Differential Semblance Migration Velocity Analysis via Reverse Time Migration: Gradient Computation

Chao Wang

The Rice Inversion Project
Rice University

February 20, 2009

Outline

(1) Introduction
(2) RTM Formula and DSMVA Objective Function
(3) Gradient Computation
(4) Summary
(5) Future Work
(6) Appendix: Gradient Computation

Introduction

- Differential Semblance Velocity Analysis
- Smoothness
- Convexity
- Reverse Time Migration
- Dip limitation
- DSMVA-RTM

Acoustic wave equation with constant density

$$
\left(\frac{1}{c^{2}(\mathbf{x})} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) p\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=f(t) \delta\left(\mathbf{x}-\mathbf{x}_{s}\right)
$$

$\mathbf{x}=$ position vector
$\mathbf{x}_{\mathbf{s}}=$ position of the point source
$c(\mathbf{x})=$ velocity
$p\left(\mathbf{x}, t ; \mathbf{x}_{\mathbf{s}}\right)=$ pressure
Source time function $f(t)=\delta(t)$
Two-way wave equation operator $\mathbf{L}:=\frac{1}{c^{2}(\mathbf{x})} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}$

Source Wavefields (forward in time):

$$
\begin{aligned}
\mathbf{L} S\left(\mathbf{x}, t ; \mathbf{x}_{s}\right) & =\delta(t) \delta\left(\mathbf{x}-\mathbf{x}_{s}\right) \\
S & \equiv 0 \text { for } t<0
\end{aligned}
$$

Receiver Wavefields (backwards in time):

$$
\begin{aligned}
\mathbf{L} R\left(\mathbf{x}, t ; \mathbf{x}_{s}\right) & =\int d\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right) \delta\left(\mathbf{x}-\mathbf{x}_{r}\right) d \mathbf{x}_{r} \\
R & \equiv 0 \text { for } t>t_{\max }
\end{aligned}
$$

Imaging

Write

$$
c(\mathbf{x})=v(\mathbf{x})+\delta v(\mathbf{x}) .
$$

Forward Born Modeling:

$$
F[v] \delta v=\left.\delta S\right|_{\text {surface }}
$$

Adjoint of Forward Modeling:

$$
F^{*} d=I
$$

Migration formula:

$$
I(\mathbf{x}, h)=\int S\left(\mathbf{x}+h, t ; \mathbf{x}_{s}\right) R\left(\mathbf{x}-h, t ; \mathbf{x}_{s}\right) d \mathbf{x}_{s} d t
$$

DSMVA-RTM objective function:

$$
J[v]=\frac{1}{2}\|P I\|^{2}
$$

Gradient Computation

For $u=P^{*} P I, D I^{*} u$ gives the gradient.
Introducing g_{r} solving

$$
\begin{aligned}
\mathbf{L} g_{r}\left(\mathbf{x}, t ; \mathbf{x}_{s}\right) & =\int R\left(\mathbf{x}-2 h, t ; \mathbf{x}_{s}\right) u(t-h, h) d h \\
g_{r} & \equiv 0 \text { for } t>t_{\max }, B C
\end{aligned}
$$

Introducing g_{s} solving

$$
\begin{aligned}
\mathbf{L} g_{s}\left(\mathbf{x}, t ; \mathbf{x}_{s}\right) & =\int S\left(\mathbf{x}+2 h, t ; \mathbf{x}_{s}\right) u(t+h, h) d h \\
g_{s} & \equiv 0 \text { for } t<0, B C
\end{aligned}
$$

The gradient of DSMVA-RTM is

$$
\nabla_{v} J=\int \frac{2}{v^{3}}\left(\frac{\partial^{2} S}{\partial t^{2}} g_{r}+\frac{\partial^{2} R}{\partial t^{2}} g_{s}\right) d \mathbf{x}_{s} d t
$$

Inversion procedure

Comparison between one-way and two-way WEMVA

One-way wave equation migration:

- Pros: low computational cost
- Cons: dip limitation

Two-way wave equation migration:

- Pros: no dip limitation
- Cons: high computational cost
- Cons: amplitude correction required
- Amplitude Correction (see Rami's work)
- Modification of existing RTM code based on SEAMX, TSOpt to compute objective function and to verify its convexity
- Future modification to create gradient
- Comparison with DS based on downward continuous extrapolation

Perturbation of objective function:

$$
\begin{aligned}
\delta J & =\frac{1}{2}\langle\delta(P I), P I\rangle+\frac{1}{2}\langle P I, \delta(P I)\rangle \\
& \Longrightarrow \delta J=\left\langle\delta c, \operatorname{Re}\left((D I)^{*} P^{*} P I\right)\right\rangle
\end{aligned}
$$

Gradient of objective function:

$$
\nabla_{c} J=\operatorname{Re}\left\{(D I)^{*}\left(P^{*} P I\right)\right\}
$$

For arbitrary $u(x, h)$, we have

$$
\langle\delta I, u\rangle=\langle D I \delta c, u\rangle=\left\langle\delta c, D I^{*} u\right\rangle
$$

When $u=P^{*} P I, D I^{*} u$ gives the gradient.

$$
\begin{aligned}
\langle\delta I, u\rangle & =\int \overline{\delta I} u(x, h) d x d h \\
& =\int \delta S\left(x+h, x_{s}, t\right) \bar{R}\left(x-h, x_{s}, t\right) u(x, h) d x d x_{s} d t d h \\
& +\int S\left(x+h, x_{s}, t\right) \overline{\delta R}\left(x-h, x_{s}, t\right) u(x, h) d x d x_{s} d t d h \\
& =\int \delta S\left(x, x_{s}, t\right)\left\{\int \bar{R}\left(x-2 h, x_{s}, t\right) u(x-h, h) d h\right\} d x d x_{s} d t \\
& +\int \overline{\delta R}\left(x, x_{s}, t\right)\left\{\int S\left(x+2 h, x_{s}, t\right) u(x+h, h) d h\right\} d x d x_{s} d t
\end{aligned}
$$

Introducing g_{r} solving

$$
\begin{aligned}
\mathbf{L} g_{r}\left(\mathbf{x}, t ; \mathbf{x}_{s}\right) & =\int R\left(\mathbf{x}-2 h, t ; \mathbf{x}_{s}\right) u(t-h, h) d h \\
\int_{\Sigma} \nabla S g_{r}-S \nabla g_{r} & =0 \\
\frac{\partial S}{\partial t} g_{r}-S \frac{\partial g_{r}}{\partial t}\left(\mathbf{x}, 0 ; \mathbf{x}_{s}\right) & =0 \\
\frac{\partial S}{\partial t} g_{r}-S \frac{\partial g_{r}}{\partial t}\left(\mathbf{x}, t_{\max } ; \mathbf{x}_{s}\right) & =0
\end{aligned}
$$

Introducing g_{s} solving

$$
\begin{aligned}
\mathbf{L} g_{s}\left(\mathbf{x}, t ; \mathbf{x}_{s}\right) & =\int S\left(\mathbf{x}+2 h, t ; \mathbf{x}_{s}\right) u(t+h, h) d h \\
\int_{\Sigma} \nabla R g_{s}-R \nabla g_{s} & =0 \\
\frac{\partial R}{\partial t} g_{s}-R \frac{\partial g_{s}}{\partial t}\left(\mathbf{x}, 0 ; \mathbf{x}_{s}\right) & =0 \\
\frac{\partial R}{\partial t} g_{s}-R \frac{\partial g_{s}}{\partial t}\left(\mathbf{x}, t_{\max } ; \mathbf{x}_{s}\right) & =0
\end{aligned}
$$

Then,

$$
\begin{aligned}
\langle\delta I, u\rangle & =\int\left(\delta S \mathbf{L} g_{r}+\delta R \mathbf{L} g_{s}\right) d x d x_{s} d t \\
& =\int\left((\mathbf{L} \delta S) g_{r}+(\mathbf{L} \delta R) g_{s}\right) d x d x_{s} d t \\
& =\int \frac{2 \delta c}{c^{3}} \frac{\partial^{2} S}{\partial t^{2}} g_{r}+\frac{2 \delta c}{c^{3}} \frac{\partial^{2} R}{\partial t^{2}} g_{s} d x d x_{s} d t
\end{aligned}
$$

Thus

$$
\nabla_{c} J=\int \frac{2}{c^{3}}\left(\frac{\partial^{2} S}{\partial t^{2}} g_{r}+\frac{\partial^{2} R}{\partial t^{2}} g_{s}\right) d x_{s} d t
$$

