
TSOpt 2.0: An Overview

Marco Enriquez

The Rice Inversion Project
marco.enriquez@caam.rice.edu

TRIP Annual Meeting

February 20, 2009

M. Enriquez TSOpt 2.0: An Overview – 1



Simulation-Driven Optimization Problems

We are interested in solving optimization problems constrained by
differential equations,

min
c

J(c) = G(u(c, ·))

s.t. H̄

(
du

dt
, u, c

)
= 0 ,

given that we have an application package capable of solving the state
equation.

Examples:

I Given injector/producer well locations, find well rates that maximize
revenue, subject to the black-oil equations

I Seismic Inversion (TRIP afternoon talks)

M. Enriquez TSOpt 2.0: An Overview – 2



TSOpt (“Time Stepping For Optimization”)

TSOpt is TRIP’s “middle-ware” package. TSOpt:

I abstracts commonalities among time-stepping methods

I provides a way for a simulation package to inter-operate with
optimization algorithms

Extra Features:

I implements the Adjoint-State method to form gradients

I allows efficient way to verify reference, derivative and adjoint
simulation are appropriately related

M. Enriquez TSOpt 2.0: An Overview – 3



TSOpt (“Time Stepping For Optimization”)

M. Enriquez TSOpt 2.0: An Overview – 3



TSOpt (“Time Stepping For Optimization”)

M. Enriquez TSOpt 2.0: An Overview – 3



TSOpt (“Time Stepping For Optimization”)

M. Enriquez TSOpt 2.0: An Overview – 3



TSOpt (“Time Stepping For Optimization”)

M. Enriquez TSOpt 2.0: An Overview – 3



TSOpt (“Time Stepping For Optimization”)

M. Enriquez TSOpt 2.0: An Overview – 3



TSOpt and the AS Method

The AS method requires access to the reference simulation state history.

TSOpt implements the following strategies to address this:

I save all: save states as you forward simulate, access as needed
I Cost: TBs, for a typical 3D RTM.

I checkpoint: rely on forward simulations, and use stored simulation
states as a starting point for evolution

I Cost: O(log(N)) recomputation, given a special distribution of the
states and a small amount of buffers

I Two flavors: offline and online

I specialized strategies for specific problems
I RTM: only save boundary values

M. Enriquez TSOpt 2.0: An Overview – 4



TSOpt and The Alg Framework

TSOpt’s components derive from TRIP’s Alg
package, a software framework that can be
used to describe any algorithm.

The Alg package defines two main objects:

I Algorithm objects, which must implement void run()

I Terminator objects, which must implement bool query()

By using these two objects, we may create a variety of algorithms

I composite algorithms: { alg1.run(); alg2.run() }
I iterative algorithms: while(!term.query()) { alg.run(); }

M. Enriquez TSOpt 2.0: An Overview – 5



TSOpt’s Components

In TSOpt, we use Jet objects to perform various simulations. Hence, a
Jet object “holds” information on how to take forward, derivative and
adjoint evolution steps.

All of these classes are templated on a State class, which itself holds
state data and a time object

M. Enriquez TSOpt 2.0: An Overview – 6



TSOpt’s Components

In TSOpt, we use Jet objects to perform various simulations. Hence, a
Jet object “holds” information on how to take forward, derivative and
adjoint evolution steps.

All of these classes are templated on a State class, which itself holds
state data and a time object

M. Enriquez TSOpt 2.0: An Overview – 6



Running Simulations in TSOpt

Typically, this is how we create a 1-jet:

FwdTimeStep stp(...); // Forward Evolution

FwdDTimeTerm<State> tt(...); tt.setTargetTime(nt); // Forward Terminator

SaveAllSim<State, containerClass> f(stp,tt); // Save all fwd. states

DerTimeStep dstp(...); // Derivative Evolution

FwdDTimeTerm<State> dtt(..); dtt.setTargetTime(nt); // Derivative Terminator

AdjTimeStep astp(...); // Adjoint Evolution

BwdDTimeTerm<State> att(..); att.setTargetTime(0); // Adjoint Terminator

StdJet<State> j(f, dstp, dtt, astp, att); // Create a jet

j.getAdj().run(); // Run adjoint sim.

M. Enriquez TSOpt 2.0: An Overview – 7



Running Simulations in TSOpt

To use checkpointing in TSOpt, we only change the following line:

FwdTimeStep stp(...); // Forward Evolution

FwdDTimeTerm<State> tt(...); tt.setTargetTime(nt); // Forward Terminator

CPSim<State, containerClass> f(stp,tt, numBuffers); // Checkpoint

DerTimeStep dstp(...); // Derivative Evolution

FwdDTimeTerm<State> dtt(..); dtt.setTargetTime(nt); // Derivative Terminator

AdjTimeStep astp(...); // Adjoint Evolution

BwdDTimeTerm<State> att(..); att.setTargetTime(0); // Adjoint Terminator

StdJet<State> j(f, dstp, dtt, astp, att); // Create a jet

j.getAdj().run(); // Run adjoint sim.

M. Enriquez TSOpt 2.0: An Overview – 8



A Unit Test Problem

Consider the following initial value ODE problem:

ut = 1 − u2

u(0) = 0.5 , t ∈ [0, 0.1]

Let’s perform the adjoint evolution with the following strategies to handle
the reference states:

I save all

I checkpoint

and verify results via the dot product test.

M. Enriquez TSOpt 2.0: An Overview – 9


