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Abstract

Framework Design and Implementation of

Finite Difference Based Seismic Simulations

by

Igor S. Terentyev

Recent advances in high-performance computing have revived interest of the seismic

community in large-scale partial differential equations (PDE) solvers. In this thesis,

I design and implement a software framework for solving time dependent PDE in

simple domains using finite difference (FD) methods. The framework is designed for

parallel computations on distributed and shared memory computers, thus allowing

for efficient solution of large-scale problems. The framework provides tools for de-

scription of FD schemes using stencil information. Once the stencil is supplied, the

framework ensures automated data exchange between processors. This automated

data exchange allows a user to add FD schemes without knowledge about underly-

ing parallel infrastructure. The code is written in ISO C language and uses MPI

and OpenMP for parallelization. I used the framework to implement a staggered

second-order in time and second/fourth-order in space FD schemes for the acoustic

wave equation. The acoustic solver provides perfectly matched layer and free surface

boundary conditions.
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Chapter 1

Introduction

Numerical simulations are essential for understanding of seismic wave propagation in

oil-and-gas exploration, prediction of tectonic events and other geoscience applications

that require knowledge of the subterranean structure. The goal of this work is to

design, implement, and test an efficient parallel finite difference (FD) framework for

simulation of seismic wave propagation with applications in reflection seismology. The

choice of finite-difference methods is determined by the fact that reflection seismology

generates large-scale problems that involve terabytes of data, and FD methods achieve

a reasonable balance between computational efficiency and accuracy.

1.1 Motivation

The information about interior properties of the Earth is collected by sending seismic

waves into the ground and recording a portion of these waves reflected back to the

surface due to the highly heterogeneous nature of the subsurface. Inversion of the

recorded data allows geoscientists to reconstruct the structure of the Earth’s interior.

An inherent part of the inverse solver is multiple solving of the forward wave propa-
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gation problem. Therefore, being able to solve the forward wave equation efficiently

and accurately is crucial for inversion process.

In addition to providing a principal tool for inversion of seismic data, numerical

simulation of seismic wave propagation can be used to test experimental design. For

example, Regone [2] used 3D wave propagation model as an alternative to highly

expensive real experiments and demonstrated the advantages of wide-azimuth towed

streamer (WATS) acquisition over the traditionally employed sparse acquisition. This

research led to acceptance of WATS, which was a significant change in the acquisition

technology.

In this thesis I develop a parallel FD software framework. The framework provides

an implementation of several numerical algorithms, tools for assessing their perfor-

mance, and libraries that can be used as a basis for implementing new algorithms

with a little programming effort. The software is intended to be used as

– a tool for studying seismic wave propagation in large-scale domains,

– a test-bed for different numerical methods,

– a core for an inverse solver,

– an instrument for testing experimental design.

The choice of methods and design solutions for this software is mainly deter-

mined by the applications described above and common practices in the field. One

of the major requirements imposed on the framework is to ensure that it is portable,

i.e. works the same on various hardware platforms. Portability is dictated by the

fact that the framework is intended to be open-source and, therefore, is likely to be

used on different computing systems. In addition to being portable, the code has

to be reusable and easily modifiable. These requirements will allow for adding of
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new methods with a minimal programming effort. Another important requirement

is to produce a parallel code. The necessity to run simulations in parallel follows

from the size of problems that come from reflection seismology (both memory and

computational time demands exceed capabilities of a stand-alone desktop). Finally,

I use FD methods, since they are the most widely accepted in reflection seismology

as a relatively accurate and efficient way to solve the wave equation.

A lot if software for seismic numerical simulations exist. However, there are no

known open-source codes that are (a) parallel, (b) capable of supporting variable

accuracy, (c) flexible enough for adding new methods. My software is intended to fill

this gap.

1.2 Finite-Difference Methods

Main challenges associated with developing an efficient and accurate wave propa-

gation simulator come from the input data. Reflection seismology generates input

data that can easily run into terabyte range and beyond resulting in an extremely

computationally intensive problems. The highly heterogeneous nature of these data

impacts the accuracy of the solution. FD methods have become an industry standard

in reflection seismology, since they provide good computational speed for required

accuracy. In addition, physical domains that result from geoscience applications are

characterized by simple geometries perfectly suitable for discretization by FD grids.

Finally, in most cases FD methods are relatively easy to implement (compared, for

instance, to finite element/volume methods).

Computational framework described in this thesis is aimed at explicit FD methods.

In explicit FD methods, the solution at the next time step can be directly computed

from the solution determined at the previous times. Implicit FD methods require
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solving a linear system at each time step. Although implicit schemes generally possess

better stability properties and impose no constraints on the size of the time step, they

are usually much more computationally intensive than explicit schemes. As a result,

application of implicit methods to large-scale problems becomes prohibitive and is

usually avoided. In the discussion that follows, I focus on explicit methods.

The first theoretical results for FD methods go back to 1928 and the famous paper

of Courant, Friedrichs, and Lewy [5], in which the authors established a necessary

condition for convergence of FD methods. They showed that the time step must be

proportional to the space step in order for the FD solution to converge to the solution

of the partial differential equation (PDE). General theory for FD methods for the

approximation of various kinds of initial-value problems is given in [7]. The book

contains material necessary to understand the concepts of stability, consistency, and

convergence, provides description and analysis of the most widely used FD methods,

and highlights the difficulties associated with approximation of PDEs by FD methods.

One such difficulty is a grid or numerical dispersion, a phenomenon that produces

parasitic waves around the solution. If numerical grid is too coarse, waves generated

by the discrete system have different velocity from the velocity of the waves produced

by the continuous system. Numerical dispersion depends on the frequency of the wave

and the direction of wave propagation. Waves that correspond to higher frequencies

and/or propagate along the grid axes are subject to bigger errors in the velocity.

The effect of numerical dispersion can be reduced by ensuring that grid spacing is

sufficient to resolve the minimum wavelength. The minimum number of grid points

per wavelength is different for different FD schemes. For example, second order in

space and time (2-2) scheme requires at least ten grid points per wavelength [1].

This requirement on spatial sampling imposes a serious constraint on the size of the

problem that can be handled numerically and limits the application of low-order
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schemes. For example, typical size of the domain of interest in reflection seismology

is at least 100 wavelengths is each spatial direction. If 10 grid points per wavelength

is needed to minimize dispersion, we arrive at the discrete problem of size 109 grid

points in three dimensions. Since low-order schemes take at least 20 floating point

operations (FLOP) per grid point, the number of FLOP at each time step is 2 · 1010.

At least 104 time steps is usually taken per seismic survey and as many as 5 · 104

surveys may be considered. Therefore, the total number of FLOP is 1019, which

would result in computational time of 1010 seconds on a 1 GFLOPS desktop, which

is approximately 300 years.

Staggered-grid FD schemes usually require fewer grid points per wavelength than

regular-grid schemes of the same order. The framework described in this thesis is

aimed at both staggered- and regular-grid schemes. Staggered schemes turned out

to be particularly advantageous when applied to the elastic wave equation for sev-

eral reasons. First, staggered schemes are stable for all values of Poisson’s ratio,

while regular-grid schemes fail to provide a stable approximation for the materials

characterized by high Poisson’s ratio [9]. Futher, the dispersion relation is also inde-

pendent of the Poisson’s ratio. This insensibility to the Poisson’s ratio makes stag-

gered schemes ideal for mixed acoustic-elastic media typical for marine exploration

problems. Finally, staggered-grid approach allows avoidance of differentiation of the

material parameters making the resulting approximation more accurate and computa-

tionally efficient than a regular-grid approximation. A second order in time and space

staggered scheme for the elastic wave equation was first presented by Virieux in [8]

and [10] along with stability and dispersion analysis and numerical experiments that

validated the theoretical results. Fourth-order extension of this approach was devel-

oped by Levander in [6]. His analysis indicates that the fourth-order approximation

requires only five grid points per wavelength to minimize the effect of dispersion.
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In general, increasing the order of the numerical scheme leads to decreasing dis-

persion in case of both regular and staggered grids. The framework allows for im-

plementation of schemes of any order in time and space. Higher-order methods were

studied by many authors; see [4], [3] and references cited therein. However, the effort

is usually concentrated on higher-order in space methods, since a standard Taylor

series approach to construction of higher-order in time FD approximations usually

leads to unstable approximations. Stable higher-order in time schemes can be derived

using the modified equation approach which consists of replacing time derivatives

with spacial derivatives and discretizing the latter [4]. In one of the first papers on

higher-order FD schemes [1], the authors presented a second order in time and fourth

order in space (2-4) regular-grid scheme that requires half as many grid points per

wavelength as correspondent 2-2 scheme. This reduction in spatial sampling leads to

significant savings in FLOP and computer memory that justify the cost increase asso-

ciated with application of higher-order finite differences. Nonetheless, the savings are

not sufficient to ensure the solution of large scale problems that result from reflection

seismology in feasible computational time. Namely, if the number of grid points per

wavelength is reduced from ten to five, the computational time for a single desktop in

the example above reduces from 300 to 20 years. Therefore, given the current state

of computer technology, the only feasible way to model large-scale three-dimensional

wave propagation is to employ high performance computers.

1.3 Hardware and Software

The code described in this thesis is designed to work on distributed and/or shared

memory systems that have ISO C90 compiler with Message Passing Interface (MPI)

library and, possibly, OpenMP language extension.
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Distributed memory system or cluster is a collection of nodes based on commodity

processors (CPU) and interconnected by fast local area networks. Each node owns

CPU(s) and RAM and cannot access other nodes’ memory directly. A node that

consists of several cores which use the same memory is referred to as a shared memory

system. A cluster with multicore/multiprocessor nodes can be viewed as a hybrid

(distributed+shared memory) system.

Most of today’s clusters use Unix/Linux operating systems and can be programmed

with standardized computing languages, for example, FORTRAN, C, C++. At a soft-

ware level, communication between processors is implemented via language extensions

and/or libraries. MPI library provides convenient FORTRAN, C and C++ bindings

and is now supported by most of the cluster platforms. Therefore, the software writ-

ten in the listed above languages with MPI is portable. Other advantages that make

MPI-based parallelization approach favorable are:

• MPI has long history (20 years including similar software tool PVM),

• MPI will be around for a long time (all new platforms and roadmaps),

• MPI is very scalable (more than 100K cores),

• MPI supports hybrid models.

There are several software technologies that allow for shared memory program-

ming: POSIX Threads library for C/C++ in UNIX-like environments, specialized

languages (e.g. Cilk), Intel Thread Building Blocks library for C++, OpenMP com-

piler extensions for FORTRAN, C, C++, etc. Among these, I chose OpenMP since

(a) it allows for a simple parallel loop implementation essential for FD-based computa-

tions, (b) it is portable: compilers that do not support OpenMP ignore its directives.
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Some of the HPC systems (or cluster nodes) can be equipped with accelerators.

Accelerators are dedicated processors capable of performing specialized computations

very efficiently. Although a variety of accelerating technologies (GPGPUs, FPGAs,

etc.) is currently available, the uniform standard for programming these accelerators

has not been developed. As a result, special programming tools are required for each

type of accelerating hardware. This lack of standardization makes developing portable

accelerator software currently impossible. Since portability requirement is one of the

major requirements for the framework, I do not consider support of accelerators in

this work.

When MPI-based program runs on a cluster, the same copy of the program is

executed on each processing unit. Program copy can identify itself by acquiring

a unique index called rank. Each copy performs specific actions based on its rank.

With the introduction of the multicore processors, more than one copy of the program

is executed on one processor. I will use the term Processing Element (PE) to identify

single unit running one copy of the program. For example, PE can be a processor, a

core, or an OS process (if several copies are running on a single core).

The most efficient approach to parallelization of finite difference methods is do-

main decomposition. In the domain decomposition, each PE assumes ownership over

a portion of the physical domain and is responsible for computing the solution over

this portion. PEs which contain adjacent portions of the domain are called neighbors.

The solution at points located near the boundaries of the subdomain depends on the

information stored on the neighboring PEs. Therefore, each PE needs to exchange

data with its neighbors and to allocate memory for storage of the additional infor-

mation. The amount of the data that needs to be exchanged depends on the finite

difference scheme and partition of the domain. My framework allows for automatic

exchange and allocation of memory based on the size of the finite-difference stencil
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provided by the user.



Chapter 2

Software Framework

2.1 Introduction

This chapter describes the architecture of the software framework: concepts, datatypes

and methods, and workflow. My main goal in this work is to design a forward sim-

ulator software which would allow for easy implementation of parallel FD schemes.

I achieve this goal by implementing a set of tools, i.e., specific data structures and

methods, that provide functionalities common for all parallel FD schemes. These tools

have been carefully designed and thoroughly tested and should be used as building

blocks for implementation of numerical models and methods described in Chapter 1.

The intent of the framework is to spare the user the necessity of implementing

underlying and unrelated to the numerical model/method functionalities, such as

data storage, data exchange between processors, parameter input and output, etc.

Implementation of these functionalities is often more complicated and error-prone

than the implementation of the numerical method itself. Therefore, by providing

well-designed and well-tested software framework and tools targeted for parallel FD

schemes, I greatly reduce user’s effort and time required to architecture, implement,
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and produce error-free new numerical models and schemes.

Tools provided by the framework can be subdivided into several groups. One

group consists of datatypes, methods, constants and variables that play an auxiliary

role and are used by different parts of the framework as well as by a user in his

implementation of a particular model. This group includes error codes, primitive

datatypes (such as floating point (real) type and multiindex type), global constants

(such as maximum number of space dimensions), input/output (I/O) functions (such

as input data parser).

Second group is a set of datatypes that naturally describe the components of the

uniform-grid FD method. These are multidimensional array and domain (collection

of arrays). These datatypes provide all necessary functionalities and can be used by

a user without modifications or extensions.

Third group is a set of “template” (or abstract in object-oriented language)

datatypes that provide some common functionalities but need to be extended for

each particular model/method. These include stencil, terminator, and model. The

model datatype is the encompassing datatype which contains all the information

about a particular numerical method.

Finally, there is a driver. Driver contains the main() function. It initializes the

model and runs the timestep loop. Currently provided driver is somewhat coupled to

the staggered FD scheme, which I implemented, and will require some modifications

for other numerical schemes. This is a drawback of the current version of the code, as,

ideally, the driver should use abstract methods of the model datatype (implemented

in particular models) and be independent of the model realizations.

In order to use the framework a user needs to know how to:

1. extend existing template datatypes (such as stencil, terminator, model),
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2. implement model/method-specific functionalities (such as time-step functions,

boundary conditions functions),

3. modify the driver.

In the following sections, I discuss each of the groups mentioned above and provide a

roadmap for adding a new model/method to the framework. In Section 2.3, I describe

basic structures and auxiliary constructs. In Section 2.4, I introduce a simple model

and use it to illustrate the issues that a user needs to resolve when adding a new

model/method to the framework. Sections 2.5 and 2.6 discuss datatypes that describe

multidimensional arrays and timestep functions. Section 2.7 provides an overview of

automated data exchange and related framework tools. Finally, in Section 2.8, I

discuss the timestep loop and the concept of terminator.

2.2 Object-oriented Approach

The framework datatypes are implemented in the “object-like” fashion. Each datatype

serves one particular functionality and is implemented as a C structure that holds

corresponding data and methods (functions) that operate on this structure. The pair

structure-methods can be considered as an object, i.e., an entity that encapsulates

data storage and functionality. All the “object-like” datatypes have methods that

perform common tasks. The most important are initialization of the datatype and

its deinitialization. Since in C there is no notion of objects and automatically called

methods, such as constructor and destructor, it is the responsibility of a user to ini-

tialize datatype variable after the declaration and to deinitialize the variable before

it goes out of scope. Some datatypes provide functionality that can be extended

by a user. Such extensions resemble class inheritance of object-oriented languages.



13

Datatypes that allow extension contain a void *spec pointer. By default (in the

base datatype) spec pointer is NULL. If the user needs to extend the datatype, he

uses this pointer to reference the extended datatype.

2.3 Auxiliary Constructs

In this section, I discuss basic datatypes and library functions that are used through-

out the framework.

• Real datatype allows to switch between floating point modes in the entire frame-

work based on the compiler variable DT_REAL defined in the utils.h:

#define DT_REAL DT_FLOAT /* Define real as float. */

#define DT_REAL DT_DOUBLE /* Define real as double. */

In other words, the real datatype is an alias for float or double. Along with

the real datatype, other various related constants (REAL_NAN, REAL_EPS, etc.)

and types (IWAVE_MPI_REAL) are defined in utils.h.

• Multi-dimensional integer and real point types represent indices in multi-dimensional

arrays and real vectors:

typedef int IPNT[RARR_MAX_NDIM];

typedef real RPNT[RARR_MAX_NDIM];

Here RARR_MAX_NDIM describes the maximum number of dimensions supported

by the framework (typically 3). These point types are supplied with assignment

operators.
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• Input parser reads input data from a file, string or the command line and

decomposes the input into a set of records represented by a datatype PARARRAY

declared in the parser.h. Each record has a structure key = value and a

user can query data values based on the key values. PARARRAY comes with a

constructor, destructor, and query functions (e.g., “does the object contain a

key?”, “how many times is a key encountered?”). Once the PARARRAY object has

been created and loaded with key = value records, the user can call the query

functions and get values that correspond to the key. If the key is not found or

the value cannot not be converted to the requested type, the query returns the

error code. If multiple values with the same key are encountered, the last value

is returned. The parser recognizes comments. The current comment symbol "

and separator = can be redefined in the utils.h file.

• File utils.h contains definitions of the following global constants and functions:

– integer error codes returned by most of the framework functions,

– maximum number of the dimensions of multidimensional array datatype

and maximum number of arrays in the domain datatypes (see Section 2.5

for detail):

#define RARR_MAX_NDIM 3

#define RDOM_MAX_NARR 20

– function that returns global output stream:

FILE* retreiveOutstream();

– functions that return world communicator, rank, and size:

MPI_Comm retreiveComm();
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int retreiveRank();

int retreiveSize();

• other constants and methods used internally by the framework. Since the user

does not interact with these constants and methods, we omit their description.

2.4 Model Problem

In this section I present a model problem which I will use to describe the main steps

that a user has to make in order to implement a new model/method. Consider the

following formulation of the acoustic wave equation in terms of pressure and velocity:

1

κ(x)

∂p(t,x)

∂t
= −∇ · v(t,x) + f(t,x), (2.1)

ρ(x)
∂v(t,x)

∂t
= −∇p(t,x), (2.2)

where x ∈ R
2, t ∈ [t0, T ], κ and ρ denote the bulk modulus and density, respectively,

and f is a source of acoustic energy. The second-order in space and time numerical

approximation of problem (2.1)–(2.2) is given by the following equations:

pn
i,j = pn−1

i,j −
κi,j∆t

hx

(

u
n−1/2

i+1/2,j − u
n−1/2

i−1/2,j

)

(2.3)

−
κi,j∆t

hy

(

v
n−1/2

i,j+1/2
− v

n−1/2

i,j−1/2

)

+ ∆tf
n−1/2

i,j ,

u
n+1/2

i+1/2,j = u
n−1/2

i+1/2,j −
ρi+1/2,j∆t

hx

(

pn
i+1,j − pn

i,j

)

, (2.4)

v
n+1/2

i,j+1/2
= v

n−1/2

i,j+1/2
−

ρi,j+1/2∆t

hy

(

pn
i,j+1 − pn

i,j

)

, (2.5)
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where ∆t is the time step, hx and hy denote spatial steps in x- and y-directions,

respectively, and grid values are defined as follows (see Figure 2.1):

pn
i,j = p(t0 + ∆tn, x0 + hxi, y0 + hyj), (2.6)

u
n+1/2

i+1/2,j = u(t0 + ∆t(n + 1/2), x0 + hx(i + 1/2), y0 + hyj), (2.7)

v
n+1/2

i,j+1/2
= v(t0 + ∆t(n + 1/2), x0 + hxi, y0 + hy(j + 1/2)). (2.8)

FD method (2.3)–(2.5) provides evolution equations that trace physical states (2.6)–

(2.8) from one point in time to another. Numerical implementation of such a FD

scheme is based on two major concepts: data storage and the timestep function. The

timestep function is represented by TIMESTEP_FUN type, described in Section 2.6. As

indicated by equations (2.3)–(2.5), an object of type TIMESTEP_FUN depends on the

physical states at previous time iterations and input data. Physical variables and

input data are stored in the multidimensional arrays described by RARR datatype.

The number of physical state arrays and input data arrays depends on a particular

problem and an FD method used to discretize the problem. Therefore, for a particular

model a user determines the number of data arrays used in this model. These arrays

constitute the domain described by RDOM type, which a user also needs to define. In the

following section, I explain how to create objects of type RARR and RDOM, introduce

their members, and describe a set of library functions that allow to conveniently

manipulate such objects.

2.5 Base Structures: RARR, RDOM

The main advantage of the object of type RARR provided by this framework is that

it allows to create subarrays or virtual arrays. The concept of virtual array is ex-
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Figure 2.1: Two-dimensional staggered grid. Circle stands for pressure grid point, plus and
cross refer to horizontal and vertical velocity grid points respectively.

tremely useful in the context of domain decomposition. In the domain decomposition

approach, each PE allocates memory for the solution over its own subdomain. In

order to store information from the neighboring PEs, each PE is required to allocate

additional arrays of memory (ghost cells) along the subdomain edges. While data in

the PE’s subdomain area is updated differently from the data in the ghost cell areas,

these areas represent parts of the same array. Efficient implementation should avoid

unnecessary replication and copying of these data. We achieve this by using virtual

arrays. Subarray or virtual array can be manipulated in exactly the same way as

a parent array, but rather than allocating its own memory, virtual array refers to a

subset of memory allocated by a parent array. Mathematical equivalent of a virtual

array is a subset of values of a grid function. Figure 2.2 shows pressure arrays on two

neighboring PEs and their virtual subarrays.

Each array is uniquely determined by its size and a pointer to its beginning. The

members of an object of type RARR are

• ndim, which specifies the number of dimensions of a space that holds a physical
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variable,

• two pointers *_s0 and *_s,

• and an array of INFODIM structures _dims[RARR_MAX_NDIM].

Each i-th (i = 0, 1, 2) entry of _dims provides information about i-th dimension of

RARR array. The structure INFODIM has the following fields:

int n;

int gs;

int ge;

int n0;

int gs0;

int ge0;

All the array fileds ending with 0 refer to the parent or allocated array. Array fileds

without 0 in the end describe the virtual subarray of the parent array. Here n is the

size, and gs and ge are the global start and end indices along the dimension, respec-

tively. Variables n, gs, ge and n0, gs0, ge0 are related by the following equations:

n = ge − gs + 1, n0 = ge0 − gs0 + 1.

The framework provides several options for allocating an object of type RARR. In

all cases, a user has to provide the dimension of the physical space ndim and one of

the following:

(a) the coordinates of the beginning of the array gs0 and its length n0

int ra_create_s(RARR *arr, int ndim, IPNT gs0, IPNT n0),

(b) the coordinates of the end of the array ge0 and its length n0
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Figure 2.2: Virtual arrays.

int ra_create_e(RARR *arr, int ndim, IPNT ge0, IPNT n0),

(c) the coordinates of the beginning and end of the array gs0 and ge0

int ra_create(RARR *arr, int ndim, IPNT gs0, IPNT ge0).

Memory allocation can be delayed. The following functions store array information

without allocating memory:

int ra_declare_s(RARR *arr, int ndim, IPNT gs0, IPNT n0),

int ra_declare_e(RARR *arr, int ndim, IPNT ge0, IPNT n0),

int ra_declare(RARR *arr, int ndim, IPNT gs0, IPNT ge0),

and function

int ra_allocate(RARR *arr),
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which can be used to allocate memory later.

When any of the functions described in the previous paragraph is called, the

virtual array pointer *_s is set equal to the parent pointer *_s0. Virtual array can

be created by resetting pointer *_s based on the information about virtual array’s

length n and its start and end coordinates gs and ge:

int ra_greset_s(RARR *arr, const IPNT gs, const IPNT n),

int ra_greset_e(RARR *arr, const IPNT ge, const IPNT n),

int ra_greset(RARR *arr, const IPNT gs, const IPNT ge).

In some cases, it is more convenient to create a virtual array by providing offsets of

its coordinates relative to the start and end coordinates of the parent array:

int ra_offset_s(RARR *arr, const IPNT os, const IPNT n),

int ra_offset_e(RARR *arr, const IPNT oe, const IPNT n),

int ra_offset(RARR *arr, const IPNT os, const IPNT oe).

The framework also provides a function that performs deallocation of RARR:

int ra_destroy(RARR *arr).

Once an object of type RARR is created, the data stored in this object can be

accessed directly or via library functions ra_get and ra_set. The advantage of the

get/set functions is that they perform bound check on the access index. If the access

index is out of array’s bounds, these functions write an error message into the output

stream and exit. In addition to the functions that allow access to the data stored in

RARR, there are library functions that access RARR’s members ndim, gs, ge, and n:

int ra_ndim(RARR *arr, int *ndim),

int ra_gse(RARR *arr, IPNT gs, IPNT ge),

int ra_size(RARR *arr, IPNT n).
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Finally, there are several functions that provide formatted and binary output of RARR’s

data into an output stream.

As we mentioned above, a collection of RARR objects forms a structure called RDOM

which comes with its own set of library functions. RDOM’s library functions fall into

four distinct categories:

1. declare/allocate/destroy functions,

2. functions that allow to create virtual subdomains,

3. functions that provide access to RDOM’s members,

4. functions that provide access to the data stored in RDOM arrays.

Since syntax of RDOM’s library functions is very close to the syntax of RARR’s functions,

I will not go into any further details.

2.6 Timestep Function

Once the user has defined the number of multidimensional arrays and has created

an RDOM, he needs to implement a timestep function. The framework provides the

following type to describe a pointer to the timestep function

typedef int (*TIMESTEP_FUN)(RDOM *dom, int iarr, int it, void *pars);

The variable of this type is stored in IMODEL object:

typedef struct IMODEL {

...

TIMESTEP_FUN ts;

void *tspars;
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...

} IMODEL;

The first input parameter dom of the timestep function is a pointer to the compu-

tational domain. The index of the array that has to be recomputed is described by

the second input parameter iarr. The iteration number is given by it and *pars is

a parameter list for a FD method. Parameter list *pars is used to store additional

information specific to the FD method, such as CFL number, boundary computation

flags, etc. Therefore, the user is responsible for defining such a parameter list.

2.7 Automated Data Exchange

In order to organize the automated data exchange the user needs to:

• break up global physical domain into subdomains according to number of PEs

provided by the driver;

• provide a stencil, which is used as a basis for computing exchange arrays.

Based on the domain decomposition and stencil, the driver:

• computes the sizes of exchange areas and prepares parent and virtual arrays,

• creates datatypes that will be used in MPI exchanges.

As mentioned above, the decomposition of the physical domain into subdomains

has to be defined by a user based on the number of PEs supplied as an input param-

eter. In my implementation, the user may specify the MPI process decomposition

in one, two, or three dimensions. Ideally, domain decomposition should be defined

in such a way, that the optimal load balancing is achieved. Current version of the
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code provides uniform domain decomposition for staggered FD schemes of the second

order in time and 2k-th order in space (k = 1, . . . , 7).

Once the driver has the domain decomposition information, it can compute the

size of the local computational array on each PE. However, in order for each PE to

compute the solution over its local subdomain, one must allocate additional arrays of

memory known as ghost cells, to store data from neighboring PEs along the edges of

the computational subdomain. In order for the driver to determine the sizes of ghost

areas, the user has to provide a FD stencil. In the following section, I describe the

stencil datatype and explain how to create new stencils using second-order in space

scheme as an example.

2.7.1 Stencil Datatype

FD stencil is a template that shows which grid points participate in the update of

the given target point. In general, a FD scheme may have more than a single stencil.

For example, for 2-2 FD scheme (2.3)–(2.5) we can define three stencils, one for each

variable. Figure 2.3 shows a 2-2 staggered FD stencil for horizontal velocity. Two

pressure nodes around the horizontal velocity node participate in the update of this

node.

Figure 2.3: Stencil example.

In IMODEL, the collection of FD stencils is represented by a structure called

STENCIL, which consists of array of STENCIL_MASK structures. Structure STENCIL_MASK

describes the relative positions of the target point and participating grid points using

the following data fields:
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int ir,

int ip,

int n,

IPNT *_s,

where ir and ip refer to the indices of the target and participating data arrays in

the RDOM structure, and array *_s of length n stores the position of participating

grid points relative to the target point. For example, for horizontal velocity stencil

described in Figure 2.3, the values of the STENCIL_MASK are:

ir = 2, ip = 0, n = 2, *_s = {(0,0), (1,0)}.

As with all of the framework structures, STENCIL_MASK and STENCIL come with

the set of library functions:

• constructors and destructors,

• access methods.

The current version of the code provides stencils for 2-2k staggered FD schemes.

In order to create a new stencil, which is stored in the IMODEL object as STENCIL sten;

variable, the user needs to

• define number of stencil masks nmask and call the

sten_create(STENCIL *sten, int nmask) method to allocate the stencil,

• loop over stencil masks and for each mask:

– allocate the stencil mask,

– fill the mask with pairs of target and participating arrays’ indices,

– store stencil mask in the stencil.
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2.7.2 Ghost Areas Computation

Once the user has provided a stencil, the driver calculates the sizes of the ghost cell

areas and prepares exchange virtual arrays.

Figure 2.4 illustrates the calculation of the ghost cell areas based on the horizontal

velocity stencil shown in Figure 2.3. Blue circles and pluses represent local pressure

and horizontal velocity arrays that have to be updated on a given PE. Applying hori-

zontal velocity stencil, we see that in order to update boundary horizontal velocities,

we need pressure values from neighboring PEs. Namely, we need one additional pres-

sure value (or half of all pressure values involved in the stencil) for each velocity that

lives near the boundary. Therefore, the driver can compute the size of the ghost cells

for horizontal velocity based on stencil’s half-length and the size of the local domain.

Note that an array may participate in stencils for different target arrays, for

example, the pressure array participates in the stencils for the horizontal and vertical

velocities. Thus, the size of the pressure array that needs to be allocated on a PE is an

envelope of ghost areas derived from all stencils in which pressure array participates.

Once the information about the sizes of ghost cells is available, the driver allocates

memory on every PE and prepares computational, frame, and central virtual arrays.

1. Computational virtual array contains all the points that have to be recomputed

at each timestep.

2. Frame covers the area that has to be sent to PE’s neighbours. To prepare

frame virtual arrays, neighbors exchange information about the sizes of their

ghost areas.

3. Central virtual array is a set difference between computational virtual array

and the frame. This decomposition of the computational array allows for asyn-
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Figure 2.4: Ghost area computation example.

chronous (non-blocking) data exchange mode in which communication occurs

concurrently with data update. In the non-blocking exchange mode the frame

is updates first. Then MPI communications are started. While MPI communi-

cations are carried out by the system the central array is updated.

Typical 2D array layout example is presented in the Figure 2.5. Blue area corresponds

to the local computational array. Green areas are ghost arrays and their envelope

(allocated array) is shown using dashed line. Four diagonally hatched rectangles form

the frame area that will be sent to the neighbour processes. The central virtual array

is a cross hatched rectangle.

Due to the fact that exchange arrays are virtual, they may not be laid out con-

tiguously in memory. In order to organize exchange of non-contiguous data, I create

necessary MPI datatypes stored in EXCHANGEINFO structure. EXCHANGEINFO struc-

ture contains the pointer void *buf to the beginning of the exchange virtual array

and two variables MPI_Datatype type, type2. The variable type contains the MPI
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Figure 2.5: Virtual array layout.

datatype corresponding to a 3D virtual array that is exchanged during the MPI com-

munications. It is based on the 2D slice of the array, which is stored in the type2

variable. Function int ra_setexchangeinfo(RARR *arr, EXCHANGEINFO *einfo)

is used to construct exchange information for virtual arrays. It takes virtual array

arr as an input and initializes corresponding output variable einfo.

2.8 Timestep Loop and Terminators

The timestep loop is organized as a while loop, in which the terminating condition

is determined by a query to a terminator object. The concept of terminator was

introduced by T. Padula (REF TO THESIS) and the data stucture was implemented

in my framework by Dr. W. W. Symes. The terminator data structure is another

“template” data structure, which needs to be extended by a user. The main function

of a terminator is int (*query)(IMODEL * m, struct TERM * t), which is called

before each timestep. If query function returns 0, the timeloop is terminated. Sim-

ilarly to the timestep function, terminators are used to carry out actions that need
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to be performed each time step. However, as opposed to the timestep function, ter-

minator actions may be different from one time step to another. For example, source

terminator is used to add source functions to the discrete equations. Since source

function may have finite support in time, source terminator may become inactive

after some number of iterations. Current version of the code provides the following

terminators:

• trace terminator that records traces at specified space locations at every time

step;

• movie terminator that records snapshots of the solution at specified time inter-

vals;

• source terminators for the pressure-velocity formulation of the acoustic wave

equation:

– point constitutive defect,

– point dilatational source,

– homogeneous initial value data for radiation solution.

The time dependent part of all three source functions is calibrated to produce Ricker

pulse of given amplitude at given distance from the source.

Various terminators are joined together by the ORTERM datatype. When the query

function of the ORTERM is called, it queries all included terminators and returns 0 if

all the terminators vote to stop the timestep loop.



Chapter 3

Numerical Experiments

In this chapter, we study the parallel performance of the code by analyzing its

speedup. In parallel computing, speedup (sometimes called strong speedup) measures

how much a parallel algorithm is faster than a corresponding sequential algorithm.

Speedup is defined by the following formula:

Sp =
T1

Tp

,

where p is the number of PEs, T1 is the execution time of the sequential algorithm,

and Tp is the execution time of the parallel algorithm with p PEs. Linear or optimal

speedup is obtained if Sp = p. An algorithm with linear speedup runs two times

faster every time when the number of PEs is doubled.

Numerical experiments described in this section were performed on two different

platforms:

1. Cray XD1 distributed memory research cluster (ADA, Rice University, Hous-

ton, http://rcsg.rice.edu/ada/int) with 316 Dual-core AMD Opteron 275

(2.2GHz) processors (632 cores total). A single node includes 2 processors (4
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cores) and 8GB of local RAM. The nodes are connected by Cray “RapidArray”

interconnect based on Infiniband. Linux (2.6.5 kernel) operating system and

GNU C++ compiler (version 4.1) were used.

2. SGI Altix 4700 shared memory NUMA system (POPLE, Pittsburgh Supercom-

puting Center, http://www.psc.edu/machines/sgi/altix/pople.php) with

384 Dual-core Intel Itanium 2 Montvale 9130M processors (768 cores total). A

single node includes 2 processors and 8GB local RAM. The nodes are connected

by SGI NUMAlink interconnect. Linux (2.6.16 kernel) operating system and

Intel C++ compiler (version 10.1) were used.

Tables 3.1 and 3.2 summarize observed timing results (in seconds) for a non-

homogeneous medium of size 3000×3000×3000 m3 discretized into 480×480×390 ≈

90 · 106 grid blocks and 500 time steps (final simulation time is 329 ms).

Each table shows timing results for a second-order in time and space and second-

order in time tenth-order in space FD scheme. For each scheme, I tested two config-

urations:

1. one PE per node, i.e. the number of nodes is equal to the number of PEs.

2. one PE per core, i.e. all four MPI processes are executed on each four-core

node.

In all experiments I used MPI blocking data exchange. The first column of each

table specifies the number of MPI processes. Next four columns (2-5) correspond

to the second order in time and space FD scheme, and the last four columns (6-9)

correspond to the second order in time and tenth order in space FD scheme. For each

FD scheme, the first two columns show wall time of the timestep loop (excluding

setup phase) and speedup coefficient for the first configuration (process per node).
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The next two columns contain wall time and speedup for the second configuration

(process per core).

np
2-2 2-10

configuration 1 configuration 2 configuration 1 configuration 2
time speedup time speedup time speedup time speedup

1 3157 - 3157 - 8684 - 8684 -
2 1631 1.9 1690 1.9 4509 1.9 4833 1.8
4 812 3.9 961 3.3 2321 3.7 2406 3.6
8 527 6.0 554 5.7 1519 5.7 1550 5.6

16 287 11.0 289 10.9 792 11.0 804 10.8
32 188 16.8 189 16.7 534 16.3 541 16.1
64 101 31.3 101 31.3 282 30.8 280 31.0

128 63 50.1 63 50.1 176 49.3 176 49.3
256 - - 39 81.0 - - 112 77.5
512 - - 22 143.5 - - 65 133.6

Table 3.1: ADA timings. NP stands for number of MPI processes, 2-2 refers to the second
order in time and space FD scheme, 2-10 refers to the second order in time and tenth order
in space FD scheme, configuration 1 and configuration 2 represent one process per node
and one process per core configurations respectively. T is a walltime (in seconds), S is a
speedup.

Figures 3.1 and 3.2 show speedup graphs for ADA and SGI experiments respec-

tively. The x-axis represents number of MPI processes on the logarithmic scale, the

y-axis represents the speedup on the logarithmic scale.

We can see from Tables 3.1 and 3.2 that our parallel code scales well and time

taken by the time step loops drops significantly every time when we increase the

number of PEs. Comparing timing results for 2-2 and 2-10 schemes, we see that

although 2-10 scheme runs two times longer than the 2-2 scheme, it has very similar

scaling properties. We conclude that the speedup is independent of the order of the

scheme.

In general, wall times in Tables 3.1 and 3.2 show that experiments on SGI archi-

tecture scale better and run approximately three times faster than experiments on
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np
2-2 2-10

configuration 1 configuration 2 configuration 1 configuration 2
time speedup time speedup time speedup time speedup

1 1037 - 1037 - 2389 - 2389 -
2 537 1.9 705 1.5 1224 2.0 1447 1.7
4 268 3.9 580 1.8 616 3.9 1039 2.3
8 158 6.6 313 3.3 358 6.7 459 5.2

16 82 12.6 155 6.7 191 12.5 251 9.5
32 43 24.1 79 13.1 104 23.0 118 20.2
64 26 39.9 43 24.1 65 36.8 73 32.7

128 13 79.8 22 47.1 39 61.3 39 61.3
256 - - 12 86.4 - - 22 108.6
512 - - 6 172.8 - - 14 170.6

Table 3.2: SGI timings. NP stands for number of MPI processes, 2-2 refers to the second
order in time and space FD scheme, 2-10 refers to the second order in time and tenth order
in space FD scheme, configuration 1 and configuration 2 represent one process per node
and one process per core configurations respectively. T is a walltime (in seconds), S is a
speedup.

ADA.

On the SGI architecture, we notice significant difference in wall times between the

first and the second configurations, especially for the 2-2 FD scheme. This is related

to the limited bus capacity of the system. Four processes running on the same node

cannot receive data from memory with sufficient speed, which results in idling. At the

same time, when running one process per node, the process recomputes four time less

data while using the same bus capacity. For this reason speedup between one and four

processor in the one process per core configuration is far from optimal. The speedup

coefficients are 1.8 and 2.3 for 2-2 and 2-10 schemes compared to 4.0 optimal speedup.

As the number of nodes gets doubled, speedup improves for both configurations and

both schemes. The speedup coefficients are from 90 to 96, compared to optimal 128.

On the ADA cluster, bus capacity has less effect on the speedup coefficient, but

in general speedup coefficients are not as good as ones for SGI, because MPI data
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exchange on SGI is faster due to better interconnect between nodes.

I also performed the same tests on ADA using non-blocking MPI exchange mode.

The overall timings and speedup coefficients did not differ between two exchange

modes.

Staggered grid FD schemes implemented in my thesis work allow for OpenMP

parallelization on shared memory architectures. In my tests I did not observe any

significant difference in the computational times between MPI-based, OpenMP-based,

or hybrid parallelization on ADA cluster.

Figure 3.1: ADA speedups. Number of processors is shown on the horizontal axis, log2 Sp

is presented on the vertical axis, where Sp is a speedup on p processes; 2-2 refers to the
second order in time and space FD scheme, 2-10 refers to the second order in time and tenth
order in space FD scheme, Config. 1 and Config. 2 represent one process per node and one
process per core configurations respectively.
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Figure 3.2: SGI speedups. Number of processors is shown on the horizontal axis, log2 Sp is
presented on the vertical axis, where Sp is a speedup on p processes; 2-2 refers to the second
order in time and space FD scheme, 2-10 refers to the second order in time and tenth order
in space FD scheme, Config. 1 and Config. 2 represent one process per node and one process
per core configurations respectively.

In the next paragraph I describe results of the weak speedup tests on ADA. Weak

speedup is assessed by doubling problem size each time the number of PEs p is

doubled and comparing execution times Tp. Since the ratio between problem size and

the number of PEs stays constant, the theoretical optimal weak speedup is achieved if

execution times do not change: T1 = T2 = . . . = TN There is an important difference

between weak and strong speedup tests. For many parallel algorithms, including

my implementation of FD methods, the size of the exchanged data is proportional

to the size of the boundary (surface) of the local domain. At the same time, the
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amount of local computations is proportional to the volume of the local domain.

Thus, when measuring strong speedup, the ratio between amounts of the exchanged

and recomputed data increases as the number of PE grows. For weak speedup tests,

this ratio does not change. Since each PE exchanges data only with neighboring PEs

and the number of neighbors does not depend on the total number of PEs, the weak

speedup should normally to be closer to the optimal, than the strong speedup.

Tables 3.3 presents results of the weak speedup tests on ADA cluster. The setup

is similar to the one used in the previous tests:

• 3D problem, second order in time and space staggered grid scheme,

• 300 × 300 × 300 local problem size,

• 500 time steps,

• one PE per node configuration.

There is a better than optimal weak speedup between one and four processors. I do

not have any reasonable explanation to this speedup and leave it to the reader.

np total problem size time
1 300 × 300 × 300 1631
2 300 × 300 × 600 1442
4 300 × 600 × 600 967
8 600 × 600 × 600 1111

16 600 × 600 × 1200 1098
32 600 × 1200 × 1200 1109
64 1200 × 1200 × 1200 1104

128 1200 × 1200 × 2400 1108

Table 3.3: ADA weak speedup tests.



Chapter 4

Conclusions

Numerical simulation of seismic wave propagation provides an alternative to highly

expensive and time consuming real experiments. The most popular tool for simulation

of seismic wave propagation is regular grid FD methods. In this thesis, I described a

parallel framework for solving time-dependent PDEs in simple domains using uniform

grid FD methods. To my knowledge, currently there are no open-source codes that

are parallel, flexible enough for adding new methods, optimized and portable.

The main advantage of my software is its reusability. Using predefined extendable

datatypes provided by the framework, a user can add new FD methods with minimal

programming effort. In order to add a new FD method to the framework, the user

needs to

• utilize datatypes that naturally describe the components typical for uniform-

grid FD methods (such as multidimensional arrays, stencils, etc.),

• extend datatypes that provide some common functionalities typical for uniform

FD methods, but need to be modified for a particular method (such as model,

terminator, etc.),
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• implement functionalities specific to a particular FD method (such as timestep

and boundary condition functions),

• modify the driver to incorporate new model/scheme.

In addition to datatypes and methods that facilitate adding new models and numerical

methods, the framework provides tools for automated data exchange between PEs in

a distributed computing system, thus allowing for efficient solution of large-scale

problems.

One of the advantages of my framework is its portability. It is achieved by imple-

menting the framework in standard ISO C language with widely used MPI for data

exchange between PEs in a distributed system.

Based on the framework I implemented a staggered grid solver for the acoustic

equation. The solver includes:

• second order in time and 2, 4, . . . , 14 order in space FD schemes for 1D, 2D,

and 3D problems,

• absorbing and/or reflecting boundary conditions.

The solver was tested on several hardware architectures with up to 512 cores:

RICE Opteron cluster, SGI Altix 4700 system. The main result of these tests is

good performance and very good scalability of the code, regardless of particular FD

schemes used. This shows that the underlying framework does not bring any notice-

able performance drops to the implemented numerical schemes.
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