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Abstract

Approximate Inverse Scattering

Using Pseudodifferential Scaling

by

Rami Nammour

This thesis proposes a computationally efficient method for approximating the

inverse of the normal operator arising in the linearized inverse problem for reflection

seismology.

The inversion of the normal operator using direct matrix methods is computa-

tionally infeasible. Approximate inverses estimate the solution of the inverse prob-

lem or precondition iterative methods. Application of the normal operator requires

an expensive solution of large scale PDE problems. However, the normal operator

approximately commutes with pseudodifferential operators, hence shares their near

diagonality in a frame of localized monochromatic pulses. Estimation of a diagonal

representation in this frame encoded in the symbol of the normal operator:

• follows from its application to a single input vector;



iii

• suffices to approximate its inverse.

I use an efficient algorithm to apply pseudodifferential operators, given their sym-

bol, to construct a rapidly converging optimization algorithm that estimates the sym-

bol of an inverse for the normal operator, thereby approximately solving the inverse

problem.
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Chapter 1

Introduction

This thesis treats the subject of linearized inverse scattering. The linearized acoustics

scattering operator A maps the model m to the measured data d. The model consists

of an interesting physical property of the earth, typically the velocity, density, bulk

modulus, shear modulus or some combination of such properties. These properties

are fields, i.e., they depend on the position within the earth. The measured data is

usually recorded near the earth’s surface by an array of appropriate sensors. Since

the linearized (Born) scattering operator is an approximation, we write

Am ≈ d. (1.1)

The inverse problem aims at recovering the model from the measured data. The

approximate equality is inevitable, due to the nature of physical experiments and

the uncertainties associated with any measurement coupled with the Born approxi-

mation and the inadequacy of any continuous mechanical model. The fundamental

1
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relationship (1.1) is interpreted in a least squares sense, yielding the normal equations

ATAm = ATd := b, (1.2)

where ATA is the normal operator (Hessian). In seismology AT is called the migration

or imaging operator, and b := ATd is an image, known as the migrated image.

Equation (1.2) should, in theory, be inverted for the model m. In practice, the high

dimensionality of the normal operator makes its inversion via dense numerical linear

algebra methods (e.g., Gaussian Elimination) numerically infeasible. The model m

requires GBytes to store and the operator A Pflops to compute, ruling out the use

of direct methods. Moreover, the structure of the normal operator is such that its

application is expensive, limiting the number of numerically tractable iterations of

the CG (Conjugate Gradient) algorithm for example, since each iteration requires an

application of the normal operator.

In the face of this difficulty, a number of authors have sought an easily invert-

ible approximation to the normal operator. These approximations might be used to

approximate the solution directly, or to precondition iterative methods. I shall refer

to such methods as scaling methods, and the approximations as scaling factors. The

term scaling methods refers to the approximation of the inverse of the normal operator

by a space dependent multiplier, a scaling factor, to correct the amplitudes of seismic

images. Scaling methods have two variants depending on the nature of the approxi-

mation: diagonal approximations (Claerbout and Nichols, 1994; Rickett, 2003; Shin

et al., 2001; Nemeth et al., 1999; Valenciano et al., 2006; Clément and Chavent, 1993),
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and nearly diagonal approximations (Guitton, 2004; Chavent and Plessix, 1999). A

detailed discussion of these methods constitutes the subject of chapter 3.

The aforementioned scaling methods derive from empirical observations about

the normal operator, and are driven by their cheap computational cost. However,

the normal operator is a pseudodifferential operator (Beylkin, 1985; Rakesh, 1988;

Stolk, 2000), and is nearly diagonal in phase space in a basis (really, a frame) of

localized monochromatic pulses. Accurate and efficient scaling methods based on

this observation have been introduced by Symes (2008) and Herrmann et al. (2008b).

These methods are grounded in the theory of pseudodifferential operators and are

faithful to the theoretical underpinnings of linearized inverse scattering.

I propose a scaling method that leverages the near diagonality of the normal

operator in phase space to devise an efficient algorithm to approximate the scale

factor. Herrmann et al. (2008b) use an explicit basis that approximately diagonalizes

the normal operator and express the data in this basis. The essential motivation

behind this approach is obtaining a way to efficiently apply the normal operator to

data and ultimately invert it. The “eigenvalues” of a pseudodifferential operator are

encoded in its symbol, a function in phase space with certain characteristic asymptotic

behavior. I observe that approximate inversion may still be accomplished as long as

we are given an algorithm to efficiently apply pseudodifferential operators to data,

given their symbols, without explicit use of the localized monochromatic pulses frame.

Bao and Symes (1996) proposed an efficient algorithm to approximate the action
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of a pseudodifferential operator in terms of a spherical harmonics expansion of its

symbol. This thesis uses this algorithm to approximate the action of the normal

operator and its inverse, and formulates the recovery of the scale factor as an opti-

mization problem. The efficiency of the Bao and Symes (1996) approach is pivotal,

since optimization scheme requires the application of the approximation to the normal

operator at each step. Diagonal scaling methods (spacial multipliers) work well only

when the support of the data’s Fourier transform is localized near a single direction.

The method I present in this manuscript does not suffer from that limitation. This

scaling method yields an approximate solution to the linearized inverse problem, and

may be used to precondition iterative methods.

I discuss the theory underlying the linearized inverse problem in reflection seismol-

ogy in the second chapter, and the motivation behind the formulation of the recovery

of the scaling factor as an optimization problem. The third chapter concerns a discus-

sion of different scaling methods from the literature. The methods I develop in this

thesis and a discussion of the Bao and Symes (1996) algorithm constitute the subject

of the fourth chapter. The inversion results on the Marmousi synthetic data set occu-

pies the fifth chapter, along with a “plaid” model that tests the ability of the method

to resolve areas in the image where the Fourier transform has multiple directions.

Chapter six draws the conclusions from this thesis and is the final chapter.



Chapter 2

Theory

2.1 Introduction

This chapter describes how the normal operator arises from linearization of the for-

ward map and discusses its properties. The asymptotic expansion lemma of pseudod-

ifferential operators makes precise the near diagonal property of the normal operator.

A presentation of a linear algebra analogue to the adopted method clarifies the ap-

proach of this work, and concludes the chapter.

2.2 Linearization

The acoustic wave equation is the simplest model that describes the reaction of the

earth (variation in the pressure field) due to an acoustic excitation (explosion, air

5
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guns ...), and may be written as

1

ρ(x)c2(x)

∂2p

∂t2
(x, t)−∇ · 1

ρ(x)
∇p(x, t) = f(x, t), (2.1)

where ρ(x) is the density field, c(x) the velocity field, and p(x, t) the pressure field

varying as a function of time; f(x, t) is the source of acoustic energy. This thesis will

treat the case where x ∈ R2 (two spatial dimensions); however, (2.1) applies equally

well to three spatial dimensions.

Assuming the earth was at equilibrium before the forcing is put to effect (causal

source), we complement (2.1) with:

p(x, t) ≡ 0, t� 0

f(x, t) ≡ 0, t� 0.

(2.2)

The physical setting of the experiment will invariably enforce some boundary condi-

tions, at the sea surface for example in the case of a marine geophysical experiment.

An abstraction of the wave equation (2.1) regards it as a “rule” that associates

a model (given density and velocity field) to the pressure field p(x, t) sampled at

various spacial positions on the surface. The appeal of this abstraction lies in its

possible generalization to any equation modeling the behavior of the earth (acoustic

wave equation, linear elasticity . . . ). In other words, we define the forward map S

associating the model m = {c(x), ρ(x), . . . } to the measured data p at the surface

according to the acoustic wave equation (2.1),

S[m] = p|surface . (2.3)



7

The inverse problem consists of recovering the model m from the measurement of the

pressure at the surface Sobs := p|surface. The structure of S makes the inverse problem

large scale. Moreover, the nonlinearity of S amplifies the complexity of the problem.

Most standard seismic processing is based on linearization, and I shall discuss only

the resulting linear inverse problem.

Given a background model m0 and a perturbation δm to m0, write

m = m0 + δm. (2.4)

The linearized forward map A (“Born modeling”) is defined by

A[m0]δm = δp|surface , (2.5)

in which δp is the perturbation of the pressure field. So formally: A[m0] = DS[m0].

Again, (2.5) is an abstraction of the linearization of the acoustic wave equation.

An explicit linearization of the acoustic wave equation for example yields:

1

ρ0c2
0

∂2δp

∂t2
−∇ · 1

ρ0

∇δp =
2δc

ρ0c3
0

∂2p

∂t2
− 1

ρ0

∇δρ
ρ0

· ∇p0

δp ≡ 0, t� 0,

(2.6)

where ρ0 and c0 are the background density and velocity fields, respectively. The first

order perturbations to ρ0 and c0 are δρ and δc, respectively. The dependence of the

fields on spatial and time variables was dropped for simplicity.

The notation A[m0] stresses the dependence of the linearized forward map on the

background model, apparent in (2.6). This dependence is repressed throughout this

manuscript but we will allude to this property when necessary. The inverse problem
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reduces to a linear subproblem: given d and m0, find δm such that

Aδm ≈ Sobs − S[m0] := d, (2.7)

where d is defined to be the data. The approximate equality is a consequence of

noisy data and the uncertainty of measurements inherent in physical experiments

and error in the physical model (acoustics) and linearization. Interpreting the linear

subproblem in a least square sense, yields the normal equations

ATAδm = ATd. (2.8)

ATA is known as the normal operator or Hessian. In what follows, the model m

denotes the perturbation δm and the δ notation is dropped. Though the nonlinearity

has been alleviated or ignored, the system (2.8) is large scale and cannot be inverted by

direct matrix methods. The models are typically sampled on rectangular grids, with

a spacing of about 10 m to cover an extent of 10 Km in each direction. Therefore,

the typical size of the model m is O(103) in each spatial direction, so the size of

m in 2D is O(106) and in 3D O(109), hence the normal operator would be of size

O(106× 106) in 2D and O(109× 109) in 3D. Moreover, the application of the normal

operator requires solving large scale PDE problems. The expense of applying the

normal operator limits the number of affordable iterations of an iterative method

(CG, for example) which require at least one application per iteration.

To deal with this difficulty, a number of authors have sought an approximation V2

(usually diagonal or nearly diagonal) to the normal operator that is easily invertible.
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These approximation methods are known as scaling methods. The approximation is

in the sense that V2 acts on a reference vector mref in the same way the normal

operator does:

V2mref ≈ ATAmref. (2.9)

The normal operator is, however, nearly diagonal in phase space, a manifestation

of its pseudodifferential nature when the background model is smooth and under

generic conditions in 2D (Beylkin, 1985; Rakesh, 1988; Stolk, 2000). “Nearly diagonal

in phase space” means that it acts approximately as a multiplication by a number

when applied to localized monochromatic pulses. This property follows from a variant

of the asymptotic expansion lemma for pseudodifferential operators (Taylor, 1981).

Let χ(x) be a smooth function compactly supported inside a small ball, and Ψ(x) a

smooth function with non-vanishing gradient inside the same ball. I call a function

of the form χ(x)eiωΨ(x) a localized monochromatic pulse. Then

ATAχ(x)eiωΨ(x) = qm(x, ω∇Ψ(x))χ(x)eiωΨ(x) +O(ωm−β), (2.10)

where β > 0, ω is the frequency and qm(x, ω∇Ψ(x)) is the principal symbol of the

normal operator positively homogeneous of order m:

qm(x, ω∇Ψ(x)) = |ω|mqm(x,∇Ψ(x)). (2.11)

So if the support of χ(x) is small with respect to the smoothness of q and Ψ, and

x0 is in the support of χ(x),

qm(x, ω∇Ψ(x))χ(x) ≈ qm(x0, ω∇Ψ(x0))χ(x). (2.12)
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whence,

ATAχ(x)eiωΨ(x) ≈ qm(x0, ω∇Ψ(x0))χ(x)eiωΨ(x) +O(ωm−β), (2.13)

i.e., ATA acts like multiplication by a number, and χ(x)eiωΨ(x) is an asymptotic

“eigenvector”. Moreover, (2.13) reveals that the symbol q encodes the eigenvalues.

The order of the symbol and hence the pseudodifferential operator follows from

the underlying theory: in space dimension n the order is n− 1 (Rakesh, 1988; Stolk,

2000).

Equation (2.10) gains utmost importance in view of the following facts: Any seis-

mic image can be resolved locally into oscillatory factors like χ(x)eiωΨ(x) by construct-

ing frames (redundant bases) from these localized monochromatic pulses. Fourier

analysis shows one way to effect this expansion, and other choices exist (wavelets,

curvelets,. . . ). In seismic images, the interface between two volumes of space having

different physical properties (impedance, reflectivity, . . . ) constitutes the reflector,

this discontinuity accounts for the high frequency components (rapid changes) in the

expansion. The gradient ∇Ψ(x) of the phase function Ψ(x) is normal to the level

curves of Ψ(x), hence normal to the tangent plane of the reflector at each point. This

normal vector is known as the “reflector dip”.
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2.3 Linear Algebra Analogue

Casting the method in the language of linear algebra clarifies the approach. Given a

vector b, we seek to solve a system

Bm = b, (2.14)

for m, in which B is symmetric positive semi-definite and represents the normal

operator. Though possible, application of B is computationally expensive. Suppose,

in addition, that we are given a unitary operator U that approximately diagonalized

the pseudo-inverse B†, i.e., for some diagonal Λ

B† ≈ UTΛU. (2.15)

In other words, B and B† are members of the family of approximately commuting

operators, namely those diagonalized by U.

Then, using b and Bb, formulate the recovery of eigenvalues as an optimization

scheme

Λb = argmin
Λ
‖b−UTΛU Bb‖2. (2.16)

If an iterative optimization algorithm is used to estimate Λb, then its cost will

depend on the efficiency of applying UTΛU: no further applications of B will be

required. As we shall see, application of UTΛU may be much more efficient than

application of B. In that case, the main cost of the method is the formation of Bb.

Notice that the recovered eigenvalues are those corresponding to eigendirections

that make a nontrivial contribution to b, and Λb will be the diagonal matrix contain-
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ing these eigenvalues. More precisely, if bk = (Ub)k = 0, that is b has no component

along the kth eigen-direction, then Λbk = 0 regardless of Λk. However, in this case

mk = (Um)k = (UUTΛUb)k = (ΛUb)k = Λk(Ub)k = 0,

i.e., the contribution of the kth eigendirection in the original model is trivial, so will

the contribution of the kth eigendirection to the inverted model.

Another interesting case occurs when Λk = 0 for some k, this occurs because the

normal operator is not invertible since some areas of the image may not be illuminated

for example. We deal with this case by considering the pseudoinverse of B. In this

case, it is easy to see that (Bb)k = 0. However, bk = 0 too; this fact is a direct

consequence of the nature of the right hand side b:

b = ATd ∈ R(AT )⊥N (ATA) = N (B).

R and N denote the Range and Null spaces of an operator, respectively. Also, the

eigenvalue decomposition in this case coincides with the singular value decomposition

of B, since B is symmetric positive semi-definite. Hence, the eigenvectors corre-

sponding to zero eigenvalues constitute a basis for the Null space of B. Therefore,

bk = (Ub)k = 0 and we are back to the case discussed above.

Note also that it is only the application of UTΛU, not of U itself, that is involved:

that is, the algorithm does not require expansion in the basis of U, only efficient

application of operators which can be diagonalized by U.
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The approximate solution then follows from

m ≈minv = UTΛbUb. (2.17)

The connection between the recovery of eigenvalues of B = ATA and the recovery

of the symbol of the normal operator is closely related to the asymptotic expansion

lemma (2.10), which we restate here:

ATAχ(x)eiωΨ(x) = qm(x, ω∇Ψ(x))χ(x)eiωΨ(x) +O(ωm−β). (2.18)

Recall that χ(x) is localized in a small ball; therefore, χ(x)eiωΨ(x)are localized monochro-

matic pulses (eigenvectors of the normal operator). Moreover, qm(x, ω∇Ψ(x)) is

smooth and slowly varying in its arguments and is thus approximately constant on

that ball. Putting everything together, (2.18) is an asymptotic eigenvalue equation

where the symbol encodes the eigenvalues. It is therefore natural for the adopted

method to formulate the recovery of the symbol of the normal operator as an opti-

mization problem, given the Bao and Symes (1996) algorithm which efficiently ap-

plies a pseudodifferential operator given its symbol. This algorithm will play the role

mentioned above, of an efficient method to apply the operators diagonalized by a

change-of-frame operator U without explicit access to U.



Chapter 3

Scaling Methods

3.1 Introduction

Scaling methods provide approximate inverses to the normal operator to approximate

the solution of the inverse problem or to precondition iterative methods. The scaling

factors (approximate inverses to the normal operator) may be used to correct the am-

plitudes of seismic images as these usually suffer from illumination artifacts. Scaling

methods are efficient because they rely on approximating the action of the normal

operator from its application on a single vector. In this chapter I discuss previously

suggested scaling methods and how they relate to the scaling method I develop as

part of this thesis work.

14
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3.2 Scaling Methods

Claerbout and Nichols (1994) proposed a diagonal approximation to the inverse of

the Hessian, motivated by empirical observations and personal communications with

W.W. Symes. The explicit scale factor suggested by Claerbout and Nichols amounts

to the ratio between the migrated image mmig = ATd and the remigrated image

mremig = ATAmmig (Claerbout and Nichols, 1994), more explicitly the reference

model in (2.9) used is the migrated image. This scaling method proposed by Claerbout

and Nichols (1994) leads to a series of related works discussed here. Also, this thesis

shares the same setting with the Claerbout and Nichols (1994) method, as it also uses

the migrated image as a reference vector and tries to approximate a scaling factor

between the migrated and the remigrated image.

Rickett (2003) generalizes the setting of Claerbout and Nichols (1994) to the one

presented in the previous chapter. The diagonal approximation was refined by Rickett

(2003). He showed the rationale behind the choice of the approximation and addressed

some of the technical difficulties in the implementation of the method (Rickett, 2003).

The success of this approximation relies on the accuracy of the reference model, more

precisely the similarity between the reverence model and the real model, so that the

application of the normal operator scales both in the same way. Rickett quantifies

this sensible fact by illustrating the failure of the method for a random reference

model (Rickett, 2003). Rickett also asserts that one adequate choice for the reference

model is the adjoint image, as proposed by Symes (Claerbout and Nichols, 1994).
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This work adopts the migrated image as the reference model, making this previous

assertion pivotal for our purposes.

Alternatively, Chavent and Plessix (1999) propose a diagonal approximation of

the Hessian by mass lumping, i.e., adding the near diagonal components to the diag-

onal and regarding that as the scale factor (Chavent and Plessix, 1999). The mass

lumping idea seems arbitrary and can only be made to work after an a posteriori

correction factor, revealing the rather qualitative nature of the similarity between the

Hessian and its approximation. The first choice for a diagonal approximation to the

Hessian would be the diagonal itself, and Shin et al. (2001) derive a way to approxi-

mate the diagonal of the Hessian and use it to correct the amplitudes of the images

(Shin et al., 2001). However, an important observation exposes the limitation of this

approximation: the diagonal of the Hessian cannot account for the dependence of the

illumination on local reflector dip (Rickett, 2003).

The previously presented methods (Claerbout and Nichols, 1994; Rickett, 2003)

are data dependent and hence take account of the dip, though diagonal. Guitton

(2004) suggested another approximation capable of resolving the local reflector dip,

who proposes a near diagonal approximation to the inverse of the Hessian and uses it

directly to estimate the material properties. He proves that this method is compara-

ble to linearized least squares inversion with fewer artifacts and better computational

cost. Guitton’s approach is widely applicable and is completely data driven, and uses

the migrated image as a reference model (Guitton, 2004). Though the previously
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mentioned methods depend on a good reference model for their success, the migrated

image may be used as a reference model as suggested by Claerbout and Nichols and

validated by Rickett, which then makes them also completely data driven. Guitton’s

method may be thought of as a generalization to the Claerbout and Nichols and Rick-

ett methods, in that the scaling factor is nearly diagonal and allows for more degrees

of freedom in correcting the amplitudes than a diagonal scaling factor (Guitton, 2004).

In the special case where only a limited area is of interest (a reservoir, for example), a

target oriented variant of Guitton’s method is presented by Valenciano et al. (2006).

The restriction to a target area decreases the scale of the Hessian relative to the entire

model, and its sparsity renders its application cheap enough to make least squares

inversion numerically feasible and appropriate for obtaining the solution (Valenciano

et al., 2006). One drawback of Guitton’s scaling method, hence Valenciano’s too, is

that the “filters” used to derive the approximation are arbitrary integral operators

supported near the diagonal, and Guitton’s method does not specify them completely.

All the methods mentioned rely on empirical observations about the near diago-

nality of the normal operator. The theoretical basis for this observation gives more

insight about the success and failure of these methods. The near diagonality of the

normal operator in phase-space is a manifestation of its pseudodifferential nature

when the background parameters are smooth. Moreover, the pseudodifferential na-

ture of the normal operator explains which scaling methods should produce accurate

approximate inverses. In particular, the normal operator acts as a multiplication by a
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function when applied to a localized monochromatic pulse see (2.10) (Taylor, 1981).

However, this simple scaling is only possible after a filtering step that renders the

scaling factor an order zero pseudodifferential operator (Symes, 2008). The Symes

(2008) paper thus devises a data adaptive filtering/scaling method, the scale factor

depends on the model (the migrated image) which depends on the data. Symes uses

the migrated image as reference model which parallels the framework of the previous

methods in that respect. Rickett’s method may be regarded as a special case where

filtering is ignored, however the approximate inverse so produced is not as accurate

(Symes, 2008). This method may also be regarded as a variant of Guitton’s method

in which the filter is a completely specified power of the Laplacian predicted by the

underlying theory composed with a zero order pseudodifferential operator. Though

the method is particularly natural and simple, it assumes a unique local dip, which

presents a limitation on its domain of applicability. The method I propose may be

regarded as a generalization of this method where no unique local dip is assumed,

thereby allowing for more degrees of freedom.

Herrmann et al. (2008b) adopt a different route also based on the asymptotic

expansion lemma for pseudodifferential operators (2.10). They use a curvelet frame

(Candes and Demanet, 2005), motivated by the sparsity of seismic images in the

curvelet domain and the approximate invariance of the curvelet frame under the nor-

mal operator (Herrmann et al., 2008b), a direct consequence of (2.10) and the fact

that curvelets are localized monochromatic pulses. Herrmann et al. (2008b) develop
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a scaling method in which amplitude recovery is achieved by solving a nonlinear op-

timization problem where the “sparsity in the curvelet domain and the continuity

along the imaged reflectors” is imposed as a regularization to the optimization prob-

lem. Once again the method depends on a reference model and the migrated image

is used as an initial guess to obtain satisfactory images showing fewer artifacts and

recovering the amplitudes (Herrmann et al., 2008b).

The use of the curvelet frame requires advanced theoretical tools and an intri-

cate implementation. The curvelet frame explicitly diagonalizes the normal operator

rendering its application efficient. However, the efficient application of any pseudo-

differential operator is also achieved by approximating its symbol (which encodes the

eigenvalues asymptotically) and completely bypassing the eigenvectors; this is the

content of the Bao and Symes (1996) algorithm to efficiently apply pseudodifferential

operators. I discuss the Bao and Symes (1996) algorithm in the next chapter and use

it to derive a scaling method that formulates the recovery of the scaling factor as an

optimization scheme without explicitly diagonalizing the normal operator.



Chapter 4

Methods

4.1 Introduction

This chapter discusses the Bao and Symes (1996) algorithm and uses it to formulate

the recovery of the approximate inverse to the normal operator as an optimization

problem. Also, I present a description of the code implementing the scaling method

proposed in this thesis.

4.2 The Algorithm

The pseudodifferential nature of the normal operator is predicted by the underlying

theory, hence the need for an algorithm that applies pseudodifferential operators.

Bao and Symes describe an original algorithm for applying a pseudodifferential

operator on a function in two dimensions (Bao and Symes, 1996). Though the pre-

20
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sentation is in 2D, the algorithm may be generalized to 3D.

Pseudodifferential operators are defined in terms of their symbols qm(x, ξ),

qm(x, ξ) : Ω× Rn\{0} → R,

where Ω ⊂ Rn is an open set and n = 2 or 3 (the dimension of the space).

The symbols of interest qm(x, ξ) are smooth and homogeneous of order m, and for

any compact set K ⊂ Rn, and real α,β, there exists constants CK,α,β, such that

|Dα
xD

β
ξ qm(x, ξ)| ≤ CK,α,β(1 + |ξ|)m−|β|, (4.1)

for all x ∈ K and ξ ∈ Rn. Homogeneity means that, given r ∈ R,

qm(x, rξ) = rmqm(x, ξ). (4.2)

Homogeneous symbols satisfy (4.1); however, it should be noted that (4.1) is satisfied

by a more general class of symbols not treated in this thesis. The applications of this

thesis only include symbols of order 0, i.e., m = 0; however, the discussion is simple

enough for general m and it is therefore explicitly shown in the formulae.

The rest of this discussion is restricted to 2D, so we may write x = (x, z). The

pseudodifferential operator is then characterized by its symbol and defined by

Qmu(x, z) =

∫ ∫
qm(x, z, ξ, η)û(ξ, η)ei(xξ+zη) dξ dη, (4.3)

where qm(x, z, ξ, η) is the principal symbol, homogeneous of degree m, and û = F [u]

is the Fourier transform of u.
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Thus writing ξ = ω cos θ, η = ω sin θ, and using the homogeneity of qm, we have

qm(x, z, ξ, η) = ωmq̃m(x, z, θ). (4.4)

Notice that q̃m(x, z, θ) = qm(x, z, cos θ, sin θ) is periodic and smooth in θ, and

hence it admits a rapidly converging Fourier expansion. We thus truncate the Fourier

series, approximating the symbol by its first K + 1 Fourier modes:

q̃m(x, z, θ) ≈
l=K/2∑
l=−K/2

cl(x, z)e
ilθ =

l=K/2∑
l=−K/2

ω−lcl(x, z)(ξ + iη)l. (4.5)

Plugging (4.5) into (4.3) we obtain

Qmu(x, z) ≈
l=K/2∑
l=−K/2

cl(x, z)F−1[ωm−l(ξ + iη)lû(ξ, η)]. (4.6)

Fourier transform theory identifies ωm−l as the symbol of (−∇)
m−l

2 , and ξ and η

are respectively the symbols of Dx = −i∂x and Dz = −i∂z.

Sampling the field u(x, z) and the symbol q̃m(x, z, θ),

Uij = u(x0 + (i− 1)∆x, z0 + (j − 1)∆z),

Qijk = q̃m(x0 + (i− 1)∆x, z0 + (j − 1)∆z, k∆θ),

i = 1, · · · ,M, j = 1, · · · , N, k = −K/2, · · · , K/2.

Choosing ∆ξ = 1
(M−1)∆x

and ∆η = 1
(N−1)∆z

yields the unaliased discretizations of

the symbols of the square root of the negative Laplacian, Dx and Dz

Ωpr = 2π
√

(p∆ξ)2 + (r∆η)2
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Ξpr = 2πp∆ξ

Zpr = 2πr∆η

p = −M/2, · · · ,M/2, r = −N/2, · · · , N/2

Equation (4.6) suggests the following algorithm to estimate Qmu (Bao and Symes,

1996). All Fourier transforms refer to a discrete Fourier transform.

1. Compute Ûpr = F [Uij].

2. For each i ∈ [1,M ] and j ∈ [1, N ],

compute Q̂ij = {Q̂ijl}K/2l=−K/2 the discrete Fourier transform ofQij = {Qijk}K/2k=−K/2.

3. Initialize (QU)ij = 0, for i ∈ [1,M ] , j ∈ [1, N ],

For l = −K/2 : K/2

(a) compute {Rl
ij}

M,N
i=1,j=1 = F−1[Ωm−l

pr (Ξpr + iZpr)
lÛpr]

for p = −M/2, · · · ,M/2 and r = −N/2, · · · , N/2

(b) accumulate

(QU)ij = (QU)ij + Q̂ijlR
l
ij

End

A straightforward discretization of (4.3) has a computational complexity of

O(N4 log(N)). The algorithm described above uses FFT (Fast Fourier Transform),

and thus exhibits a complexity of O(KN2(log(N) + log(K))). The appeal of this

approach is that K is independent of N . In fact, applications to reflection seismology



24

require that the symbol be smooth and slowly varying in θ, thus may be captured

accurately by a modest number of Fourier modes or, more explicitly, a small K.

4.3 Inversion

Recall that the problem at hand is that of obtaining the true model mtrue from

ATAmtrue = ATd. (4.7)

The following discussion inherits the notation and the procedure of Symes (2008).

The theory predicts that ATA ≈ L
n−1

2 V2, where L = −∇ and V2 is an order

zero symmetric positive semidefinite pseudodifferential operator.

Define W2 = (V2)†, the pseudoinverse of V2, thus,

minv =
(
ATA

)†
ATd ≈W2L−

n−1
2 ATd. (4.8)

Using the properties of pseudoinverses, we obtain an expression for W2 independent

of mtrue

W2L−
n−1

2 (ATA)ATd ≈ ATd (4.9)

Given the migrated image mmig = ATd , and mremig = ATAmmig, or even better

mfilt = L−
n−1

2 mremig.

Restating (4.9)

W2mfilt ≈mmig. (4.10)

The notation W2 stresses the fact that the scaling operator is positive definite or
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at least semi-definite, which then requires its symbol to be positive or at least non-

negative; moreover the filtering step ensures that W2 is of order zero.

The aim is to estimate mtrue ≈minv, where

minv = W2L−
n−1

2 mmig. (4.11)

If W2 is known, the last step requires a direct application of the algorithm described

above. The real problem lies in determining W2, more precisely its symbol q̃m(x, z, θ),

here m = 0. I carry m along in the rest of this discussion because a variant of this

discussion can skip the explicit filtering step and use a pseudodifferential scaling factor

W2 of order −1.

The algorithm defined above for fixed input u = mfilt and known output Qmu =

mmig may be regarded as a function of the symbol q̃,

Qm[q̃]mfilt ≈mmig. (4.12)

The principal symbol may be recovered by an optimization scheme

qm(x, z, θ) = argmin
q̃≥0

‖Qm[q̃]mfilt −mmig‖2. (4.13)

The feasible set consists of non-negative symbols because W2 is symmetric posi-

tive semidefinite. Additional regularization terms (e.g., Tichonov regularization) are

added to (4.13) if needed.

The problem admits multiple minimizers since the system is underdetermined.

The degree of underdeterminism may be seen more transparently from

Qmu ≈
l=K/2∑
l=−K/2

cl(x, z)F−1[ωm−l(ξ + iη)lû(ξ, η)].
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For each (x, z) the system consists of one equation in K + 1 unknowns. The require-

ment that q̃ be slowly varying in angle, is enforced by limiting K directly.

The system is rendered determined by enforcing the continuity of q̃ using a parsimo-

nious basis technique. Let {ψj(x, z)}Jj=1 be a set of smooth shape functions (cubic

b-splines for example). Write

cl(x, z) =
J∑
j=1

cjlψj(x, z)⇒ q̃m(x, z, θ) =

K/2∑
l=−K/2

J∑
j=1

cjlψj(x, z)e
ilθ. (4.14)

The system now consists of N2 equations in (K + 1)J unknowns.

Finally, enforcing positivity of the symbol may be achieved by letting q̃(x, z, θ) =

q(x, z, θ)2 with q(x, z, θ) given by (4.14):

q(x, z, θ) =

K/2∑
l=−K/2

cl(x, z)e
ilθ ⇒ q2(x, z, θ) =

K∑
l=−K

l+K/2∑
n=−K/2

cl−n(x, z)cn(x, z)eilθ,

(4.15)

where cl(x, z) ≡ 0 when l /∈ [−K/2, K/2].

Notice that

al(x, z) :=

l+K/2∑
n=−K/2

cl−n(x, z)cn(x, z) = (cn ∗ cn)l(x, z), (4.16)

i.e., the convolution of the vector of Fourier coefficients with itself, and the sum

is implemented as such. Really, (4.15) is nothing but the convolution theorem for

Fourier transforms in its discrete form. The coefficients cl(x, z) are given by (4.14).

This approach enforces the positivity of the symbol directly.
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4.3.1 Gradient Calculation

In this section, the dependence of the symbol on its Fourier coefficients needs to be

written explicitly:

qm(x, z, θ) =
K∑

l=−K

c′l(x, z)e
ilθ. (4.17)

I choose bi-cubic splines for the smooth shape function ψj(x, z) = Bi(x)Bj(z) refer-

enced in (4.14), with this bi-cubic splines choice cl(x, z) given by

cl(x, z) =
∑
i,j

cijl Bi(x)Bj(z). (4.18)

Equation (4.18) gives the explicit dependence of the Fourier coefficients on the bi-

cubic basis functions. Finally, c′l(x, z) is the auto-convolution of cl(x, z),

c′l(x, z) =

l+K/2∑
n=−K/2

cl−n(x, z)cn(x, z). (4.19)

Recall that the action of a pseudodifferential operator is given by

Qmu(x, z) =
K∑

l=−K

c′l(x, z)F−1{ωm−l(ξ + iη)lû(ξ, η)}. (4.20)

The objective function with the norm interpreted in the least squares sense is

regarded as a function of the coefficients cijl ,

J(cijl ) = ‖Qmu(x, z)− d(x, z)‖2 =
∑
xi,zj

|Qmu(xi, zj)− d(xi, zj)|2. (4.21)

The gradient of the objective function follows from (4.21):

∂J

∂ci
′j′

l′

= 2
∑
xi,zj

Re

{
∂Qmu

∂ci
′j′

l′

(Qmu− d)∗

}
. (4.22)
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Thus the important element in this calculation is ∂Qmu

∂ci
′j′

l′
:

∂Qmu

∂ci
′j′

l′

=
∂

∂ci
′j′

l′


K∑

l=−K

l+K/2∑
n=−K/2

∑
i,j

cijl−nBi(x)Bj(z).
∑
i,j

cijnBi(x)Bj(z).F−1[. . . ]

 ,

(4.23)

since F−1[ωm−l(ξ + iη)lû(ξ, η)] does not depend on cijl , it will be carried through the

calculation and denoted by F−1[. . . ].

Expanding (4.23),

∂Qmu

∂ci
′j′

l′

=
K∑

l=−K

l+K/2∑
n=−K/2

∑
i,j

δi
′

i δ
j′

j δ
l′

l−nBi(x)Bj(z).
∑
i,j

cijnBi(x)Bj(z).F−1[. . . ]

+
K∑

l=−K

l+K/2∑
n=−K/2

∑
i,j

cijl−nBi(x)Bj(z).
∑
i,j

δi
′

i δ
j′

j δ
l′

nBi(x)Bj(z).F−1[. . . ]

= 2Bi′(x)Bj′(z)
K∑

l=−K

∑
i,j

cijl−l′Bi(x)Bj(z).F−1[. . . ]

= 2Bi′(x)Bj′(z)
K∑

l=−K

cl−l′(x, z)F−1[ωm−l(ξ + iη)lû(ξ, η)].

This last result is worth restating:

∂Qmu

∂ci
′j′

l′

= 2Bi′(x)Bj′(z)
K∑

l=−K

cl−l′(x, z)F−1[ωm−l(ξ + iη)lû(ξ, η)], (4.24)

because it has a natural interpretation: the calculation of the gradient of Qmu re-

quires K applications of the Bao and Symes (1996) algorithm each time with shifted

coefficients cl−l′(x,z) and evaluation of the splines at fixed points.
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4.4 Description Of The Code

This section discusses the specific implementation of the scaling method and the

choice I adopted to enforce the positivity on the symbol.

The symbol in the Bao and Symes (1996) algorithm is naturally parametrized by

its Fourier coefficients and thus any property of the symbol translates to a property

of its Fourier coefficients, specifying its implementation.

The first requirement that the implementation must satisfy is the continuity and

smoothness of the symbol. A parametrization of the Fourier coefficients of the symbol

in terms of the coefficients of a bi-cubic spline expansion ensures the smoothness of

the symbol on the domain (parsimonious basis technique):

cl(x, z) =
∑
i,j

ci,jl Bi(x)Bj(z).

It turns out that the positivity requirement on the symbol is the most intricate

of all and to solve this, we choose the symbol to be the square of a real smooth

function (its square root). Restating the positivity requirement in terms of the Fourier

coefficients amounts to implementing the symbol as an auto-convolution of the Fourier

coefficients of the real square root. Reality is enforced on the Fourier coefficients by

requiring conjugate symmetry. To summarize the steps:

1. Provide cl for l ≥ 0.

2. Symmetrize, c−l = c̄l, to ensure that q is real.

3. Autoconvolve, q =
∑

l cl ∗ cleilθ to ensure positivity.



30

The code consists of the algorithm for application of a pseudodifferential operator

PsiDO described extensively in the first section. I implement the objective function

and the gradient calculation in objective.m. QmakSq ensures the positivity of the

symbol emphasized earlier, by constructing it as the square of a real function (sym-

metric Fourier coefficients).

A walk through objective.m describes the entirety of the code:

• The input consists of mfilt and mmig and the coefficients of the b-splines.

• The coefficients yield a positive symbol in q = QmakSq.

• The objective function (4.21) is computed, with q as input to PsiDO.

• The gradient (4.22) uses (4.24).

The implementation accepts complex coefficients, parametrized by their real and

imaginary parts. Only half of the coefficients are supplied by the user, since the

code internally symmetrizes the coefficients in QmakSq to ensure reality before auto-

convolving them to enforce positivity.

As a result of this specific parametrization ∂Qmu

∂ci
′j′

l′
must pick up a few more terms:

∂Qmu

∂Re(ci
′j′

l′ )
= 2Bi′(x)Bj′(z)

K∑
l=−K

(cl−l′ + cl+l′)(x, z)F−1[ωm−l(ξ + iη)lû(ξ, η)], (4.25)

∂Qmu

∂Im(ci
′j′

l′ )
= 2Bi′(x)Bj′(z)

K∑
l=−K

(icl−l′ − icl+l′)(x, z)F−1[ωm−l(ξ + iη)lû(ξ, η)]. (4.26)
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The primary results of the method suggested that only the even Fourier modes

should be implemented to obtain a real inverted image. This observation motivated

the following lemma.

Lemma 4.4.1 If u is real , c−l = c∗l , and c2l+1 = 0 for all l, then

Qmu, as defined by (4.6), is real.

The proof of the continuous case is easier than the proof on the discrete algorithm

and follows from the definition (4.3) and arguments presented here. Recall that:

Qmu ≈
l=K/2∑
l=−K/2

cl(x, z)F−1[ωm−l(ξ + iη)lû(ξ, η)], (4.27)

since the reality of u is equivalent to û(−ξ,−η) = û(ξ, η)∗ (conjugate symmetry).

Now if c2l+1 = 0 we need to only consider the even terms:

c−2lF−1[ωm+2l(ξ + iη)−2lû(ξ, η)] + c2lF−1[ωm−2l(ξ + iη)2lû(ξ, η)] =

F−1[c2lω
m−2l(ξ + iη)2lû(ξ, η) + c∗2lω

m+2l(ξ + iη)−2lû(ξ, η)].

(4.28)

Then let f̂(ξ, η) = c2lω
m−2l(ξ + iη)2lû(ξ, η) + c∗2lω

m+2l(ξ + iη)−2lû(ξ, η).

Then,

f̂(−ξ,−η) = c2lω
m−2l(−ξ − iη)2lû(−ξ,−η) + c∗2lω

m+2l(−ξ − iη)−2lû(−ξ,−η)

= c2lω
m−2l(ξ + iη)2lû(ξ, η)∗ + c∗2lω

m+2l(ξ + iη)−2lû(ξ, η)∗

= c2lω
me2ilθû(ξ, η)∗ + c∗2lω

me−2ilθû(ξ, η)∗

=
[
c2lω

me2ilθû(ξ, η) + c∗2lω
me−2ilθû(ξ, η)

]∗
= f̂(ξ, η)∗

(4.29)
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Hence, by the properties of the Fourier transform, F−1[f̂ ] is real and therefore

Qmu is real. This implies that minv = Qm[q†]mmig is real since mmig is real.

This property allows us to cut the search space in half and only implement symbols

with even Fourier coefficients.



Chapter 5

Results

5.1 Introduction

This section investigates the accuracy of the proposed method. Results on the 2D

Marmousi benchmark model (Versteeg and Grau, 1991) corroborate the validity of the

method in approximating the real model. The intrinsic difference between K = 1 and

K > 1 enables the latter to resolve multiple dip events and hinders the former from

doing so; in fact K = 1 reduces to the Symes (2008) method. The Marmousi model

is incapable of revealing the difference between the two cases, since the difference

between the result for K = 1 and K = 5 is marginal, mainly because multiple

dip events are limited in this model or the dependence of the symbol of the normal

operator on dip is weak. To test the ability of the method to resolve multiple dip

events, I construct a “plaid” model consisting of multiple dip events in most areas of

33
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the model. The results on the “plaid”’ example reveal the superiority of K > 1 while

giving a lot of insight into the behavior of the method.

The “plaid” data example uses the Bao and Symes (1996) algorithm to generate

the data, whereas the Marmousi migrated image mmig = ATd and the remigrated im-

age mremig = ATAmmig are computed using finite difference wave equation solvers.

In terms of the inverse problem setting, the Marmousi simulation and inversion al-

gorithms are separate whereas the simulation algorithm is the same as the inversion

algorithm for the “plaid” data example. The “plaid” example is an “inverse crime”

where the same method is used to generate data and to invert. A wave equation

example similar to the “plaid” data is coming soon, and it would be interesting to

investigate the results in that case, too.

5.2 Results

5.2.1 Marmousi

The 2D Marmousi benchmark model (Versteeg and Grau, 1991) is a synthetic exam-

ple that retains some of the same challenges of real data. The model is smoothed

and a perturbation to the model mtrue (Figure 5.1) is obtained as the difference be-

tween the full model and the smoothed model. The model is windowed and tapered

to the window of interest. The migrated and remigrated images (Figures 5.2 and

5.3) reveal the distortion in the amplitudes of the image when compared to the real



35

model (Figure 5.1) after the application of the migration operator, even worse after

application of the normal operator. The amplitudes differ by orders of magnitude and

the distortion is nonuniform in depth, in fact it tends to attenuate the amplitudes

in the deeper parts of the image (the regions of interest) to the point where events

become invisible. Amplitude correction becomes therefore a mandatory procedure.

The pseudodifferential scaling method with K = 1 and K = 5 (see Figures 5.4 and

5.5) corrects the amplitudes. At first glance the amplitudes are recovered to the right

order of magnitude. More importantly, the correction reinstates the events in the

deeper part of the image that were hidden in the migrated image from the ampli-

tude distortion. Both results are satisfactory for this example. Note that the scaling

results are shown on the window of interest rather than the full model for emphasis.

The difference between scaling with K = 5 (Fig 5.5) and scaling with K = 1 (Fig

5.4) is displayed in (Fig 5.6). Although the difference is small in most parts of the

image, it is apparent that the largest amplitude differences between the two scaling

methods occur exactly at the areas of the image where multiple dip events are. The

amplitude difference is largest at places where two reflectors intersect (faults) and the

intersection points tend to show the largest differences in amplitudes (either brighter

or dimmer). The scaling with K = 5 in fact performs marginally better than K = 1.

However, the Marmousi example is not the most suitable to divulge the difference

between the K = 1 and K > 1 cases, mainly because multiple dip events are not

“abundant” in this model. A model that investigates the difference between scaling
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with K = 1 and K > 1 constitutes the subject of the next section.
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Figure 5.1: mtrue

5.2.2 Plaid data

One important feature of the method is the intrinsic difference between K = 1 and

K > 1 since the method will only be able to capture the dependence of model or

symbol on dip if K > 1. This feature is not stressed in the Marmousi example since

the model has well defined dip almost everywhere and thus the method did not fail

for K = 1. To test this feature, I create a set of “plaid” data b (Fig 5.7) where

multiple dip events are abundant. I apply a pseudodifferential A = Q[q] operator

with symbol q = cos(θ)2 twice thus creating Ab (Fig 5.8) and A2b (Fig 5.9). A scale

factor is fit between Ab and A2b; the scale factor should be an approximation of A
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Figure 5.2: mmig = ATd
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Figure 5.3: mremig = ATAmmig

( Q[q̃] ≈ A ) which is then applied to b in hope of recovering Ab. I thus call Ab the

“true image” and Q[q̃]b the “inverted image”.

The “inversion” results are displayed in for K = 1 in Fig 5.11 and for K = 5

in Fig 5.13. The result for K = 1 already shows a weakness in the resolution of

the amplitudes in different parts of the image whereas the result for K = 5 is more

successful in approximating the true image. A more insightful investigation on the

errors (misfit between the inverted and true image) in the two cases reveals the true

story. The error for K = 1 (Fig 5.14) is highly non-isotropic. It shows the same

structure of the image in one of the directions. K = 1 struggles with the multiple dip

events and can only resolve one direction. In comparison, the error for K = 5 (Fig

5.15) is isotropic: it shows no structure from the image. In fact the method resolves

multiple dip events and altogether fits the image to less than 0.5% root mean square

relative error.
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Figure 5.4: Scaling with K = 1
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Figure 5.5: Scaling with K = 5
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Figure 5.6: Difference between scaling with K = 5 and K = 1
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Figure 5.7: Plaid Data = b
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Figure 5.8: Ab = Q[cos2(θ)]b
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Figure 5.9: A2b = Q[cos2(θ)]Ab

 

 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

17

18

19

20

21

22

Figure 5.10: True Image: Ab
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Figure 5.11: Inverted Image K = 1:

Q[q̃]b
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Figure 5.12: True Image: Ab
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Figure 5.13: Inverted Image K = 5:

Q[q̃]b
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Figure 5.14: Error for K = 1
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Figure 5.15: Error for K = 5



Chapter 6

Conclusions

This thesis leverages the near diagonality of the normal operator in a basis of localized

monochromatic pulses to develop a pseudodifferential scaling method. The recovery

of the scaling factor is cast as an optimization scheme that scales the migrated image,

i.e., ATd, to the remigrated image, i.e., (ATA)ATd, and recovers a positive pseudod-

ifferential scaling factor, i.e., the approximate pseudoinverse of the normal operator

of the right order (predicted by the theory). The procedure is efficient since it uses

the Bao and Symes (1996) algorithm for the action of a pseudodifferential operator.

Tests on the Marmousi benchmark model validate the method: the amplitudes

of the inverted image resemble those of the real image and the distortions from the

application of the migration operator become less prevalent. An example in which

multiple dip events are abundant highlights the ability of the method to resolve these

events.
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The method may be used to correct the amplitudes of seismic images at the cost of

one resimulation (application of A) and one remigration (application of AT ). These

procedures tend to be extremely expensive and thus overwhelm the cost of applying

the scaling method. The need for these extra simulation and migration operations

is not unreasonable, since iterative least squares inversion requires such applications

at each iteration. The method’s ability to precondition least squares inversion and

accelerate its convergence when the background model is not a good approximation

to the real model still needs to be tested. Herrmann has carried out a version of

this program (Herrmann et al., 2008a) for the linearized inversion using the results

of Herrmann et al. (2008b). However, the results on the Marmousi data set suggest

that the output of the method is a satisfactory inversion result and least squares

inversion may not be even needed when the background model is an appropriate

smooth approximation to the real model.

This method cannot escape the sensitive dependence on the background model

and the quality of the migrated and remigrated images. These parameters are more

controllable in synthetic examples. The real challenge lies in the application of the

method to real data, where the background model is a priori unknown and the quality

of the images is, at best, hard to evaluate.

The setting of the method lends itself to generalizations to three dimensions as

well as to the multi-parameter case (variable density acoustics, for example). These

extensions present themselves as natural directions to pursue; in fact, preliminary
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results on the variable density acoustics extension are promising.
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