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Let:

e m(x): model (consists of p-parameters: impedance,
density,. . .)

e p(x,1): state (the solution of the system: pressure)

Then, if S is the Forward Map:
e The Forward Problem:

Sim] = plsurface
e The Inverse Problem:
S[m] ~ 5P
Given 5%, get m(x)

Nonlinear and Large Scale !
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Linearization

Solution depends nonlinearly on coefficients; if we have an
approximation my to the model, Linearization is advantageous:

o Write m = mg + om
myg: Given reference model
om: First order perturbation about mj

e Define Linearized Forward Map F|[my| (Born Modeling):
Flmg|om = ép
¢ Reduce to the Linear Subproblem

Flmo)ém ~ §°S — S[mo] := d
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Normal Operator

Interpreted as a least squares problem, linear subproblem
yields the normal equations

F*[mg]F[mp|dm = F*[mo|d
F*[mp]F[my] is the Normal Operator (Modeling + Migration)

The problem is still Large Scale,order of Pflops/Pbytes =
cannot use direct methods to invert F*F.
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Normal Operator

Interpreted as a least squares problem, linear subproblem
yields the normal equations

F*[mg]F[mp|dm = F*[mo|d
F*[mp]F[my] is the Normal Operator (Modeling + Migration)

The problem is still Large Scale,order of Pflops/Pbytes =
cannot use direct methods to invert F*F.

Properties of the normal operator have been extensively
studied (Beylkin,1985; Rakesh,1988) for smooth my

e Pseudodifferential Operator for one parameter, nearly
diagonal in a basis of localized monochromatic pulses
e p x p matrix of pseudodifferential operators for p
parameters in polarization preserving scattering @RICE



Migration Vs Inversion
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Figure: mmg = F*d Figure: myye = (F*F)'F*d
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Lessons Learned

¢ Discontinuities preserved
e Amplitudes distorted

Solution: amplitude correction

¢ |dea: use near diagonality of the normal operator in the
right basis to derive an approximation to (F*F)' that scales
the amplitudes of the migrated image to the true image.
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Scaling Methods

Spatial delta function approximation of eigenvectors =
Hessian ~ multiplication by a smooth function (Claerbout
and Nichols, 1994; Rickett, 2003)

Near Diagonal Approximation of Hessian (Guitton, 2004)

Special case (well defined dip): normal operator =
multiplication by smooth function after composition with
power of Laplacian (correction to Claerbout-Nichols -
Symes, 2008)

Herrmann et al. (2007) derive a scaling method using
curvelets to approximate eigenvectors
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Pseudodifferential Scaling

Want to solve:
Nx=b,

where N = F*F and b = F*d € Range(N).

Given b and Nb, compute a scaling factor ¢;:

¢y = argmin||b — c¢; Nb|*.
1€ WDO

Then,
X = NTb =~ NTC1 Nb =~ c1b = Xiny
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The Scaling Factor

c1 scales the amplitudes of the migrated image to those of the
true image = ¢; ~ N'.

Require c; to be:
o Like NT

e ¢, is pseudodifferential
e ¢ is dip-dependent

e Unlike NT

o Efficient to compute
o Efficient to apply to data

How to represent ¢, ?
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Approximation of ¥DO

The action of the ¥DO (Bao and Symes, 1996):

Onit(x,2) ~ //quzsn (€, m) e g dn

g is the principal symbol, homogeneous of degree m.
= Flul.

Direct Algorithm O(N*log(N)) complexity (N = O(10%))!

Writing £ = wcos(#), n = wsin(6). Then,
qm(xa <, 57 77) = wmém('xv < 0)

I=K/2 1=K /2
Gm ~ Z ai(x,z)e™ = Z w™lay(x,2)(€ + in)’
I=—K/2 I=—K/2
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Algorithm

1=K /2
Onur Y a2 F " E +in)a(g, m)
I=—K/2
1. Calculate it = Flu]
2. Calculate F~'w" ! (€ + in)'a(&, n)]
3. Calculate a;(x,z) ~ F|Gm]
4. Estimate Q,,u
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Algorithm

1=K /2
Onur Y a2 F " E +in)a(g, m)
I=—K/2
1. Calculate it = Flu]
2. Calculate F~'w" ! (€ + in)'a(&, n)]
3. Calculate a;(x,z) ~ F|Gm]
4. Estimate Q,,u

Use FFT = O(KN?[log(N) + log(K)]) complexity vs O(N*log(N))
complexity for the direct algorithm. K independent of N.
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To solve

where N = F*F, b = F*d.

Given, b = F*d = my,i; and Nb = F*Fyig = Myemig
e Represent ¢; = Om[gn]
o Compute ¢; = argmin||b — c; Nb||?
e Approximate xi,, := cib ~ N'b =x

Pseudodifferential scaling method that resolves multiple dip
events for K > 1.
Reduces to optimal scaling (Symes, 2008) for K = 1.
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Results |
On Marmousi 2D data:
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Figure: myu,. @RICE



Migration - Remigration
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Figure: mmig = F*d Figure: mremig = F*Fmpmjg
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Scaling K =1
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Figure: mj,, with K =1 Figure: myre
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Scaling K =5
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Figure: mj,, with K =5 Figure: myre
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Difference between K =1and K =5
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Figure: Difference between K =1and K =5
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Plaid Model |

Figure: Plaid Data = b
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Plaid Model Il
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Figure: Ab = Qlcos?(0)]b Figure: A%b = Q[cos*()]Ab
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Results |

c1 = argmin ||ciAb — A%b|* = imj,, = c1b ~ Ab
¢1€UDO
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Figure: True Image: Ab Figure: Inverted Image K = 1:
C1b
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Results |l
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Error
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Figure: Error for K = 1 Figure: Error for K =5
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Applications

e When my is a good approximation:

o Fast solution of the Linear Inverse Problem
¢ Constant density acoustics

e When my is not a good approximation:

e View the linear problem as a Newton step
e Preconditioning of iterative methods (Herrmann et al. 2008)

e Future Work:
¢ Extend the method to 3D (spherical harmonics)
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Multi-parameter Case

Example: Variable density acoustics, impedance and density.
Formally the same, solve

Nx=05b

e N is a2 x 2 matrix of pseudodifferential operators
e b = F*d consists of two images, one for each parameter
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Geometry

N may be calculated analytically in the case of variable density
acoustics.
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The Challenge: Separation
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Operator Krylov

Generalization of one parameter case, to solve
Nx=b,

where N = F*F and b = F*d € Range(N).

Given b, Nb and N?b. Compute ci, c»:

{c1,c2} = argmin ||b — ¢; Nb — ¢y N*b|%.
c1,c0€ VDO

Then,

x =N'b~ N'(c; Nb + c; N°b) = c1b + ¢y Nb := x,
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What to expect from N

Nb x10"

2
60 4
4| 40 4
20 p— B 2
6 6
0 0
N
-20
P R 8
-2
-a0
10 -60 10 4
-80
12 12 -6
-5 [ 5 -5 [ 5
xT x
x10"
2 2
40 3
4 4 2
20
1
3 6
0 0
w
8 -20 8 -1
-2
-a0
10 10 -3
-60
-4
12 12
=5 [ 5 =5 0 5
T T

1.l
12
-5

[ 5
x

x 10°



Conditioning of N
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Figure: spatial variation of the condition number of N
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Preconditioning

Compute a preconditioner P ~ N analytically. Then,
e b — Pb
e Nb — PNPb
e N’b — PNPNPb

Compute operator krylov:

e {c1,c2} = argmin ||Pb — ¢; PNPb — c; PNPNPb||?
c1,00€¥DO

o x=N'b= (PN)'Pb ~ c| Pb + c; PNPb := x;,,
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Preconditioned Images
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Results

So do
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Figure: Comparison between inverted and true image
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Conditioning of NP
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Figure: spatial variation of the condition number of NP
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Future Work

Derive a class of preconditioners for different geometries
Precondition a RTM code for variable density acoustics
Apply for variable density acoustics

Generalize for linear elasticity
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Summary

e one-parameter case: Pseudodifferential Scaling
e Fast and reliable solution if m is a good reference model
e Preconditioning iterative methods when m is not a good
reference model
e multi-parameter case: Operator Krylov
o Necessity of preconditioning for success
e Apply to variable density acoustics
e Linear elasticity . ..
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THANK YOU !
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