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Introduction

Focus:
@ review Dong's MS work on “Nonlinear DSO for Plane-waves in
Layered Media”

@ discuss an important revision to the above Nonlinear DS formulation

Remark: the nonlinear DS approach in Dong's thesis is an application of
the Extended Modeling Concept (Symes,2008), which permits a unified
framework for Wl and MVA, and may lead to effective WI.
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Waveform Inversion (WI)

The usual set-up:

@ M : Model Space (possible models of earth structure)
e D : Data Space
e F : M — D : modeling operator (Forward Map)

WI problem:
given d € D, find m € M such that F[m] ~ d

often in the form of Output Least Squares Inversion:

) 2
WILIéle\l/l Jorsg = % | Fm] —d||p + R(m)



Overview of Output Least Squares Inversion

Pros:
@ take into account any physics
@ reconstruct detailed models of subsurface structure
Approaches:
@ Global methods (infeasible)
simulated annealing, genetic method, etc.
@ Local methods (Gradient-related approaches)

Problem Size = Gradient-related approaches

But:

Jors has lots of useless local minima for typical set-up of exploration
seismology

= least squares inversion with any Newton-related approach doesn't work



OLS Inversion: Fundamental Impediment

Jors possess lots of useless local minima (for typical data)
—> Newton-like iteration stagnates at some local minimum
far away from the global one
MEAN-SQUARE ERROR: CONST —~ TEST. MOD

MEAN-SQUARE ERROR

0.0 06 10
H (H = 1: TARGET)

(Symes & Carazzone 92)



Why the proposed strategy matters?

How to turn lots of this ... into this?
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Nonlinear DSO for plane-waves in layered media

@ Problem Set-up
@ One Observation and nonlinear DS Strategy
@ Scan Tests



Constant Density Layered Acoustic Model

Layered Velocity Model ¢(z)
0 3.5

z: depth
s ¢(z): acoustic velocity
u(x, z,t): wave-field potential

depth z (km)

w(t): source time function
i &: slowness

W Mi={c(z):...}

25

0.2 0.4 6 0.8

x(km)u.
Wave Equation for u(z, 2, t):
1 02 0? o?
(o~ 5~ a2 w20 = wl0)3(o.2)
Introduce Slant Stacked field (Radon Transform)

U, 2,t) = /dxu(w,z,t—i—f:r;)



Plane-wave Decomposition

Radon transform: L t+&x "
T
U, z,t) = /dmu(w,zﬁ—i—f:ﬂ) V
_ sin(6)
5 c(z)
z

= a set of 1D plane wave problems

2 2
(e sy — 2 U 20 =030

—__c?) . ; :
V= e for [ - ¢(2)] < 1 (vertical velocity)

Forward Map: F,|c| := %U(f,o,t)



General Inverse Problem in Extension Form

Inverse Problem: given data d € D, find ¢ such that F,[c] ~ D
Recall: for each slowness &, F,[c]({,t) = d(&,t) poses a 1D problem

v

1D OLS inversion €= Ve

U(é? Z) —>C(£a Z)

Fold(§,t) = d(&, 1)

¢ is physically meaningful only if 86 =0



General Inverse Problem in Extension Form

Inverse Problem: given data d € D, find ¢ such that F,[c] ~ D
Recall: for each slowness &, F,[c]({,t) = d(&,t) poses a 1D problem

v

1D OLS inversion €= Ve

U(é? Z) —>C(£a Z)

fw[C](g,t) = d(gvt)
¢ is physically meaningful only if ‘% =0

A new form of the inverse problem

2
min, 7 Jpsle =% ’ g—g
s.t. | Fule] - d”% ~ 0

= {c({, z) : positive functions,...}: Extended Model Space



General Inverse Problem in Extension Form

Inverse Problem: given data d € D, find ¢ such that F,[c] ~ D
Recall: for each slowness &, F,[c]({,t) = d(&,t) poses a 1D problem

v

1D OLS inversion €= Jirze

U(é? Z) —>E(£a Z)

fw[C](g,t) = d(gvt)
¢ is physically meaningful only if g—g =0

A new form of the inverse problem

2
min,_y; Jps(c] = % ) g—g
s.t. | Fule] - d”% ~ 0

M = {&(&, 2) : positive functionms,...}: Extended Model Space

Question: how to navigate through the feasible set

s ={meM: |Fo-dp=0}
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Low-frequencies’ Influence in 1D LS Inversion
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Spectra of dD
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nDS Strategy: Recover missing low-frequency components

Conjecture: suppose source is impulsive with full bandwidth down
to 0 Hz, then ¢ uniquely determined by data

Then, use low frequency data components, missing from field
data, as control parameters, permitting navigation through the
feasible set

s ={meM: |F.-dp=0}



nDS Strategy: Recover missing low-frequency components

Conjecture: suppose source is impulsive with full bandwidth down
to 0 Hz, then ¢ uniquely determined by data

Then, use low frequency data components, missing from field
data, as control parameters, permitting navigation through the
feasible set

s ={meM: |F.-dp=0}

Analogy:
o Low-frequency data components «~ Low-frequencies in model
@ macromodel in MVA



Nonlinear Differential Semblance: Formulation

Use low frequency data components, missing from field data, as control
parameters ...

That is, minimizing the following problem to recover missing
low-frequency data components

ming 5 Jpsleld]] = %‘ dc[dl]H

s.t. cld;] = argmin__j; (5 H]:w—i-wl e] — (do + dl)”i)

D;: low-frequency data space, d;: low-frequency control

wy: fixed low-frequency source components
(s.t. w + w; impulsive with full bandwidth down to 0 Hz)
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Scan Tests: Four-layer Model

velocity profile

Source with low-frequencies
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xScan Jpso along : dy, = (1 — p) dipere + pd* (€ [0,1.5])
dipert = djyig, + iy

d"™ derived from the homogeneous velocity model cjom (2) = 2

* Scan Jorg along: ¢, (2) = (1 — i) chom + p1c*(2) (1 € [0,1.5])



Scan Tests (Four-layer Model): =0
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Scan Tests (Four-layer Model): p = .1

dy = (1 —p) dipert + pd* at p=0.1

Velocity ¢ atp=0.1
o inv Ios V.S.u
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Scan Tests (Four-layer Model): p = .2
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Scan Tests (Four-layer Model): = .3
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Scan Tests (Four-layer Model): u = .4
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Scan Tests (Four-layer Model): © = .5
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Scan Tests (Four-layer Model): © = .6

d,u = (1 - /J’) dlpert + Nd* at 1 =0.6
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Scan Tests (Four-layer Model): u=.7

Depth z (km)
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Scan Tests (Four-layer Model): = .8
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Scan Tests (Four-layer Model): p© =9

duz (1_,u)dlpert+ﬂd* at pu=0.9
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Scan Tests (Four-layer Model): © = 1.0

du = (1 - ”) dlpert + /Ld* at p=1.0

Velocity ¢, at p=1
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Scan Tests (Four-layer Model): = 1.1

Depth z (km)

du =(1—-p) dlpert+ud* at p=1.1
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Scan Tests (Four-layer Model): = 1.2
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Scan Tests (Four-layer Model): ©=1.3
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Scan Tests (Four-layer Model): = 1.4

d,u = (1 _:u) dlpert_‘_ﬂd* at p=1.4
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Scan Tests (Four-layer Model): © = 1.5

dlb = (1 _:u) dlpert"i_ﬂd>|< at p=15
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Scan Jpso V.S. Scan Jors

Scan Jors along: ¢, (2) = (1 — ) ¢hom + pc*(2) (1 €[0,1.5])
Scan Jpso along 1 d, = (1 — p) dipert +pd* (€ [0,1.5])

Jps V:SH Jos VS H

18 0.0:

The DS Objective is :
@ convex
e continuously differentiable --- (Dong's MS thesis)



Improvement to the nonlinear DS Formulation

Recall:
velocity 6, al =15 \ @ Solutions to 1D subproblems
. achieve different accuracy, and the
corresponding noise rapidly changes
b w.r.t. slowness
R — increase of noise in DS
: i objective

@ this approach cannot be extended
to more general model
e.g., general acoustic,

, multi-parameter inversion, ...

C " Swness p sikm)
= Have to replace the 1D least-squares sub-inversions with
one 2D least-squares problem with specific constraints to
penalize the inconsistency in slowness direction
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Acoustic System & Plane-wave Decomposition
Layered Acoustic Model

o +kV-v = w(t)d(z,2)

ot
ov
—+Vp = 0
Py +Vp
p(z): density p(z, z,t): pressure
k(z): bulk modulus v(z, z,t): particle velocity

m(z) := (p(z),k(z)) : model point  ¢(z) = \/%: acoustic velocity

Introduce Radon transformed field

Pn&t) = [ doplazitrgo)
V(z,&t) = /da: v(z,z,t+ &x).



Forward Map & Linearization

Radon Transform —> a set of 1-D plane-wave problems

(1_“52)8P+ Ve~ wt)s2)

p ) Ot "o
AL +aj = 0
Pt 0z
Forward Map: Flim| := P(0,&,t)

Extended Model Space: M := {m(¢,2) = (p(§,2),R(&,2)) : ...

Extended Modeling Operator: F : M — D defined by

the same equation system with m replaced by m

Detailed derivation in Dong's technical report



Replace 1-D LS sub-problems with one 2-D LS problem
with DS constraint

Differential Semblance Optimization problem:

. omldy] ||”
mingep, J[di] == % Gé ] .
st.  m[d)] = argmin Q[m),
meM
where o lI2
Qlin) =3 3 |[Fim] - (do +dp)|[3+0* | T2 & +R(m)
o |l

tie 1D-invs together

Predicted Advantages over the previous approach:

o Generalizability (constraint min,;, Q[m] remains the similar form for
general case)

@ Better Numerical Performance (no evidence yet)



Sketch of Nonlinear DS Algorithm

Nonlinear DS Algorithm:
Initialization: set mY, d?, w, €, etc.
For k=0,1,2,...

@ Compute the sub-minimization problem to get

mldf] = argmin Q[

@ Compute JF =
© Compute VJ df Cf HVJ d;“ H <e HVJ d? H stop; else, continue

Q@ Compute df“ via descent method

Ham[d ]H If JF < €JO, stop; else, continue



Gradient Computation: Formula

Gradient Formula (detailed derivation in Dong's technical report)

2 —
VJ = 11 DF[m] Hp' 88;&

where Ho = DF[m]T DF[m] — 02(%22 + D?R
I1: D — D; : Projector from data space onto low-frequency data space
D?R : the second derivative of R(m) with respect to m

(in some case just constant, e.g., R(m) = 7?||m||*> = D*R = 2¢?)



Gradient Computation: Explanation

Gradient Formula (detailed derivation in Dong's technical report)

€D

€D,
where Ho = DF[m]! DF[m] — 02(%22 + D?R
IT1: D — D; : Projector from data space onto low-frequency data space
Hg: Gauss-Newton Hessian for Q[m] with

Hq ém = DF[m|" 6d = DF[m]" TI* &4,
e

eM



Gradient Computation: Procedure

Gradient Computation:

Given m[d;] = argming, Q[m], need to

2*m
DE2
@ solve Hpq = b for q via CG algorithm

@ compute b ~ —

need to compute the action of Hg on any vector g,

i.e., compute <D]—“[ " DFim] — 0> 2 +D2R>
o D?R g easy to compute
2
° (%2 g easy to compute
o w = DF[m] g via one forward propagation
& DF[m]T w via adjoint state computation

@ compute V.J ~ Il DF|[m] q via one forward propagation and one
projection (filter)
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Summary & Future Work

Done:
e Formulated WI via Extended Modeling (in Appendix)
@ Proposed a nonlinear DS strategy for the simplest model
o lllustrated the properties of the proposed DS objective via scan tests
@ Introduced one important revision to the proposed DS approach
@ Derived gradient computation
Plan:
@ Implement gradient computation
@ Implement inversion for general acoustic model

(based on existing packages SEAMX, TSOpt, ...)

@ Consider further extension
° ..



Thank You!



Appendix



Gradient Computation: derivation
amldy] _ (o*m
H M:>(5J_ <352’6 )M

° Flrst order neceSS|ty condition of the sub-minimization problem

V@ =0
where
11 (Tl 2 0 -1 0 _ _
VmQ = DF[m]" (Flm] — (do + dy)) — 0 a*gA T DR(m)
# JE—
Hq ém = DF[m]"éd,
where
Hq = DF[m)" DF[m] — 2919 | prg
2SS
=
om = Dg,m od;

Dgym = Hy' DF[m]"



Gradient Computation: derivation

27
5] = — a—m,am
e =

0%*m
_ ,deédl>
<8§2 ! i

_ <(Ddl )TaQ— 5dl>

€2’
Hence,
2
VI o= = (Dgm) 58
= ~DFlm) Hy' G
Recall 5 5
Ho = DFm|'DF[m] — o> =A"1—= + D*R
o = DFm]" DFlm] — o* 5207 g +
Key computation
Hqub

such as o
Hoom = —-VuQ , Hoém = DF[m]’éd,



Formulate WI via Extended Modeling
Extended Modeling Concept — a unified view of OLS and MVA
(Symes, 2008)

The extension of model F : M — D consists of
@ M: extended model space

e E: M — M: extension operator, one-to-one,
EM]c M  ( E[M]: the “physical models”)

o F: M — D: extended modeling operator, F[m| = F[E[m]] for
any m € M

Extended inversion:
given d € D, find m € M such that F|m] ~ d

solution m physically meaningful only if m € E[M]

Since M has more degrees of freedom, ambiguity is more likely.



Formulate WI via Extended Modeling: Annihilator

Inverse problem: look for m so that
(1) m € E[M], i.e., m = E[m] for some m € M
(2) Flm] ~d

Then, m is the solution to the original problem.

Need to seek objectives whose extrema represent the solution

Define annihilator A: M — 'H so that
m e EM] < Am =0.
A general form of the inverse problem
min_ _; Jalm] =L [|Am|3,

s.t. | F[m] —d||2, ~0

Question: why consider this problem instead of traditional OLS problem?



Extended Modeling may lead to Effective WI

Extension concept (Symes,2008)

@ provides a unified view of Wl and MVA
in linearized extended modeling context, MVA is a solution method
to the partially linearized inverse problem

@ has lots of familiar extensions
annihilator A chosen in differential semblance class , lots of
successful implementations and theoretical results
(Symes(1990), Symes & Carazzone(1991), Symes(1999),
Shen & Calandra(2005),...)

@ suggests an approach to nonlinear waveform inversion incorporating
elements of MVA
Symes(1991) proved this problem is equivalent to an unconstrained
problem with no local minima and the objective has stable shape
independent of source spectrum  (under some assumption ...)
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