods.

RVL provides specializations of Vector::eval admitting zero to three Vector
arguments (in addition to the Vector on which eval is called). These are often
more convenient to use than the generic evaluation method, in terms of which they
are implemented in the obvious way. For example, the binary interface, combining
two Vectors and a FunctionObject, is:

void Vector<Scalar>::eval(FunctionObject & f,
Vector<Scalar> const & source) {...}

FunctionObject is intended to encapsulate calculations which return “large” re-
sults, whence the “return value” of a FunctionObject is the DataContainer on
which the eval method is called with the FunctionObject as first argument. Since
the other (possible) DataContainer arguments are passed by address, opportu-
nities to minimize data motion are preserved by the design. On the other hand
many functions return results with perfectly usable copy semantics, such as scalar
field values or booleans. It has become common to term such functions reductions,
perhaps because the output is generally much smaller than the input. For such func-
tions, RVL provides a FunctionObjectRedn base class, the root of another Acyclic
Visitor hierarcy. A FunctionObjectRedn instance manages an object of an ab-
stract return type RetType, to which it offers access via setResult and getResult
methods. Since reductions frequently target scalar types, we also provide a Func-
tionObjectScalarRedn subclass with setValue and getValue access methods for
scalars.

Both DataContainer and Vector are provided const methods to evaluate Func-
tionObjectRedns, the latter by delegation to the former; the target of an Func-
tionObjectRedn is its internal RetType instance, and the DataContainer on which
a FunctionObjectRedn evaluation is called is treated as read-only. A typical ex-
ample is the implementation of StdSpace::inner, discussed below.

The sequence diagram in Figure 2 depicts a typical instance of FunctionOb-
ject evaluation. At the top, the eval method is called on a Vector, with an
instance of RVLRandomize, a FunctionObject subtype, as argument (i.e. with
a length zero std:;vector of source vectors). Control passes to the DataCon-
tainer data member, in this case an instance of StdProductDataContainer. The
StdProductDataContainer class, discussed in detail in [Symes and Padula 2005;
Symes et al. 2005], is a concrete implementation of a Cartesian product of DataCon-
tainers, a Composite in design pattern terms. The components of this product,
in the case illustrated, are DataContainers which expose their array data, and
own references to no further DataContainers. The specific type is discussed in
the first appendix. FunctionObjects are evaluated directly on this latter type:
its eval method calls the operator() method of its FunctionObject argument,
which accesses the DataContainer’s data. The particular FunctionObject named
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in Figure 2 is one that assigns pseudorandom numbers to the data array of a Data-
Container argument. When control returns to the Vector on which the eval
method was called, the coordinate array which it encapsulates has been initialized
with pseudorandom numbers.

It is important to emphasize that all of this happens as the result of a single line
of user code:

x.eval(rand);

provided that the objects x and rand have been properly initialized.
Scalar functions, i.e. those of the form zi = f(xi, yi, ...), can be encapsulated in

FunctionObjects which any DataContainer offering compatible data access mode
can evaluate. Bartlett Bartlett et al. [2004] has termed such functions vector trans-
formation operators, and points out that only these can be evaluated efficiently
without detailed information on data distribution, assuming only that correspond-
ing components of the coordinate arrays involved in the evaluation are stored in
the same local memory.

Linear combination is a scalar function, as is zero assignment. The Euclidean
inner product is a scalar reduction (vector reduction operator in Bartlett’s ter-
minolgy). Implementations of these three as FunctionObjects and Function-
ObjectScalarRedn may be shared across all Space subtypes whose associated
DataContainers expose data in the same way. This leads to a standard con-
struction of Space subclasses with Euclidean inner products, described in Fig-
ure 3. The StdSpace Facade class combines a DataContainerFactory and a
LinearAlgebraPackage to realize a Space. A LinearAlgebraPackage packages to-
gether to a FunctionObjectScalarRedn and two FunctionObjects defining inner
product, zero assignment, and linear combination, with access methods. StdSpace
uses a Factory class, DataContainerFactory, to implement the virtual DataCon-
tainer constructor required by Space, and offers a comparison method to facilitate
Space comparison.

The StdSpace construction minimizes the programming effort involved in con-
struction of a Space subclass. HCL has no abstract definition of data interaction
(data management interface, RVL’s DataContainer and FunctionObject /Func-
tionObjectRednbase classes) hence cannot offer a similar labor-saving construc-
tion.

FUNCTIONS AND EVALUATIONS

RVL defines three base classes for functions of a vector variable: LinearOp, for lin-
ear operators; Functional, for scalar-valued functions; and Operator, for vector-
valued functions. Mathematically, all three of these possibilities are special cases of
a general vector function concept. However computationally it is not convenient to
derive all three types from a common parent. In some cases common mathemati-
cal usage also conforms to these distinctions. For instance, both scalar-valued and
vector-valued function interfaces must include, in some form, access to the deriva-
tive as a linear map. However in Hilbert space optimization theory and practice,
the useful form of the derivative of a scalar-valued function is the gradient, i.e. the
Riesz representer of the derivative, rather than the derivative itself. RVL conforms
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to this usage pattern, returning the derivative in the Operator type as a LinearOp,
in the Functional type as a Vector.

Linear operators

As RVL aims to express coordinate-free algorithms, its LinearOp interface is not
required to divulge matrix elements, for example. Only an operator application
method need be supplied.

Linear operators on Hilbert space implicitly exist in pairs: each operator has
an adjoint. Like the mathematical homolog, “adjoint” here means: with respect
to the inner products defined in range and domain, which are also attributes of
the LinearOp object. Therefore the fundamental linear mapping type in RVL
encapsulates pairs of linear operators, adjoint to each other. A LinearOp offers two
public methods for operator application:

void applyOp(const Vector<Scalar> & x, Vector<Scalar> & y) const;
void applyAdjOp(const Vector<Scalar> & x, Vector<Scalar> & y) const;

applying the operator and its adjoint to the input vector represented by x and
storing the output in the vector represented by y.

Note that several other OO numerics libraries, mentioned in the introduction,
define types representing some form of abstract linear operator, for which the defi-
nition (or even declaration) of an adjoint is optional. As we have just pointed out,
such a class does not mimic the semantics of linear operators in Hilbert space.

The applyOp and applyAdjOp methods are pure virtual. To build an instantiable
LinearOp subclass, the user must implement these, as well as public methods ex-
posing the domain and range spaces:

const Space<Scalar> & getDomain() const;
const Space<Scalar> & getRange() const;

and a clone method:

LinearOp<Scalar> * clone() const;

along with constructors which initialize whatever subclass data members these im-
plementations require. For example, domain and range Spaces might be passed by
reference to the constructor. and stored as const Space & data members.

A typical use of the methods exposing domain and range is to generate workspace,
for example:

Vector<Scalar> x(A.getDomain());

RVL also supplies an overload of the LinearOp::applyOp method which includes
linear combination with a vector, i.e. y ← αAx + βy, and a similar method for
the adjoint, with obvious (and possibly inefficient) default implementations. These
overloads, popular in other OO numerics libraries, are less useful than one might
think; annoyingly often, algorithms require access to Ax as well as to the linear
combination, so nothing is gained. The Krylov step (1) is an example of this
phenomenon: since the result of the operator-vector product is needed as a factor
in an inner product, nothing is gained by fusing the product with a vector addition
as is needed in the line following the inner product.
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To facilitate application-building, RVL supplies a unit test AdjointRelation-
Test, as a standalone function. This test checks internal consistency between ap-
plication of the operator and its adjoint, by choosing random vectors in domain
and range (via evaluation of an externally supplied randomization FunctionOb-
ject), calling applyOp and applyAdjOp, computing inner products, and reporting
the results on the stream argument. Its interface involves only the abstract type
LinearOp, together with a randomization FunctionObject and a specification of
output stream.

Nonlinear Functions and Evaluation objects

The definition and use of the RVL classes for (possibly) nonlinear scalar- and vector-
valued functions, Functional and Operator, are intertwined with the properties of
Evaluations. Evaluation objects store values of a mapping and its derivatives at a
point of its domain, along with consistent intermediate results which may be shared
by computations of these values. For example, computing a value generated by a
finite element simulator involves mesh generation, stiffness matrix assembly, and
so on. Computations of derivatives (“sensitivities”) of the simulator with respect
to parameters may require the very same data, but not necessarily in the same
part of the program. Evaluations enable reuse of such data and enforce its internal
consistency.

HCL introduced the Evaluation concept, and RVL Evaluations are an evolution
of HCL’s. The NOX project at Sandia National Laboratories defines a similar
Group concept. Most importantly, RVL Evaluations are concrete (unlike HCL’s):
the application developer need only implement a Operator or Functional object,
and RVL supplies the necessary Evaluation code. Semantically, RVL Evaluations
represent a mapping’s value at a variable argument, i.e. f(x) for variable x. The
data contained in x may change within its mathematical scope, and with it the
value f(x); in f(x) these are dynamically linked. To mimic this logical relationship.
RVL Evaluations automatically recompute values when these are requested, if the
evaluation point Vector has undergone a change of internal state since the last call.
This dynamic relation contrasts with HCL, which required a new Evaluation object
for each update of the evaluation point, and NOX, which requires the algorithm
writer to manually force an update of the value(s).

The relation between an Evaluation and the Vector evaluation point is an in-
stance of the Observer pattern. It works as advertised because the only public
access to a Vector’s internal state is through fully implemented methods of other
RVL classes: the non-const overload of Vector::eval, the non-const linear al-
gebra methods of Vector.These methods invoke the version update method im-
plementing the Observer relation. Because RVL allows no other public way to
change the state of a Vector, other than invocation of these methods, the user
is assured that Evaluations maintain the natural dynamic dependence of function
values on arguments. For example, the various non-virtual value access methods of
the mapping classes, such as LinearOp::applyOp and OperatorEvaluation::get-
Value, necessarily and implicitly update the versions of their target Vectors, as
their only possible implementations involve Vector::eval(FunctionObject,...)
and/or the non-const linear algebra methods..
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Using Functional and FunctionalEvaluation

We will describe the scalar-valued function class Functional and its associated eval-
uation type, FunctionalEvaluation, in detail. The structure of the corresponding
classes for vector-valued functions is precisely parallel.

Building a Functional involves implementing six methods, four of these pro-
tected, and appropriate constructors. The protected clone method is a virtual
copy constructor:

Functional<Scalar> * Functional<Scalar>::clone();

The usual subclass implementation uses the subclass’s copy constructor in the ob-
vious way.

The heart of a Functional is the computation of value, gradient, and Hessian,
encapsulated in the other three protected methods:

void Functional<Scalar>::apply(const Vector<Scalar> & x,
Scalar & val) const;

void Functional<Scalar>::applyGradient(const Vector<Scalar> & x,
Vector<Scalar> & g) const;

void Functional<Scalar>::applyHessian(const Vector<Scalar> & x,
const Vector<Scalar> & yin,
Vector<Scalar> & yout) const;

Since evaluation will take place within independent copies or clones of a function
type instance, one clone for each evaluation point, the function types are intended
to store all intermediate data needed in any evaluation, in principle as write-once,
read-many data, which may be allocated as needed.

The public virtual method getDomain returns a const Space reference. It must
be implemented in any instantiable subclass, usually by returning a reference to a
data member. The other public method, which should often be overridden, is

abstype getMaxStep(const Vector<Scalar> & x,
const Vector<Scalar> & dx) const;

This method returns the signed distance to the boundary of the domain in a spec-
ified direction, from a specified point. Its default implementation returns the max-
imum ScalarFieldTraits<Scalar>::AbsType().

RVL supplies standalone unit tests GradientTest and HessianTest, imple-
mented in terms of the base class interfaces. They estimate the convergence rate of
a second order finite difference approximation to the directional first, respectively
second, derivative to that produced by calls to the apply methods. These rates
should converge to 2, and it is usually possible to catch coding errors rather quickly
by running these tests.

A natural construction of a Functional subtype might rely on the services of
several appropriate FunctionObject and FunctionObjectRedn subclasses to im-
plement its apply methods. RVL provides a StdFOFunctional (partially imple-
mented) subclass which facilitates this type of construction. To take advantage of
any data shared between value, gradient, and Hessian evaluation, these Function-
Object and FunctionObjectRedn objects will need to share access to an external
object which serves as a repository for the shared data.
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FunctionalEvaluation is completely implemented. The user need only con-
struct one: given a Functional f and a Vector x, the evaluation is simply Functional-
Evaluation fx(f,x). Public methods of FunctionalEvaluation provide access
to the domain Space (delegation to its Functional data member) and access to
the results:

Vector<Scalar> & getPoint() const;
Scalar getValue();
Vector<Scalar> const & getGradient();
LinearOp<Scalar> const & getHessian();

The vector-valued function class Operator and its associated evaluation class
work in a precisely similar way, as described in detail in Figure 5.

A Quasi-Newton Algorithm Expressed in RVL

The core code for a quasi-Newton algorithm with line search globalization shows
a typical use of Functional, FunctionalEvaluation, and other core RVL classes.
For a mathematical description of this algorithm and others like it, consult Nocedal
and Wright [1999].

This algorithm combines a search direction computation and a line search, rep-
resented by appropriate abstract types. The line search is encapsulated in the
RVLUmin::LineSearchAlg class, a subclass of RVLAlg::Algorithm. The RVLAlg::Algorithm
type is defined in the Algorithm package, an independent but compatible offshoot
of the RVL project [Padula 2005]. The chief attribute of an RVLAlg::Algorithm
is that you can run it, and the run terminates, either successfully or not, as sig-
nified by the return value of the run method. In RVLUmin::LineSearchAlg, run
and other attributes are delegated: an initialization method dynamically allocates
an instance of another RVLAlg::Algorithm subtype, RVLUmin::LineSearchBase,
which is maintained as private data, and which actually performs the line search.
This allocation via a pure virtual build method makes RVLUmin::LineSearchAlg
an abstract factory. Subtypes implement the build method to construct instances
of specific line search algorithms. The line search type has a number of other
attributes, exposing the past and current search points, objective values, and gra-
dients.

The direction computation base class, RVLUmin::UMinDir, is an interface with
two pure virtual methods: calcDir computes a search direction given a Functional-
Evaluation, and updateDir accesses the facilities of a line search object to update
the search direction computation.

On construction, RVLUmin::UMinStep acquires references to externally defined
FunctionalEvaluation, RVLUmin::LineSearchAlg, and RVLUmin::UminDir ob-
jects, say fx, ls, and dc respectively. The RVLUmin::UMinStep::run method
combines these to take a step: stripped of some inessential detail,

bool run() {
try {
// compute current search direction
dc.calcDir(dir,fx);
// Line Search - will typically update x, hence fx!
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ls.initialize(fx,dir);
if( ! ls.run() ) return false;
// update direction computation
return dc.updateDir(ls);
} catch (...) {...}

}

A successful line search updates the evaluation point of fx, which serves as the
current search point. This in turn causes the internal data of fx to be updated, as
explained above.

As its name indicates, RVLUmin::UMinStep performs a step in a quasi-Newton
iteration. To make a full-fledged algorithm, one must iterate calls to the run method
of this class. The UMin package contains a RVLUmin::UMinAlg type, which wraps
the iteration, and initializes the FunctionalEvaluation fx referenced above.

A full description of the design and structure of Algorithm and UMin may be
found in the first author’s PhD thesis, [Padula 2005].

A somewhat more involved illustration of the use of these classes is the run
method core of a simple backtracking linesearch algorithm, a concrete RVLUmin::-
LineSearchBase subtype. The code is displayed below with some inessential de-
tail stripped out. Construction of this particular line search object takes the
FunctionalEvaluation fx, a maximum number of steps, a step tstep which
is managed by a linesearch superclass, and a step reduction factor gamma. The
RVLUmin::LineSearchBase superclass also supplies a method to check for steps
that are too small.

bool run() { try {
Vector<Scalar> & x = fx.getPoint(); // current iterate
Vector<Scalar> x0(x); // base point of search (copy construction)
Scalar fval = fx.getValue();; // value of f(x) at base
Scalar gfdx = dx.inner(fx.getGradient())); // descent rate at base
Scalar cgfdx = con*gfdx; // scaled descent rate
Scalar maxstp = fx.getMaxStep(dx); // step to boundary of domain

if (gfdx > 0.0) { return false; } // not a descent direction
tstep = ... // code to set initial step
// check that step is not too small
if (!this->checkMinStep()) { return false; } //

// first update
x.copy(x0); x.linComb(tstep, dx);

// while not sufficient decrease, shrink step
int bt = 1; // number of backtracks
while( fx.getValue() > fval + tstep*cgfdx &&

this->checkMinStep() &&
bt <= maxsteps) {

tstep *= gamma; x.copy(x0); x.linComb(tstep, dx); bt++;}
// insufficient decrease or too many steps
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if (fx.getValue() > fval + tstep*cgfdx &&
this->checkMinStep()) { x.copy(x0); return false; }

// sufficient decrease but step too small
if ( !this->checkMinStep() ) { x.copy(x0); return false }
// successful line search
return true;
} catch (...) {...}

}

Note that the first line defines x as an alias for the evaluation point of the Functional-
Evaluation object fx, and that x is updated via linear combination in the line
commented ”first update”. Consequently, calling getValue on fx a few lines later
entails recomputation of all results encapsulated in fx. We emphasize that this
dependence of the state of fx on the state of x is automatic, requiring no explicit
instruction to be inserted in the algorithm expression.

A particular quasi-Newton algorithm, the limited memory variant of Broyden-
-Fletcher-Goldfarb-Shanno, appears in several of the examples to be discussed be-
low. See Nocedal and Wright [1999] for a description of this algorithm, the name
of which we shall abbreviate as “LBFGS”. The RVLUmin::LBFGSDir subclass of
RVLUmin::UMinDir encapsulates the characteristic direction computation and in-
ternal update of this algorithm. These depend in turn on a representation of the
BFGS inverse Hessian approximation as a LinearOp subtype RVLUmin::LBFGSOp.
Denoting by H the RVLUmin::LBFGSOp data member of RVLUmin::LBFGSDir, the
body of the calcDir method is

bool calcDir(Vector<Scalar> & dir,
FunctionalEvaluation<Scalar> & fx) {

Vector<Scalar> const & grad = fx.getGradient();
H.applyOp(grad,dir);
dir.negate();

}

RVLUmin::LBFGSOp has an update method, which uses previous and current search
points and gradients to compute the rank-two BFGS update to the inverse Hessian,
maintaining the finite list of such updates characteristic of the limited memory
variant. The updateDir method of RVLUmin::LBFGSDir calls this update method
of the inverse Hessian class.

PRODUCTS AND COMPOSITIONS

Virtually all scientific data structures other than the very simplest are Cartesian
products. Also, the functions and operators appearing in simulation may often
be compositions or linear combinations of simpler operators and functions. RVL
provides standardized constructions of these derivative types, which are helpful in
application construction and especially useful in rapid prototyping exercises. Some
intrinsic inefficiency is inherent in the construction of compositions, for example, in
that it uses temporary Vector storage and misses hidden opportunities for loop fu-
sion. Once the component operators are constructed, however, very little additional
code is required to build the composition.
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For details on the structure and usage of these classes, consult [Symes et al. 2005;
Symes and Padula 2005].

EXAMPLES

Newton’s method for complex polynomials

Newton’s method is an iteration defined for a differentiable map F : X → X of
a Banach space X over a field E: it produces a sequence xi defined by its initial
member x0 and the rule

xi+1 = xi −DF (xi)−1F (xi).

When the sequence xi converges to a point at which the derivative DF is nonsin-
gular, the limit is necessarily a root of the function F .

Newton’s method is a test example for the Algorithm package. The RVL im-
plementation uses a subclass LinearOpWithInverse of LinearOp which supplies
the action of the inverse derivative and its adjoint, via another pair of protected
methods:

const LinearOp<Scalar> & applyInv() const;
const LinearOp<Scalar> & applyAdjInv() const;

and public (implemented) applyInvOp, applyAdjInvOp methods which delegate to
these.

An OperatorWithInvertibleDeriv naturally supplies a LinearOpWithInverse
as the return value of its getDeriv() method, as can be revealed by a cast. The
RVL-Algorithm implementation of Newton’s method looks like this:

bool NewtonSolverStep<Scalar>::run() {
Vector<Scalar> dx(opeval.getDomain());
const Vector<Scalar> & Fx = opeval.getValue();
const RVL::LinearOpWithInverse<Scalar> & DF =

dynamic_cast<const RVL::LinearOpWithInverse<Scalar> &>
(opeval.getDeriv());

DF.applyInvOp(Fx, dx);
Scalar one = ScalarFieldTraits<Scalar>::One();
x.linComb(-one,dx);

}

We’ve tried this out with a scalar polynomial map, i.e.

F (x)j = p(xj), j = 1, ..., n

in which p is an ordinary polynomial of a scalar variable. Implementation of a
Functional encapsulating this map is straightforward in terms of a DataContainer
class that exposes its data, and compatible FunctionObjects.

The choice of scalar field is completely open: to emphasize that it is possible
to work with complex arithmetic in RVL, we chose E = C for this application,
represented computationally by std::complex<double>. The polynomial used in
the example is quintic:

p(z) = z5 − 0.84z3 − 0.16z
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Its roots are 0,±1,±0.4i. The test driver sets the dimension n = 10, and initializes
the complex 10-vector x with pseudorandom numbers by evaluating an appropriate
FunctionObject. The method terminates when the norm of the vector F (xi) drops
below a specified tolerance. All of the components of xi are then close to roots of p,
and the usual quadratic convergence of Newton’s method is observed. See Padula
[2005] for more details.

Of course the same computation could be performed for real polynomials with
very little change in the components - essentially just a change of template pa-
rameter in the driver source. In particular, the Newton solver code (like other
RVL-Algorithm classes) requires no change whatsoever to change the field, as it is
a template parametrized by field type.

Polynomials Division by Least Squares

The discerning reader will have noticed that the Space interface does not provide
a method returning the dimension of the represented vector space. Two reasons
underly this design decision: (1) the target class of coordinate free algorithms does
not require it, and (2) the RVL class can in fact directly represent vector spaces
which do not have well-defined dimension - in other words, infinite dimensional
spaces.

To illustrate this possibility, we have constructed a Space representing the vector
space P of polynomials of arbitrary degree, mathematically equivalent to the vector
space of finite (coefficient) sequences: as a set,

P = {a : N→ R : for someN ≥ 0, n > N ⇒ an = 0}

Supplied with the usual Euclidean inner product, P is a so-called pre-Hilbert space:
its completion is the Hilbert space l2 of square-summable sequences.

There are lots of ways to represent P computationally, corresponding to the
many choices of suitable DataContainer subclass and underlying data structure.
This choice defines how (and which) function objects are to be evaluated. For im-
plementation of our SeqSpace subclass of Space, we chose to use std::list as
the underlying data structure. Any container that permits systematic access to
elements would suffice: native C++ arrays, std::vector, even std::tree would
work equally well. This freedom to use any reasonable data structure to repre-
sent vector data appears to single out RVL amongst the current generation of OO
“abstract numerical algorithms” libraries.

We defined FunctionObject subtypes to carry out the standard linear alge-
bra operations, as well as translation wrapper classes for arbitrary LocalFOs and
LocalFORs from the LocalRVL library (see Appendix I for a description of these
classes). The Local classes are array-oriented, and are compatible with function
object classes defined in other libraries, for example RTOp vector transformation
and reduction operators from Trilinos [Bartlett et al. 2004]. Thus simple wrapper
constructions make a wide variety of functions available.

The wrapper construction implicitly defines LocalRVL operations as inductive
limits (essentially, sequences of operations defined on the nested sequence of finite-
dimensional coordinate subspaces). For elementwise operations (eg. all of RTOp)
the results are stable, i.e. independent of the finite-dimensional subspace so long
as it’s large enough. For other (non-elementwise) operations the results are well-
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defined but may be surprising, in particular not (necessarily) stable in the sense
just defined. RVL makes no claims regarding this type of stability (indeed, RVL
itself makes no claim at all about what FOs do or how they do it!).

We used the framework provided by SeqSpace to attack the simple polynomial
division problem:Given α ∈ R, find p so that

(1 + αx)p(x) = 1.

Of course there is no solution in P (except for the α = 0 case), but there is a solution
in l2 when |α| < 1. Thus we pose the problem as a linear least squares problem
in P, to be solved by Conjugate Gradient iteration and implicitly regularized by
truncating the iteration.

The operation of multiplication by 1 +αx is represented by a LinearOp subclass
PolyMultOp. The applyOp and applyAdjOp methods, i.e. polynomical multiplica-
tion and its adjoint, have a very natural implementation using the push front and
pop front methods of std::list and the associated iterators.

We checked that the PolyMultOp implementation was adjoint-correct using the
AdjointTest unit test function supplied by RVL. The RVL-Algorithm implemen-
tation of conjugate gradient iteration for the normal equations then produced pre-
cisely the correct results. The number of coefficients computed goes up (in principle
without bound) as either the solution tolerance shrinks or |α| gets close to 1.

This example of approximate solution of an infinite-dimensional problem, encom-
passed within the RVL framework, hints that a similar approach might be taken in
contexts such as adaptive mesh refinement for solution of PDE-based control prob-
lems. The polynomial division problem illustrates in a simple way the capacity of
RVL to represent infinite-dimensional problems directly, and justifies our decision
not to require that Space subtypes define a dimension.

Note that the RVL-Algorithm CG implementation is the same one used for prob-
lems defined in terms of the array-based LocalRVL classes, even though the under-
lying data representation differs from that used in SeqSpace.

Seismic Velocity Analysis

One of the major steps in the standard industrial seismic processing stream is a
process called velocity analysis, in which collections of time series are subjected to
parametrized changes of variable. The object is to align the oscillations within the
time series and so reveal their coherence. The parameters in the change of variables
are interpreted as functions of seismic wave velocities, so are themselves physically
meaningful. The comprehensive reference [Yilmaz 2001] explains this and many
other aspects of industrial seismic data processing.

Contemporary practice partly automates velocity analysis, but still requires con-
siderable manual intervention. One of the authors (WWS) has proposed an objec-
tive approach to this task (and related, more complex tasks) which turns it into
an optimization problem with regular objective [Symes 1986; 1998; Li and Symes
2007]. This objective involves differencing pairs of time series after changes of
variable, and the formation of the mean square of the results:

J [v] =
1
2

∑
i,t0

|di+1(τi+1[v](t0))− di(τi[v](t0))|2

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



22 · Anthony Padula et al.

The change of variable τi depends both on the time series di, or rather on its
metadata (data acquisition geometry and other attributes), and on the vector v
of velocity parameters. Approximation of a change of variable for discrete data
requires interpolation. Local cubic interpolation proves to be sufficiently regular to
yield reliable derivatives. The gradient ∇vJ must also be computed.

Because seismic data sets tend to be very large - typical numbers of time series
in one such data set range from tens of thousands to several million, each time
series having several thousand samples - out-of-core construction is mandatory.
Moreover, the metadata already alluded to is essential to proper handling of the
data. To encapsulate both data and metadata, we used a standard seismic data
exchange structure, the SEGY trace [Barry et al. 1980], as implemented in the
Seismic Unix (“SU”) library of data processing tools [Cohen and Stockwell 2004],
a de facto standard open source data processing package.

We used the SU SEGY trace i/o functions, wrapped as RVL::RecordServer ob-
jects, to compute J (and its gradient, which in this case might as well be computed
at the same time) by reading traces until EOF. On each successive pair of traces
read the computation described above is performed, and the result accumulated in
J . The parameter vector v is represented by a Vector in a GridSpace, a Space
subclass based on the GridData subclass of DataContainer. The domain of the
Functional representing J is thus a GridSpace. Metadata carried along in a
GridData object (and the Vector that owns it) describes a regular grid in space
(of dimensions 1, 2, or 3 in this application). The GridSpace::inner function
uses this metadata to properly scale the inner product, for example, so that the
computed gradient of J is stable against changes in sampling.

We also produced a change-of-variable driver, carrying out only part of the com-
putation. Because we had used the SU i/o facilities, this command differed from
the SU command sunmo essentially only in its use of RVL classes and a few virtual
function calls. We applied both the RVL and SU commands to process a data
set consisting of 24000 traces each with 1250 samples (a total data volume, with
metadata, of 126 MB). This set, small by contemporary standards, required 28 s for
either command to run on an Apple Macintosh Powerbook (1 GHz G4 CPU, OS-X
3, gcc 3.4.3). This comparison suggests that, at least in this case, any overhead
imposed by the RVL implementation is insignificant.

The computation of J and its gradient are considerably heavier in floating point
arithmetic than the mere change of variable. Achieving a reduction in gradient
length of 10−2 for a very small data set of 2150 traces of 750 samples each required
about 15 s to execute 12 steps of the LBFGS algorithm described above, again using
the Powerbook G4. We estimate that 60% of the execution time was spent in float-
ing point arithmetic and core memory access, the remainder in disk i/o. It is impos-
sible to compare this optimization to a pure SU (procedural) implementation; for
example, SU does not provide a derivative computation for its change-of-variables
operator. However we believe that this algorithm, as we have implemented it, is on
par with contemporary industrial solutions in speed and reliability. Of course the
RVL-Algorithm optimization code required no change whatsoever to accommodate
out-of-core evaluation of the objective function. All such details are hidden well
behind the Functional - Vector interface.
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Least Squares Fitting of Seismic Data

We have also used the RecordServer classes to construct an out-of-core DataCon-
tainer subclass for SEGY seismic data and a corresponding Space class. We have
used these in other applications in which seismic data plays a vector role, such
as least squares model-based data fitting and sensitivity estimation. These appli-
cations also required no change whatever in the RVL-Algorithm code expressing
optimization and iterative linear algebra algorithms.

For example, we have coupled the RVL-Algorithm LBFGS implementation to a
finite-difference solver for the 2D wave equation to experiment with least squares
data fitting for the acoustic model of seismology. The finite difference code is written
in Fortran 77, partly in order to have access to efficient Automatic Differentiation
(“AD”) tools available in that language, partly to take advantage of the efficient
compilation of F77 in this type of application. Profiling a considerable number of
examples showed that 98-99.6 % of the execution time (in a serial Linux or OS-X
workstation environment) was spent in the F77 subroutines. The superstructure of
RVL classes and virtual function calls appeared to have an insignificant effect on
computation speed in these examples.

Source Estimation for Steady State Diffusion

The model used in this example approximates the physics of planar steady-state
passive transport and diffusion of a substance throughout a volume, with all fields
assumed translation-invariant in one direction so that the problem is effectively
2D. For further discussion of this problem, see Section 8 in Quateroni and Valli
[1994] and Section 9 in Knabner and Angermann [2003]. After P1 finite element
discretization, the concentration of the diffusing substance is represented by the
vector y, and its measurements by the vector ŷ. Somewhat unrealistically, we
assume that concentraion measurements are supplied for every point in the volume,
so that the two vectors have the same length. Denote by u the source concentration,
which appears on the RHS of the steady-state diffusion problem, and by b a vector
representing passive sources and sinks in the system. Then the least-squares best
fit of the concentration to its data results in the quadratic optimization problem

F (u) =
1
2

(A−1(Bu + b)− ŷ)TQ(A−1(Bu + b)− ŷ) +
α

2
uTRu (2)

in which A is the stiffness matrix of the Laplace operator, B is the mass matrix, Q
is a weight matrix defining the cost of data misfit, and R is a regularization matrix.
A Newton-related algorithm for the solution of (2) requires the gradient of F , given
by

∇uF (u) = BTA−TQA−1(Bu + b) + αRu

Computation of the discretized functional and gradient involves the application of
linear operators, linear–system solves, and some vector algebra.

For distributed storage of the arrays A,B,Q, b and R, we used the Epetra library
from the Trilinos collection [Heroux 2003] to construct suitable DataContainer and
Space subclasses for this application. Appendix B sketches this construction. The
Functional subclass constructor accepts an Epetra Comm object, encapsulating
data layout and communication information, from the driver. The constructor
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initializes an AdvDiffProblemHolder instance, an ad-hoc ‘container for four Epe-
tra matrices and one Epetra vector, using the Epetra Comm object passed from
the Functional constructor. The AdvDiffProblemHolder also initializes the do-
main/range space of the linear system as an object of the EpetraMultiVectorSpace
subclass of RVL::Space, which contains a virtual constructor for the correspond-
ing DataContainer subclass. The remainder of the Functional construction im-
plements the Facade pattern by subclassing StdFOFunctional, initializing Func-
tionObjects and FunctionObjectRedns to used to define the apply... methods.
The FunctionObjectRedn defining the function evaluation and the FunctionOb-
jects defining the gradient and Hessian share a reference to the common AdvDiff-
ProblemHolder, thus reusing intermediate results.

The bulk of the computational work involved in evaluation of these Function-
Object objects goes into solution of linear systems: computation of the feasible
point y(u) = A−1(Bu + b), and of z = A−T y(u) in the gradient calculation. We
adapted the AztecOO linear solver package to accomplish this task. AztecOO is
a sparse linear solver library [Heroux 2004], designed to work with Epetra data
objects. From the extensive list of solvers and preconditioners offered by AztecOO,
we chose to use GMRES in conjunction with one of three preconditioners: Jacobi,
Neumann, and additive Schwarz. See Tuminaro et al. [1999] for description and
references, and Padula [2005] for more details on the construction the of RVL
adapter classes..

The driver code for this exercise

1. constructed a Functional by following the steps described in the last two para-
graphs,

2. instantiated an LBFGS object from the RVL-Algorithm package, taking this
Functional as input to the constructor, and

3. invoked the LBFGS object’s run method.

The driver program was written SPMD style: the same code, including the RVL-
Algorithm code, ran on all processes. The RVL-Algorithm implementation of
LBFGS was precisely the code described in the preceding sections of this paper. It
was not altered in any way - not a single character was changed in any header file
or implementation file - to adapt it to SPMD execution. We used LBFGS on this
quadratic problem only for comparison purposes - of course a Krylov linear solver
could have been used instead to solve the normal equation.

The P1 finite element mesh used in this example had 1654965 elements and
832510 nodes. Roughly 1 GB of mesh data was stored on disk and read in as needed.
For the computational experiments reported below, the mesh is partitioned into 16,
32, and 64 subdomains, A natural domain decomposition scheme was implemented
using Epetra utilities. The platform for the parallel execution tests was the Rice
Terascale Cluster, consisting of 272 Intel Itanium 2 64 bit processors, each running
at roughly 900 MHz. Of several interconnect possibilities, we chose to use Myrinet
for its relatively low latency.

We tested all combinations of 16, 32, 64 processors, 10−2, 10−4, 10−8 GMRES
convergence tolerances, and three different preconditioners. The tolerances are
given to AztecOO, which will stop GMRES when ‖r‖/‖r0‖ < tol or a specified
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maximum number of iterations have been run (we set this maximum at 1000).
Occasionally, the 10−8 tolerance could not be satisfied in the maximum permitted
number iterations. In that case, the approximate GMRES solution was accepted
anyway. The three preconditioners (provided by AztecOO) and default parameter
selections were:

—k–step Jacobi, k = 3.

—Neumann series polynomial of order k, k = 3.

—An additive Schwarz preconditioner, tailored to domain decomposition problems;
each processor approximately solves the local subsystem using Saad’s ILUT.

Figure 6 demonstrates close to linear speedup, except for the cases using the
additive Schwarz preconditioner, which performs so well that the communication
overhead destroys the expected speedup. These are precisely the results one would
expect: the performance of the application is dominated by the usual factors which
regulate efficiency in parallel computation. Virtual function calls and other over-
head imposed by the RVL layer of the application appeared to have no significant
effect on performance.

DOWNLOAD INSTRUCTIONS

The Rice Inversion Project website (www.trip.caam.rice.edu) contains a link
to the RVL project home page. The home page offers download and installation
instructions for the current version of RVL, Algorithm, and possibly other related
packages. The SeqSpace example, described above, is a subpackage of Algorithm.

CONCLUSION

The RVL project has as its central goal the creation a class hierarchy that mimics
as closely as possible the basic concepts of calculus in Hilbert space, while deferring
as many implementation details as possible to subclasses separate from this hier-
archy. It should be possible to express coordinate free algorithms of linear algebra
and optimization entirely in such a type system, without reference to the deferred
details. Moreover, the algorithms so expressed should be be reusable across a wide
variety of applications, data storage modes (core, disk, network...) and execution
strategies (serial, client-server, SPMD,...). By “reusable” we mean without any
alteration of source code whatsoever.

We have demonstrated a feasible design for a C++ class library achieving these
goals. Typical algorithms and applications illustrate the reuse of algorithm code
which is the project’s chief aim. We have implemented relatively simple but repre-
sentative algorithms of the target class, and reused them in a variety of applications
and computing environments. The programming style is a simple as possible: each
line of code mimics a corresponding statement in a typical mathematical algorithm
description, and the essential business of memory management, data access, and
function implementation is hidden from view. Interfaces behind which to hide these
details are provided in a canonical and minimally intrusive way. We believe that
this design approximates conformance to the Einsteinian dictum: “...as simple as
possible, but no simpler”.
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APPENDIX A: Using LocalRVL

As mentioned in the introduction, RVL itself defines no mechanism to access data,
leaving this task to subclasses of DataContainer, FunctionObject, and Function-
ObjectRedn. In this appendix we describe briefly a simple, portable collection of
classes which completes the Visitor hierarchies in RVL. We have used this Local-
RVL package to implement most of the applications described in this paper, and a
number of others.

The simplest data access mode which can be made pure virtual yet incur negli-
gible performance penalty for large data sets is exposure of a pointer to data. The
LocalDataContainer class template provides natural access methods for arrays of
DataType elements:

int LocalDataContainer<DataType>::getSize() const;
DataType * LocalDataContainer<DataType>::getData();
DataType const * LocalDataContainer<DataType>::getData() const;

These are pure virtual in the base class LocalDataContainer, to give freedom
of implementation but provide an interface for definition of general FunctionOb-
ject and FunctionObjectRedn subclasses which access data by pointer. A very
simple RnArray concrete subclass stores an array of DataTypes, and serves as the
base class for other concrete LocalDataContainer subclasses which add various
types of metadata and access to it, such as GridData for regular grids. Nonstandard
implementations, not specializing RnArray, include the SEGY and Epetra Data-
Container classes mentioned in the Examples section.

As is typical for Acyclic Visitor “concrete Element” classes, LocalDataCon-
tainer evaluates only compatible subtypes of FunctionObject and Function-
ObjectRedn, tested via RTTI. For technical reasons we specify the interaction
through so-called mixin interfaces, LocalEvaluation and LocalReduction. The
LocalDataContainer::eval method downcasts its DataContainer arguments to
LocalDataContainers, its FunctionObject argument to a LocalEvaluation (or
its FunctionObjectRedn argument to a LocalReduction), and invokes the evalu-
ation method of the function object.
LocalFunctionObjects and LocalFunctionObjectRedns inherit the Function-

Object and LocalEvaluation, respectively FunctionObjectRedn and LocalRe-
duction, interfaces. The evaluation method is an overload of operator() in both
cases. For example, the generic LocalEvaluation evaluation method is

void LocalEvaluation<DataType>::operator()
(LocalDataContainer<DataType> & target,
std::vector< LocalDataContainer<DataType> const *> sources);

The similar method for LocalReduction lacks the first argument. Both are, of
course, pure virtual.

This interface is flexible but somewhat painful to use. LocalRVL supplies re-
stricted classes of LocalEvaluations and LocalReductions with specified numbers
of arguments, and the overwhelming majority of useful function objects conform
to these interfaces. For example, the BinaryLocalEvaluation mixin includes this
specialized pure virtual evaluation method:
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void BinaryLocalEvaluation<DataType>::operator()
(LocalDataContainer<DataType> & target,
LocalDataContainer<DataType> const & source);

and implements the generic operator() method by delegation to the specialized
one.

The BinaryLocalFunctionObject class inherits from FunctionObject and Binary-
LocalEvaluation. Since the generic operator() is implemented in the latter
class, only the specialized binary operator() need be implemented in a concrete
child. For example, a linear combination BinaryLocalFunctionObject, used to
implement a concrete LinearAlgebraPackage, has the obvious (stripped-down)
operator() implementation

void operator( )(LocalDataContainer<DataType> & y,
LocalDataContainer<DataType> const & x) {

int n = y.getSize();
// check size consistency
for (int i=0;i<n;i++) {
y.getData()[i]=a*x.getData()[i]+b*y.getData()[i];

}
}

the scalars a and b being set in the constructor. A natural LocalRVL specialization
of LinearAlgebraPackage uses essentially this FunctionObject to define linear
combination for any Space whose DataContainer type is either a LocalDataCon-
tainer or a recursive composite of LocalDataContainers. Another example is the
RVLRandomize class mentioned in several examples above, which is a UnaryLocal-
FunctionObject.

APPENDIX B: Adapting Epetra to RVL

Our treatment of the advection-diffusion inverse problem as a parallel SPMD ap-
plication used Epetra, a library of parallel linear algebra types developed at Sandia
National Laboratory and now part of the Trilinos collection [Heroux 2003]. This ap-
pendix briefly sketches our use of Epetra facilities to construct RVL classes, which
greatly eased the construction of this application. For additional details see [Padula
2005].

The principal adaptation targets are Epetra Vector and Epetra MultiVector
(Epetra does not define a namespace, but uses the prefix Epetra to signify pack-
age membership). Epetra Vector provides several data access modes, and each of
these could be used in creating a DataContainer subclass. We chose to subclass
LocalDataContainer<double> (double being the only real type admitted by Epe-
tra). We used the Epetra Vector::ExtractView method, which exposes a pointer
to the part of the object’s data stored locally, to implement LocalDataContain-
er::getData. The layout of data across processors in a distributed platform is reg-
ulated by an Epetra Comm data member of Epetra Vector. The EpetraVectorLDC
class has in turn an Epetra Vector data member. This approach made LocalFunc-
tionObjects available for manipulation of EpetraVectorLDCs, as well as native
Epetra operations which can also be wrapped as FunctionObjects. These adaptor
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FunctionObjects are not LocalFunctionObjects, of course, as they use the ser-
vices of the Epetra classes and cannot be applied to general LocalDataContainers.

Logically, an Epetra MultiVector object is an array of Epetra Vector objects of
identical size. It is therefore easy to give it the structure of a ProductDataContainer
[Symes et al. 2005; Symes and Padula 2005]. ProductDataContainer realizes the
Composite design pattern, which interacts with the Visitor pattern in a standard
way [Gamma et al. 1994], so that LocalFunctionObjects and LocalFunctionOb-
jectRedns which act on the factors have naturally defined actions on the Product-
DataContainer. It is intrinsic to the construction that this action executes correctly
as an SPMD process. Figure 7 diagrams EpetraMultiVectorDC, EpetraVectorLDC,
and their relationships with RVL and Epetra classes.

Having defined an appropriate DataContainer subclass, it is straightforward to
build a corresponding Space subclass EpetraMultiVectorSpace. The buildData-
Container method invokes the EpetraMultiVectorDC constructor, and the lin-
ear algebra methods are implemented via FunctionObjects and FunctionObject-
Redns using the Epetra parallel methods.
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+ buildDataContainer() : DataContainer
+ inner(in x:DataContainer, in y:DataContainer) : Scalar
+ linComb(in a:Scalar, in x:DataContainer, in b:Scalar, inout y:DataContainer)
+ zero(inout x:DataContainer)

Space

+ Vector(in Space)
+ getSpace() : Space
+ linComb(in a:Scalar, in x:Vector, in b:Scalar)
+ inner(in x:Vector) : Scalar
+ eval(inout f:FunctionObject, in std::vector<Vector *>)
+ eval(inout f:FunctionObjectRedn in std::vector<Vector *>)

- sp : Space
- d : DataContainer
- ver : int

Vector

<<creates>>

FunctionObject

1

1

FunctionObjectRedn

+ eval(inout f:FunctionObject, in std::vector<DataContainer *>)
+ eval(inout f:FunctionObjectRedn, in std::vector<DataContainer *>

DataContainer

1*

Fig. 1. Vector is implemented, and refers to Space (abstract) for its linear algebra services. Vector
may also evaluate FunctionObjects and FunctionObjectRedns , by delegation to its data member

DataContainer.

Received Month Year; revised Month Year; accepted Month Year.
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x:Vector rand:RVLRandomizedata:RnArraypdc:StdProductDataContainer

<<comment>>
Repeat for each 
element.

operator()

eval

operator[]

eval

operator[]

eval

operator()

Fig. 2. Typical evaluation of a FunctionObject on a Vector. The DataContainer to which the

Vector delegates the evaluation is in this case a Cartesian product (composite). The Visitor role
of the FunctionObject interacts with the composite structure in a standard way, visiting the
components in sequence.
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# getDCF(): DataContainerFactory
# getLAP(): LinearAlgebraPackage 

StdSpace

+ buildDataContainer() : DataContainer
+ operator==(in sp:Space): bool
+ inner(in x:DataContainer, in y:DataContainer) : Scalar
+ linComb(in a:Scalar, in x:DataContainer, in b:Scalar, inout y:DataContainer)
+ zero(inout x:DataContainer)

Space

+ inner(): FunctionObjectScalarRedn
+ zero(): FunctionOjbect
+ linComb(): LinCombObject
+ compare(in LinearAlgebraPackage): bool

LinearAlgebraPackage

+ build(): DataContainer
+ compare(in dcf:DataContainerFactory): bool
+ isCompatible(in dc:DataContainer): bool

DataContainerFactory

+ setValue(in r:Scalar)
+ getValue(): Scalar

FunctionObjectScalarRedn

FunctionObjectRedn+ setResult(in r: RetType
+ getResult(): RetType

Reduction

+ setValue(in r:Scalar) 
+ getValue(): Scalar

ScalarReduction

+ eval(inout f:FunctionObject, in std::vector<DataContainer *>)
+ eval(inout f:FunctionObjectRedn, in std::vector<DataContainer *>

DataContainer

+ setScalar(in a:Scalar, in b:Scalar)
LinCombObject

<<creates>>

Fig. 3. A canonical construction of Space via the Facade class StdSpace, which combines a

LinearAlgebraPackage and a DataContainerFactory. The LinearAlgebraPackage provides access

to FunctionObjects which implement the arithmetic methods of Space, and the DataContainer-

Factory is called to implement buildDataContainer.
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getDomain(): Space
getRange(): Space
applyOp(in x:Vector, out y:Vector)
applyAdjOp(in x:Vector, out y:Vector)

LinearOp

Space

dom: Space
rng: Space
fwd: FunctionObject
adj: FunctionObject

LinearOpFO

FunctionObject

1

1

1

1

1

1

1

1

Fig. 4. Structure of the RVL LinearOp class, and of a typical implementation using a pair of

FunctionObjects. The apply methods invoke evaluation of the (binary) FunctionObjects on
their Vector arguments.
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# apply(in x:Vector, out  y: Vector)
# applyDeriv(in x:Vector, in dx:Vector, out dy:Vector)
# applyAdjDeriv(in x:Vector, in dy:Vector, out dx:Vector)
# clone(): Operator
+ getDomain(): Space
+ getRange(): Space

Operator

# getOp(): Operator
+OperatorEvaluation(in _op: Operator, in _x: Vector)
+ getDomain(): Space
+ getRange(): Space
+ getPoint(): Vector
+ getValue(): Vector
+ getDeriv(): LinearOp

- op; Operator
- x: Vector
- val: Vector
- deriv: DerivEvaluation

OperatorEvaluation

Vector+ getDomain(): Space
+ getRange(): Space
+ applyOp(in x:Vector, out y:Vector)
+ applyAdjOp(in x: Vector, out y: Vector)

LinearOp

# getOp(): Operator
+ DerivEvaluation(in _opeval: OperatorEvaluation)

- opeval: OperatorEvaluation
DerivEvaluation

11

<<friend>>

<<friend>>

1

1

1 0..1

1

1 0..1

1

Fig. 5. The concrete class OperatorEvaluation clones operator and delegates its key computations

to its Operator data member, and has an Observer relation with the evaluation point x (Vector).
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Runtime using various preconditioners under various tolerances on the linear solver

Jacobi 1e−2
Jacobi 1e−4
Jacobi 1e−8
Neumann 1e−2
Neumann 1e−4
Neumann 1e−8
additive Schwarz 1e−2
additive Schwarz 1e−4
additive Schwarz 1e−8

Fig. 6. Runtimes using various preconditioners, GMRES residual tolerance = 10−8.
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Vector

+ eval(inout f:FunctionObject, in std::vector<DataContainer *>)
+ eval(inout f:FunctionObjectRedn, in std::vector<DataContainer *>

DataContainer

Epetra

EpetraVectorLDCEpetraMultiVectorDC

+ getSize(): size_t
+ getData(): Scalar *

LocalDataContainer
+ operator[](in i:int): DataContainer

ProductDataContainer

EpetraMultiVector EpetraVector

1

1

1 1..*1

1 1

1

1..*1

Fig. 7. Adaptor classes using Epetra MultiVector and Epetra Vector to implement

RVL::DataContainer and RVL::LocalDataContainer respectively.
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