
Geophysical Prospecting (200?) XX, 000–000

Migration Velocity Analysis and Waveform Inversion

William W. Symes 1

1 The Rice Inversion Project, Department of Computational and Applied Mathematics,
Rice University, Houston,TX 77005-1892 USA, email symes@caam.rice.edu

Accepted 200? ?? ??. Received 2007 Januari ??; in original form 2007 Januari ??

SUMMARY

Least-squares inversion of seismic reflection waveform data can reconstruct remarkably
detailed models of subsurface structure, and take into account essentially any physics of
seismic wave propagation that can be modeled. However the waveform inversion objec-
tive has many spurious local minima, hence convergence of descent methods (mandatory
because of problem size) to useful Earth models requires accurate initial estimates of
long-scale velocity structure. Migration velocity analysis, on the other hand, is capable
of correcting substantially erroneous initial estimates of velocity at long scales. Mi-
gration velocity analysis is based on prestack depth migration, which is in turn based
on linearized acoustic modeling (Born or single-scattering approximation). Two major
variants of prestack depth migration, using binning of surface data and Claerbout’s
survey-sinking concept respectively, are in widespread use. Each type of prestack mi-
gration produces an image volume depending on redundant parameters, and supplies a
condition on the image volume which expresses consistency between data and velocity
model, hence a basis for velocity analysis. The survey-sinking (depth-oriented) approach
to prestack migration is less subject to kinematic artifacts than is the binning-based
(surface-oriented) approach. Because kinematic artifacts strongly violate the consis-
tency or semblance conditions, this observation suggests that velocity analysis based on
depth-oriented prestack migration may be more appropriate in kinematically complex
areas. Appropriate choice of objective (differential semblance) turns either form of mi-
gration velocity analysis into an optimization problem, for which Newton-like methods
exhibit little tendency to stagnate at nonglobal minima. The extended modeling con-
cept links migration velocity analysis to the apparently unrelated waveform inversion
approach to estimation of Earth structure: from this point of view, migration velocity
analysis is a solution method for the linearized waveform inversion problem. Extended
modeling also provides a basis for a nonlinear generalization of migration velocity anal-
ysis. Preliminary numerical evidence suggests a new approach to nonlinear waveform
inversion which may combine the global convergence of velocity analysis with the phys-
ical fidelity of model-based data fitting.
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INTRODUCTION

Seismic waveform inversion is a synonym for model-based
fitting of waveform (sampled hydrophone or geophone) data.
It is often formulated as the least squares problem of reduc-
ing the energy in the difference between predicted and ob-
served data to a minimum, by varying the model on which
the prediction is based. This output least squares formulation
will be taken as a synonym for waveform inversion through-
out the following discussion.

The model-based data-fitting approach to inference of
Earth structure from geophysical data is conceptually at-
tractive, and has a long and productive history in the Earth
sciences. Its influence on reflection seismology has nonethe-

less been limited by two major impediments. The first is
the computational intensity of reflection seismogram mod-
eling, especially in 3D. Output least squares inversion re-
quires full wavefield modeling and various associated com-
putational tasks, and until recently these computations were
beyond reach at industrially or scientifically relevant scales.
This computational obstacle is gradually fading, due to con-
tinued steady advances in computer hardware performance
and algorithmic improvements in modeling.

The second impediment is more fundamental. Least-
squares estimates, or rather their prestack depth migration
approximations, have become the preeminent tool for esti-
mating short, or wavelength, scale Earth structure given a
long scale model. However the least squares principle has
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proven poorly suited to inference of long scale structure (of-
ten called the macromodel), as we shall explain below. Since
accurate knowledge of the long scale structure is prerequi-
site to successful estimation of short scale structure, this
circumstance has strictly limited the straightforward appli-
cation of waveform inversion. Instead, industrial seismology
has developed a suite of migration velocity analysis tech-
niques, apparently completely unrelated to waveform inver-
sion, for the estimation of Earth macromodels.

The central thesis of this paper is that migration ve-
locity analysis is in fact an approach to solving a partially
linearized variant of the waveform inversion problem (linear
in short scales, nonlinear in long scales). The conceptual link
between migration velocity analysis and waveform inversion
is the notion of extended model, in which the modeling of
wavefields is extended to nonphysical models depending on
redundant parameters. I will show that both major variants
of migration velocity analysis, based on either data binning
(surface oriented or “Kirchhoff”) and survey-sinking (depth-
oriented or “wave equation”) variants of prestack depth mi-
gration, amount to the solution of waveform inversion prob-
lems for appropriate extended models. These models use lin-
earized or Born modeling at short scales, but include the
full nonlinear (kinematic) effect of the macromodel - hence
“partially linearized”. The kinematic properties of surface-
oriented and depth-oriented prestack migrations and their
associated extended models may be quite different, and these
kinematic disparities may have some consequences for mi-
gration velocity analysis, as I shall explain.

These observations provides a conceptual framework for
recent attempts to quantify and automate migration veloc-
ity analysis. Moreover, the viewpoint developed here also
suggests that the extended modeling principle might be ap-
plied directly to nonlinear waveform inversion, and that this
extended formulation might overcome the fundamental ob-
stacle to effective waveform inversion in reflection seismol-
ogy. I will present some preliminary evidence concerning the
behaviour of nonlinear extended inversion, suggesting that
a nonlinear analogue of the semblance conditions of migra-
tion velocity analysis may distinguish data-consistent from
data-inconsistent models. I will also discuss the remaining
challenges, both conceptual and computational, to imple-
mentation of this approach to nonlinear inversion.

Except for a few allusions, this paper does not include
any discussion of traveltime tomography. In fact, reflection
traveltime tomography is widely used as a velocity analysis
method. Common reflection tomography techniques exploit
many of the concepts discussed in this paper, and are highly
automated in current industry practice. The aim of this pa-
per, however, is to describe methods which estimate Earth
models directly from waveform data, without the data re-
duction that is the necessary first stage for any version of
traveltime tomography.

Much of this paper concerns mathematical formulations
of various versions of waveform inversion. I shall minimize
mathematical formalism in this discussion, subject to intro-
ducing sufficient concepts and notation to support the main
ideas. Extensive references provide the reader with access to
many mathematical details not developed with full precision
in the following pages. The citations cannot be complete, as
the literature on these topics is extensive. I have tried to cite

a representative sample, from which the interested reader
can follow further leads.

The next two sections present an overview of output
least squares inversion and migration velocity analysis. The
fourth section describes the extended modeling concept and
its partially linearized variant, and establishes the link be-
tween migration velocity analysis and output least squares
inversion. The fifth section describes the extended model ap-
proach to fully nonlinear output least squares inversion and
describes some initial numerical experiments which illustrate
some of its properties. The paper ends with a discussion of
prospects for further development of this nonlinear migra-
tion velocity analysis - waveform inversion hybrid.

WAVEFORM INVERSION

An abstract setting for geophysical inversion relates the
model space M - a set of possible models of Earth structure
- to the data space D through the forward map or prediction
operator F : M → D. The simplest version of data fitting
inversion asks that m ∈M be chosen to minimize the mean
square data misfit between the forward map output F [m]
and an observed datum d ∈ D: that is,

minmJOLS[m, d] ≡
1

2
‖F [m]− d‖2 (1)

in which the symbol ‖ · ‖ stands for a (Hilbert) norm in
the data space D. Generally M is actually an admissible
subset of a vector space of functions, incorporating bounds
on values (velocity is positive, etc. etc.) and perhaps other
physically or mathematically motivated constraints. I will
use the notation M to denote both this set and its ambient
vector space, relying on context to distinguish the two, and
refer to both as “model space”.

In practice, geophysical inverse problems tend to be
both overdetermined and underdetermined: that is, the min-
imum value of JOLS is unlikely to be zero (data is incon-
sistent), and many different models m may come within a
reasonable tolerance of the best fit level achievable (data is
inadequate).

Data fitting inversion has a long and productive history,
and geoscientists have developed considerable sophistication
in understanding the implications of data incompleteness
and inconsistency. The excellent papers of Backus & Gilbert
(1968, 1970), Jackson (1972, 1976, 1979) and Robinson &
Treitel (1980) continue to reward the reader. Parker (1977),
Tarantola (1987), and Lines & Treitel (1984) provide excel-
lent overviews of theory and application.

The application of data fitting inversion to reflection
seismology dates at least to the pioneering work of Bam-
berger, Chavent, and Lailly in the late 70’s (Bamberger
et al. 1977, 1979) on the one-dimensional model problem.
In contrast to much subsequent work, this study illustrated
the physical and mathematical consequences of model space
metric definition.

The simplest model which exhibits the basic kinematic
and dynamic complexity of field reflection seismograms is
constant-density acoustics, based on the causal initial value
problem for the wave equation

„

1

v2(x)

∂2

∂t2
−∇2

«

u(t,x;xs) = f(t,x;xs),
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u(t, ·; ·) ≡ 0, t << 0, (2)

in which x denotes position within a model of the Earth,
v(x) is the acoustic velocity field, u(t,x;xs) is the acoustic
potential, and f(t,x;xs) is a body force representation of
the energy source, indexed by source location xs.

The model space M is a set of possible velocity fields
v, i.e. m = {v(x)}. The data space D consists of samples
of pressure at a collection of receiver locations xr possibly
depending on the source location xs, over a time interval
tinit ≤ t ≤ tfinal. The energy source (right-hand side in the
wave equation (2) may be regarded as known, or estimated
along with the velocity. D is regarded as a Hilbert space,
equipped with some version of the L2 norm. Thus the for-
ward map F : M → D is defined by

F [v](t,xr;xs) =
∂u

∂t
(t,xr;xs). (3)

Throughout this paper, I shall alternate between no-
tation appropriate to the acoustic model (v ∈ M, F [v], ...),
when discussing concrete features of acoustic scattering and
data processing concepts based on it, and the general in-
verse theory framework introduced in this section (m ∈
M, F [m], ...), when more generality is appropriate.

In order to resolve features of geologic interest, the di-
mension of the model space M must be rather large, on
the order of 104 − 106 in 2D, one or more orders of magni-
tude greater for 3D. Accordingly only iterative optimization
methods with convergence rates more or less independent
of model space dimension are feasible for these problems. In
practice, this means Newton’s method and various relatives.
Chavent had already shown in the 1970’s how to compute
the gradient of functionals of solutions of time dependent
problems, using the so-called adjoint state method borrowed
from control theory (Chavent & Lemmonier 1974). Applied
to the wave equation (2), this principle becomes a version of
prestack reverse time migration (Lailly 1983, 1984; Taran-
tola 1984).

Application of Newton-like optimization to this acous-
tic inverse problem, and to more complex problems of which
it is a special case, has revealed a surprising obstacle: under
prototypical conditions of acquisition geometry and band-
width, the output least squares objective (1) appears to
possess many stationary points (“local minima”), most of
them quite far from the global minimum even for noise-free
data (in which case the global minimum occurs at the model
generating the data). Tarantola and coworkers provided an
early example of this pathology (Gauthier et al. 1986), and
many others have since been constructed (Kolb et al. 1986;
Santosa & Symes 1989; Shin & Min 2006). While many at-
tempts have been made to work around this obstacle (Taran-
tola et al. 1990; Mosegard & Tarantola 1991; Sen & Stoffa
1991a,b; Clément & Chavent 1993; Jin & Madariga 1994;
Bunks et al. 1995; Plessix et al. 1995, 1999; Shin & Min
2006), all results to date are consistent with the conclusion
that

Under prototypical conditions of acquisition geometry and band-
width, the output least squares objective function is strongly mul-
timodal, and unsuitable for global minimization via Newton-like
optimization methods.

The factors which appear to drive the pathological be-
haviour of output least squares for the acoustic inverse prob-

lem are (1) reflection geometry, i.e. sources and receivers sep-
arated from the scattering region by a hyperplane, and (2)
bandlimitation of the recorded signals, in particular the ab-
sence of very low frequency energy. Transmitted wave data
tends to reduce somewhat the proclivity of local minima to
appear, as Tarantola et al. already observed (Gauthier et al.
1986). Mora (1988) gave a partial explanation of this ten-
dency, and Pratt and coworkers (Pratt 1999; Pratt & Shipp
1999; Sirgue & Pratt 2004; Brenders & Pratt 2006a,b) have
exploited this observation to devise functional output least
squares inversion for diving wave and crosshole geometries.

The oscillatory nature of field data, i.e. its lack of low
frequencies, appears to pose a very serious obstacle to suc-
cessful output least squares inversion in the reflection config-
uration. It has been known for decades that the impedance
as a function of vertical traveltime in a layered acoustic
medium could be reconstructed from the impulsive normal
incidence plane wave trace. That is, for these essentially
1D problems, inversiion for impedance is well-posed pro-
vided that all frequency components down to 0 Hz are avail-
able in the data, (Goupillaud 1961; Symes 1980; Santosa &
Schwetlick 1982; Bube & Burridge 1983; Symes 1983, 1986a;
Sacks & Santosa 1987; Carazzone & Srnka 1989). Low-cut
filtering renders the reconstruction ambiguous (Pao et al.
1984; Gray & Symes 1985; Santosa & Symes 1989). For
several dimensional problems, numerical explorations indi-
cate that impulse responses (i.e. sampling of Green’s func-
tions) appear to uniquely determine constant-density acous-
tic models (velocity fields) via output least squares inversion
(Bunks et al. 1995; Shin & Min 2006), although no rigorous
mathematical argument to that effect has yet been put forth,
under the natural conditions of seismic modeling.

Numerical evidence of spurious stationary points in the
absence of low frequency energy (< 3−5 Hz, other scales be-
ing typical of exploration seismology) is quite strong, both
direct (plots of objective vs. velocity, eg. Symes & Caraz-
zone (1992)) and indirect (failure of Newton-like optimiza-
tion algorithms to achieve convergence to global minimum
(Gauthier et al. 1986; Tarantola et al. 1990; Shin & Min
2006)). While no proof exists, in the mathematical sense, of
the existence of spurious minima, the PhD thesis of Chauris
(2000) suggests a plausible explanation. In the context of
migration velocity analysis (discussed later in this paper),
Chauris observes that unrelated events in prestack image
volumes for correct and incorrect velocities may be tangent,
leading to constructive interference in the stack and anoma-
lously high stack power at kinematically incorrect velocities.
Chauris illustrates the resulting appearance of spurious lo-
cal maxima of stack power. In the context of data fitting, it
seems reasonable to expect that similar tangencies between
predicted and observed data events may occur at incorrect
velocities, leading to anomalously good local data fit and
thus spurious local minima of the mean-square error.

Spurious stationary points do not appear to exist at
models whose kinematics are sufficiently close to those of
the data. Thus a sufficiently good initial guess, provid-
ing the predicted data with events whose geometry closely
matches that of the observed data, should permit conver-
gence of Newton-like iteration to a satisfactory global mini-
mum. Such convergence has been observed many times (Cao
et al. 1990; Crase et al. 1990; Bunks et al. 1995; Plessix
et al. 1999; Shin & Min 2006; Brenders & Pratt 2006a). In
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some cases the initial estimate has been provided by trav-
eltime tomography, in others by migration velocity analy-
sis (described in the next section). The multiscale inversion
of Bunks et al. (1995) can even be viewed as providing a
reasonable initial guess for seismic band inversion by first
inverting very low frequency data (significant energy as low
as 0.25 Hz, in the example of Bunks et al. (1995)). Unfor-
tunately no a priori assessment of initial estimate adequacy
seems possible: it is quite common to fail to converge to a
useful final estimate from an apparently reasonable initial
estimate.

Granted that output least squares inversion by Newton-
like optimization converges to a best-fitting model, provided
that a sufficiently good initial guess may be procured, it is
natural to ask whether in fact (field) seismic data can be fit
by such a model-driven process. Few studies of waveform
inversion have modeled enough of the important physics
of seismic wave generation and propagation to answer this
question. Minkoff’s 1995 thesis (Minkoff & Symes 1997) is
one exception to this pattern. Minkoff used a migration ve-
locity analysis derived initial model estimate together with
model-based attenuation parameter estimate and linearized
viscoelastic modeling to estimate directionally dependent
source wavelet and perturbational elastic parameters by out-
put least squares inversion. By taking all apparently relevant
physics into account, she was able to fit 90% of the energy
in the small plane wave data set used in the study. Fur-
thermore, only when all relevant physics was incorporated
in the model did the inversion yield lithologically correct
predictions, validated by logging (Minkoff & Symes 1997).

While more studies are needed incorporating this de-
gree of physical realism and falsification (validation by inde-
pendent criteria) design, Minkoff’s thesis results give some
limited confidence that waveform data fitting can indeed
yield valid and highly detailed inference about the Earth’s
interior. The principal obstacle to use of this technique is
provision of a reliable starting model, in the reflection config-
uration and with typical seismic bandwidth. Since the long
scale components in the compressional velocity are critically
important in this starting model, it is possible to study the
issue to some extent within the context of constant den-
sity acoustics. One of the industry techniques for construct-
ing seismic propagation models, migration velocity analy-
sis, appears to be able to produce large velocity updates
directly from data with prototypical time, length, and fre-
quency scales.

LINEARIZATION

The industry standard approach to determination of Earth
structure from seismic reflection data relies upon the lin-
earized model of acoustic scattering (single scattering, Born
approximation), which results from applying first order per-
turbation theory to equation (2):

„

1

v2(x)

∂2

∂t2
−∇2

«

δu(t,x;xs) =
2δv(x)

v3(x)

∂2u

∂t2
(t,x;xs),

δu(t, ·; ·) ≡ 0, t << 0. (4)

The linearized forward map or Born scattering operator DF
maps the tangent space M ×M of (reference model, model

perturbation) pairs to the data space D. For acoustic mod-
eling, DF is defined by

(DF [v]δv)(t,xr;xs) =
∂δu

∂t
(t,xr;xs). (5)

The reference velocity model v is supposed to account for
the kinematics of data, hence the large scale stucture of the
Earth. Thus it is appropriate to assume v to be smooth or
slowly varying, or at least piecewise smooth, on the scale
of a wavelength. The perturbation δv is presumed to carry
the wavelength scale features of Earth structure, and so is
oscillatory. The notation is chosen to remind the reader that
DF depends nonlinearly on the reference model (v in this
case) and linearly on the model perturbation (δv).

Many of the statements to be made in the sequel about
the behavior of the linearized operator DF [v] rely on ad-
ditional constraints being imposed on the velocity model v,
such as explicit upper and lower bounds and bounds on spa-
tial gradients. These additional requirements define appro-
priate admissible sets of velocity models. I will not specify
admissible sets explicitly in this paper, but will tacitly as-
sume that restriction of DF to an admissible set of velocities
is in force.

Existence of the derivative DF under very general
circumstances, as a bounded operator on suitable Hilbert
spaces, is established by Stolk (2000a), see also Fernandez-
Berdaguer et al. (1996). Apparently the first order Taylor
polynomial remainder F [v+δv]−F [v]−DF [v]δv (otherwise
put, the error in the Born approximation) is anomalously
small when v is sufficiently smooth (bounds on derivatives)
and δv oscillatory (sufficiently small low-order moments).
On the other hand, this linearization error is large when
the background contains rapid variations (is not smooth on
wavelength scale) and the perturbation has low frequency
components. That is, the Born approximation is consider-
ably more accurate when reference and perturbation veloci-
ties are separated in scale (long for reference, short for per-
turbation), considerably less accurate otherwise. Since the
linearization error is related to the degree of nonlinearity of
the least-squares misfit function, the violation of this scale
dichotomy in velocity updates spanning all scales is a par-
tial explanation for the failure of gradient methods in wave-
form inversion. Considerable numerical evidence supports
this point of view (Symes 1995), but theoretical justifica-
tion exists only for the special case of 1D modeling (Lewis
& Symes 1991; Symes 1991a).

The linearized or Born scattering operator DF [v], for
smooth background velocity v, has been studied extensively
over the last twenty years, beginning with the pioneering
work of Beylkin (1985), Bleistein (1987), and Rakesh (1988).
As the wave operators appearing in (2) and (4) have smooth
coefficients, oscillatory solutions are well approximated by
geometric optics, and DF [v] by an oscillatory integral oper-
ator (generalized Radon transform, (Beylkin 1985)). These
approximations underly an analysis of the linearized output
least squares problem

minimize
1

2
‖DF [v]δv − (d− F [v])‖2 over δv ∈M. (6)

A minimizer of the function (6) of minimal length is a so-
called pseudoinverse solution, written δv = DF [v]†(d−F [v])
and well-approximated by the regularized least-squares so-
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lution

δv ≃ (DF [v]∗DF [v] + λI)−1DF [v]∗(d− F [v])

for small values of λ.

The essential properties of DF [v] and its least squares
problem follow from the modern theory of oscillatory inte-
grals, and are easiest to state when it is assumed acquisition
geometry is complete, i.e. that essentially all source-receiver
azimuths are available, that sampling is dense enough to
be neglected, and that the source is impulsive: f(x, t;xs) =
δ(t)δ(x− xs). Then

DF [v] is “almost unitary”, in the sense that its adjoint or trans-
pose DF [v]∗ differs from its (pseudo)inverse by dip-dependent
scaling and filtering;
If the data d is nearly consistent with the Born scattering model,
d ≃ F [v] + DF [v]δv for smooth v and oscillatory δv, then the
least squares gradient DF [v]∗(d−F [v]) is an image of δv, in the
sense of having the same oscillatory components or locations of
rapid change (“reflectors”), except for dip-dependent scaling and
filtering.

The almost-unitary property of DF [v] on oscillatory
data was established by Beykin and Rakesh in the cited ref-
erences, under the assumption that all sources and receivers
are connected to all possible scattering points (support of
δv) by unique rays of geometric optics. This latter assump-
tion was gradually relaxed through the work of Ten Kroode
et al. (1998), Nolan & Symes (1997), and Stolk (2000a,b).
In particular, Stolk shows that the almost-unitary property
of DF [v] is a generic: if v doesn’t have it, then arbitrarily
small perturbations of v do (for 2D acoustics - the analo-
gous property is conjectured to hold in 3D, but has not yet
been proven). The normal operator DF [v]∗DF [v] acts by
dip-dependent scaling and filtering: it is a so-called pseudod-
ifferential operator, for generic smooth background veloci-
ties v. In particular, application of the normal operator does
not affect the location or orientation of highly oscillatory or
short-scale features of its argument. This fact is responsi-
ble for the almost-unitary nature of the linearized map, and
implies that its adjoint DF [v]∗ is a structural imaging op-
erator, in fact a version of prestack depth migration. This
relation of linearized inversion to prestack depth migration
was noted by Lailly (1983, 1984) and Tarantola (1984). A
good reference for the definition and properties of pseudod-
ifferential operators is Taylor (1981).

Nolan (Nolan & Symes 1997) also shows how the above
statements must be modified when the acquisition geome-
try is incomplete, i.e. idealized narrow azimuth surveys. A
number of researchers have generalized these results to var-
ious elastic settings of the seismic inverse problem (Beylkin
& Burridge 1990; de Hoop & Bleistein 1997; Burridge et al.
1998; de Hoop & Stolk 2002). The details are naturally more
complex, but the gist is as called out above: the linearized
scattering operators are almost unitary in general, and their
normal operators act by dip-dependent scaling and filter-
ing, provided full bandwidth and spatially complete data is
available. approximate solutions of linearized output least
squares problem can be written as oscillatory integrals, con-
venient for computation.

MIGRATION VELOCITY ANALYSIS

Solution of the linearized inverse problem, or approximate
solution (prestack depth migration), requires a velocity (ref-
erence) model v, which must also be estimated somehow
from the data. The geophysical prospecting industry has
developed a set of techniques for velocity estimation, called
migration velocity analysis (Yilmaz 2001). In contrast to
prestack depth migration itself, migration velocity analysis
appears at first glance to have little to do with output least
squares inversion.

migration velocity analysis consists of two steps: given
a velocity model,

• produce an image volume, containing the image (ap-
proximate linearized inverse) but also depending on one or
more redundant parameters;
• apply an imaging condition to produce an image and,

as a by-product, an updated velocity.

In principle, these steps may be carried out a number of
times.

Image Volume Construction

Two distinct definitions of image volume are in common use.
Both are most easily formulated with the aid of the solution
operator of the linearized acoustic problem (4). Using the
Green’s function G of the reference medium, i.e. the causal
solution of equation (2) with f(t,x;xs) = δ(x−xs)δ(t), one
can write an integral representation for the solution of (4),
evaluated at a receiver position xr:

δu(t,xr;xs) =

∂2

∂t2

Z

dx

Z

dτG(t− τ,x;xr)
2δv(x)

v3(x)
G(τ,x;xs) (7)

The physical meaning of equation (7) may be read from
the integrand, from right to left. The first Green’s function
propagates a wave from the source at xs to the scattering
point x. There, the wave interacts with the material het-
erogeneity represented by δv. This interaction is scaled in
the space domain by v−3 and in the frequency domain by
∂2/∂t2. This scaling derives from the structure of the vir-
tual Born source (right-hand-side of equation (4)), and cor-
rectly dimensions the integrand for integration over a vol-
ume. Finally, the second Green’s function propagates the
signal generated by the wave-heterogeneity interaction from
the scattering point x to the receiver xr.

In view of the definition (5), the integral representation
(7) shows DF [v] to be an integral operator with kernel

∂3

∂t3

Z

dτG(t− τ,x;xr)G(τ,x;xs)
2

v3(x)
.

That is, one can view this expression as the “matrix” of
DF [v], with (dt,xr,xs) and x playing the roles of row and
column indices respectively. Thus the adjoint or transpose
linearized operator has the integral representation

DF [v]∗(d− F [v])(x) = −
2

v3(x)

Z

dxs

Z

dxr

Z

dt

Z

dτ×

G(t− τ,x;xr)G(τ,x;xs)
∂3d

∂t3
(t,xr;xs). (8)
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As noted above the output of DF [v]∗ is an image of the
subsurface, having approximately correct short-scale fea-
tures as δv when d ≃ DF [v]δv. I will denote the output
by I(x) ≡ DF [v]∗(d− F [v]).

The surface oriented image volume definition introduces
a surface acquisition parameter as the redundant degree of
freedom, and limits the integration in (8) to common value
(level) sets of this parameter (i.e. to gathers). For example,
the common offset image volume ICO is constructed by re-
stricting (8) to common offset gathers: for (vector) half-offset
h, define

ICO(x,h) = −
2

v3(x)

Z

dxs

Z

dt

Z

dτ×

G(t− τ,x;xs + 2h)G(τ, x;xs)
∂3d

∂t3
(t,xs + 2h;xs). (9)

In practice, this integral is further averaged over bins in h,
or over an annulus in h to create a function of (scalar) offset
h = |h|.

Synthesis of plane wave response leads to a similar defi-
nition of plane (or conical) wave image volume (Treitel et al.
1982; Duquet & Lailly 2006). An even less straightforward
variant of this concept is the common scattering angle vol-
ume (Xu et al. 2001; Stolk 2000a,b; Brandsberg-Dahl et al.
2003), in which the integral (8) is recast as an integral in
phase space and subintegrals formed over data subsets (in
phase space) characterized by common scattering angle.

All of the surface oriented image volume constructions
share a common defect, in that kinematic artifacts may form
when the velocity structure is sufficiently complex that sig-
nificant energy can propagate along multiple paths connect-
ing source, receiver, and scattering points (Nolan & Symes
1997; Brandsberg-Dahl et al. 2003; Stolk & Symes 2004).
These artifacts arise because the restricted integrals in vol-
ume formation rules such as (9) do not restrict the slowness
component of rays contributing to the image output, corre-
sponding to the gather direction. For example, integration
over a common offset gather implicitly combines image con-
tributions propagating along all rays sharing a common mid-
point ray parameter, but with possibly different offset ray
parameters (difference of source, receiver horizontal ray pa-
rameters). Therefore energy arriving in the data along one
pair of rays can migrate to a different point in the image
volume along a different pair of rays, with different offset
ray parameter. Similar image ambiguity may arise in any of
the surface-oriented image volumes defined above, including
common scattering angle volumes. The artifact events pro-
duced in this way can easily be as energetic as the events
corresponding to actual reflectors. Their presence has seri-
ous consequences for the use of this type of image volume
in velocity analysis, as explained below.

The second type of image volume definition introduces
additional degrees of freedom by means of spatial and/or
temporal shifts applied to the integrands in (8). The ver-
sion of this depth oriented image volume appropriate to sub-
surface vector half-offset h (note: not the same as source-
receiver offset vector used in the definition of ICO!) is

ISS(x,h) =
−2

v(x + h)v2(x− h)

Z

dxs

Z

dxr

Z

dt

Z

dτ×

G(t− τ,x + h;xr)G(τ,x− h;xs)
∂3d

∂t3
(t,xr;xs). (10)

Claerbout (Claerbout 1971; Claerbout & Doherty 1972) in-
troduced essentially this definition, with the exceptions that
(i) the factors of v and the t derivatives were missing - the
reasons for their presence in our formulation will become
apparent below; (ii) h is constrained to be horizontal, and
that remains the most common variant. Indeed, Claerbout
proposed viewing this image volume as the result of sink-
ing the survey, with “sunken” sources and receivers (x − h

and x+h respectively) on planes of increasing depth (Claer-
bout 1985). Claerbout also showed how to build this image
volume by means of one-way wavefield extrapolation from
surface data (as opposed to evaluation of an integral like the
above). It is also possible to use two-way wavefield extrap-
olation, i.e. solution of the acoustic wave equation (2) and
related computations, to accomplish this task, via a variant
of reverse time migration (Biondi & Shan 2002; Symes 2002).
Nonhorizontal subsurface offset may find constructive uses
(Biondi & Symes 2004; Biondi & Shan 2002; Symes 2002), as
can time (as opposed to spatial offset) shifts (Sava & Fomel
2005). Scattering angle can also be used as the redundant
parameter (Prucha et al. 1999; Rickett & Sava 2002; Sava &
Fomel 2003).

The computational cost of depth oriented image volume
formation can be considerable. The integral on the right-
hand side of equation (10) can be interpreted as the cross-
correlation at a range of spatial shifts of the field produce
by the source (G(τ,x−h;xs), under the integral sign), and
the field produced by propagating the recorded data d back-
wards in time (integral over xr, t of the remaining factors),
followed by a final summation over sources. This shot-profile
profile organization of the computation is the only one avail-
able for the reverse time approach, and is one of the two
common techniques employing one-way propagators (Biondi
& Palacharla 1996; Biondi 2003). The additional computa-
tional load due to the cross-correlations can easily dwarf
that due to propagation. A commonly used workaround is
to avoid computing the full image volume. For velocity anal-
ysis, as reviewed below, a relatively small fraction of the im-
age volume suffices to constrain the velocity estimate. Thus
much of the crosscorrelation load can be avoided, and the
cost of the partial image volume formation approaches that
of image formation alone.

Surface oriented image volume formation is often
termed “Kirchhoff prestack depth migration”. It is usually
carried out via the formula (9) with the Green’s function
G replaced by its asymptotic (ray-theoretic) approximation.
The differential equation approach introduced by Claerbout
(1971) is the predominant method for depth oriented im-
age volume production, hence the common usage “prestack
wave equation migration” for this technique. Both imaging
methodologies have huge literatures, overviewed for example
in (Gardner 1985; Yilmaz 2001).

Imaging and Semblance Conditions

The phrase “imaging condition” has come to signify a re-
lation between the image volume and the image. I will use
the phrase “semblance condition” for another, related con-
cept, namely a quality possessed by the image volume when
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velocity is chosen correctly, and which expresses kinematic
compatibility between data and velocity model. The first of
these concepts provides a mechanism for producing an image
of the subsurface, given a suitable velocity model; the second
can lead to analysis and correction of velocity defects.

For the two versions of image volume introduced above,
the relation with the image, i.e. with the output of the ad-
joint operator DF [v]∗, is clear from comparison of (9) and
(10) with (8). For the surface oriented offset image volume,
one obtains the image by integrating over h (“stacking”):

I(x) =

Z

dhICO(x,h).

For the depth oriented offset image volume, on the other
hand, one simply sets h = 0 (“extract the zero offset sec-
tion”), which causes (10) to become identical to (8):

I(x) = ISS(x,0).

I have used “semblance” to describe the nature of the
image volume for a data-consistent velocity, motivated by
the well-established use of this word in to describe func-
tions which express this consistency or coherence (Taner &
Koehler 1969; Neidell & Taner 1971). The semblance con-
dition can be expressed as the requirement that the image
volume be an eigenvector of the mapping from image vol-
ume to image (defined by the imaging condition), with the
largest possible eigenvalue.

For surface oriented offset, this means that I(x,h)
should be constant in offset h. In practice, since amplitudes
are not controlled in this process (and because the Earth
does not conform to the constant density acoustic model),
constant phase is an acceptable substitute. The conventional
tool with which to judge this quality is the image gather, a
2D display in which the horizontal image coordinates are
fixed and the image amplitudes displayed as function of
depth and offset (or shot, or scattering angle,...). If depth is
the vertical coordinate in such a plot, constancy (of phase) of
ICO(x,h) in h implies that its appearance should resemble
horizontal stripes: the gather should be flattened. This crite-
rion is a generalization of the conventional quality assurance
metric of standard stacking velocity analysis (Yilmaz 2001).
An equivalent quality is strength of the stack, ie. final im-
age: it is strongest when all interference in the sum over h

is constructive (Taner & Koehler 1969).
Depth oriented offset volumes should on the other hand

be focused at zero offset when the velocity is compatible with
the data: that is, almost all energy in the volume should
be concentrated near h = 0. The scattering angle variant
should produce flat depth vs. angle gathers.

Velocity Analysis

Since the image volume constructed by prestack migration
should satisfy one of the conditions mentioned in the pre-
ceding paragraphs provided that the velocity is consistent
with the data, the failure of these conditions to be satis-
fied provides both evidence that the velocity is not consis-
tent with the data and means to update it to improve its
data-consistency. For the surface oriented offset volume, the
well-known “smiles and frowns” rule from standard process-
ing velocity analysis carries over almost unaltered, provided

that the lateral heterogeneity of the structure to be imaged
is not too great:

If an event in an image gather are convex upwards (downwards),
then the average velocity above the depth of the event is too high
(low).

Similar rules may be devised for updating velocity from
depth oriented offset image volumes (Claerbout 1985).

Such rules form the basis for many velocity model build-
ing techniques (Lafond & Levander 1993; Liu & Bleistein
1995). Some of these techniques are nowadays almost fully
automated, and applied to build 3D models. The methods
generally require explicit identification of events (picking),
thus intrinsically use an intermediate, reduced data volume
of picks. Later in this paper I will review attempts to con-
struct model updates directly from the image volume, with-
out event picking.

At this point, the significance of kinematic artifacts in
surface oriented image volumes is clear. These artifacts do
not conform to the semblance condition for image volumes
produced from correct velocities, even for synthetic data.
That is, when the velocity structure is sufficiently complex
that multipathing is important, image gathers are not in
general flat even for correct velocity models (Nolan & Symes
1997; Brandsberg-Dahl et al. 2003; Stolk & Symes 2004).
Even worse, nothing in the appearance of the artifact events
distinguishes them in any obvious way from the actual re-
flector images (Nolan & Symes 1997). Thus the appearance
of kinematic artifacts in surface oriented image volumes may
complicate their use for velocity updating in complex Earth
structure.

On the other hand, the landmark work of de Hoop &
Stolk (2005, 2006) established that no such artifacts are
present in depth oriented (survey-sinking) image volumes,
even in the presence of considerable multipathing, under the
sole restriction that rays carrying significant energy do not
turn horizontal. One might expect that the depth-oriented
image volume would exhibit more fidelity to the model, in
that every point in the volume depends on all of the data,
rather than on a subset (see equation 10). Thus all dips in
the data are controlled, and the rays contributing to a given
image point are uniquely determined. With some technical
caveats, this heuristic reasoning is correct. The result goes a
long way towards explaining the widely reported superiority
of “wave equation” migration for prestack imaging in regions
of complex velocity structure. Note that the use of the wave
equation, in the common depth extrapolation depth extrap-
olation computation of ISS, has nothing to do per se with
the artifact-free nature of the image volumes constructed by
this style of migration - the same results could be obtained
with a suitable computational asymptotic representation of
the integral formula (10). The restriction to vertically propa-
gating energy may be important however, see (Symes 2002).

EXTENDED MODELING: A UNIFYING

CONCEPT

The extension concept links the image volume constructions
of the last section with modeling and inversion: the imaging
operators exemplified by the formulae (9) and (10) are in
fact adjoints of linearized (Born) extended modeling.
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An extension of model F : M → D consists of

• an extended model space M̄ ;
• an extension operator E : M → M̄ ;
• an extended modeling operator F̄ : M̄ → D satisfying

F [m] = F̄ [E[m]] for any m ∈M .

The extension operator E should be injective, i.e. one-to-
one, hence enable one to view the model space M as a subset
E[M ] ⊂ M̄ of the extended model space. Since the extended
models will be in some sense unphysical, I will refer to E[M ]
as the “physical models”.

For an extended model as above, the extended inverse
problem is: given d ∈ D, find m̄ ∈ M̄ so that F̄ [m̄] ≃ d.
Since extended model space has more degrees of freedom,
ambiguity is more likely. A solution m̄ is physically mean-
ingful only if it is physical, i.e. m̄ = E[m]. In that case, m
is a solution of the original inverse problem, i.e. F [m] ≃ d,
because of the extension relation between F and F̄ . That is,

To solve the inverse problem (approximately), find a solution of
an extended inverse problem that lies in the range of the extension
map.

Application of this concept to migration velocity anal-
ysis is based on linearized (tangent) extended modeling.
Given an extension as above, its tangent extension consists
of

• the tangent extended model space TM̄ of pairs
(m̄0, δm̄) ∈ M̄ × M̄ ;
• E is typically linear, so its linearization DE : TM 7→ M̄

is defined by DE[m0]δm = E[δm].
• linearized (Born) extended modeling: DF̄ : TM̄ → D.

From the chain rule, it follows that DF̄ is an extension of
DF , i.e. DF̄ [E[m0]]E[δm] = DF [m]δm.

It turns out to be reasonable to restrict tangent ex-
tensions to perturbations of physical models, i.e. to assume
always that m̄0 = E[m0]. I shall assume this restriction im-
plicitly in the following discussion, and confound reference
models m0 with their images E[m0] under the extension
map.

An extension is approximately (linearly) invertible on
the data space D if its pseudoinverse is an approximate right
inverse:

DF̄ [m0]DF̄ [m0]
†d ≃ d

for all d ∈ D. This property is equivalent to approximate
surjectivity of the tangent extended operator: that is, for
any d ∈ D and admissible m0, one can find an extended
model perturbation δm̄ so that DF̄ [m0]δm̄ ≃ d− F̄ [m0].

The definition of the data space D may need to be ad-
justed to satisfy this surjectivity requirement. In the acoustic
example, event dips must be limited to those which corre-
spond to non-evanescent waves at the surface. Dip-limiting
can be built into the definition of the data space, for exam-
ple by redefining the norm in D to heavily weight evanescent
wave data. Such weighting is straightforward if the admis-
sible class of models includes constraints on wave velocities
near the surface

The basic modeling operators considered in this paper
are generally not (approximately) surjective. In particular,
the linearized modeling operator of DF [v] of the canonical
acoustic problem is not surjective in general, unless the data

is consistent kinematically with the velocity model v. This
occurs generically only for very special acquisition geome-
tries, for example single shot or offset gathers. In general
a poorly chosen velocity prevents accurate fitting of multi-
offset data. Put another way, the trivial extension, defined
by M̄ = M, E = I, F̄ = F , is almost never invertible for
acoustic modeling and its generalizations.

Surface Oriented Offset Extension

Take for the extended model space M̄SO a set of positive
functions v̄(x,h) of position x and offset h. The extension
map ESO simply views a physical velocity (positive func-
tion of x) as a function of x and h, i.e. as constant in h:
ESO[v](x,h) = v(x).

The extended modeling operator F̄SO computes the
traces for offset h by using the extended velocity model for
offset h, i.e. by solving (2) with v = v̄(·,h).

Tangent extended modeling is similar: DF̄SO computes
the perturbations of all traces with offset h by solving (4)
with δv = δv̄(·,h). Consistent with the remark above, only
physically consistent reference velocities v̄(x,h) = v(x) will
be considered. Accordingly, the tangent extended modeling
operator DF̄SO has an integral representation similar to that
of DF :

DF̄SO[v]δv̄(t,xs + 2h;xs) =
∂3

∂t3

Z

dx

Z

dτ×

G(t− τ,x;xs + 2h)G(τ,x;xs)
2δv̄(x,h)

v3(x)
(11)

which is almost the same as equation (7), in particular G is
the same Green’s function. The difference is that now the
velocity perturbation is allowed to depend on h.

The tangent extended model DF̄SO[v] appears to be
surjective in the sense defined above, i.e. any non-evanescent
data can be well approximated by its range for reasonable
definitions of the admissible model set. Some theoretical ev-
idence exists for this presumption (Sacks 1988).

The adjoint DF̄SO[v]∗ may be read off from the integral
expression (11): it is exactly the mapping defined by the
integral (9)! That is,

ICO = DF̄SO[v]∗(d− F [v])

As proven by Beylkin (1985) and Rakesh (1988), in the ab-
sence of multipathing, the linearized extended map DF̄SO[v]
is almost unitary: its adjoint differs from its inverse only by
dip-dependent scaling and filtering. Thus the common offset
image volume is actually seen to be an approximate tangent
extended inversion.

The adjoint of ESO is integration over h, i.e. stack-
ing, so one recovers the relation between image and image
volume from the chain rule and the composition relation
F = F̄SO[ESO]. That is, the imaging condition is simply
application of E∗

SO:

I = E∗
SOICO

The other aspect of the imaging condition - the quality
of the image volume which signifies data-consistent velocity -
is also inherent in the extension structure: it is simply mem-
bership in the range of ESO. This range consists precisely of
extended (linearized) models with δv̄ independent of h. As
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noted above, for reasons of modeling inaccuracy, use of the
adjoint of DF̄SO[v]∗ rather than the (pseudo)inverse (“true
amplitude migration”) operator DF̄SO[v]†, aperture deficits,
etc. it is usually necessary to relax this requirement, to mem-
bership in the larger subspace obtained from the range of
ESO by slowly-varying amplitude scaling and muting.

Note that when multipathing with significant energy
occurs, DF̄SO[v] is no longer almost unitary: reflector en-
ergy may move to the locations of kinematic artifacts, so
the adjoint operator is not an approximate inversion up to
dip-dependent scaling and filtering (Nolan & Symes 1997;
Brandsberg-Dahl et al. 2003; Stolk & Symes 2004). Other-
wise put, the normal operator is not pseudodifferential, the
economical construction of approximate inverses pioneered
by Beylkin (1985) is no longer possible, and prestack depth
migration does not produce image volumes remotely close
to the range of E, even when the velocity is data-consistent.
This defect is not limited to offset extensions, but also affects
those based on other surface acquisition parameters, even
scattering angle in the surface oriented definition (Stolk &
Symes 2004).

Depth Oriented Offset Extension

The nonlinear extended model relevant to wave equation mi-
gration requires a bit of a technical digression. I will sketch
this reasoning here, both because it will figure in the dis-
cussion of the next section and because it establishes the
clear-cut route between waveform inversion and migration
velocity analysis for the “wave equation” approach.

Denote by M̄DO the bounded positive selfadjoint op-
erators on L2(R3), the Hilbert space of square-integrable
functions. Given v̄ ∈ M̄DO, the corresponding generalized
acoustic potential field ū(t,x;xs) with point source at xs

and wavelet w(t) satisfies
„

v̄−2 ∂2

∂t2
−∇2

«

ū(t,x;xs) = w(t)δ(x− xs) (12)

The extended modeling operator is defined by

F̄DO[v̄](xr, t;xs) = ū(t,xr;xs)

Define the extension map EDO : M → M̄DO by

EDO[v]f(x) = v(x)f(x), f ∈ L2(R3)

EDO is continuous, eg. with the L∞ norm in domain and
the operator norm in the range.

Evidently F̄DO[EDO] = F , so the foregoing actually
does define an extension of F .

Acoustic wave velocity is a combination of density and
bulk modulus; the bulk modulus gives the volumetric strain
response of the material to dilatational stress. Continuum
mechanics mandates that this response be local, i.e. inter-
mediated by a diagonal (in space) operator. The extension
proposed here models action at a distance: the bulk modulus
is represented by a general symmetric positive definite op-
erator, not necessarily diagonal, so that the strain response
is not confined to the location of the imposed stress. Phys-
ical models, i.e. those in the range of EDO, do not permit
action at a distance, hence are modeled by diagonal opera-
tors (multiplication by functions). [I am indebted to Scott
Morton (personal communication) for this interpretation of
the depth-oriented model extension.]

The problem defined in (12) is of course a bit unusual,
as the coefficients in the wave equation have become oper-
ators, rather than scalars. This problem is mathematically
well-behaved, however, with unique finite energy solutions
for finite energy wavelet w(t), as follows from slight gener-
alizations of arguments given in Chapter 2 of Stolk’s thesis
(Stolk 2000a).

The tangent extended modeling operator DF̄DO is given
by

DF̄DO[v]]δv̄(t,xr;xs) = δū(t,xr;xs)

where
„

v−2 ∂2

∂t2
−∇2

«

δū(t,x;xs) = 2v−1δv̄

»

v−2 ∂2u

∂t2

–

(t,x;xs).

(13)
Presume as in the preceding section that the source is im-
pulsive, so that u = G. Since we are perturbing only about
physical models, the operator on the LHS is the ordinary
wave operator. Write the action of the operator δv̄ as if it
were an integral operator, with kernel also denoted δv̄. Then
we can express the solution of (13) as

δū(t,xr;xs) =

Z

dx

Z

dτG(τ,x;xr)
2

v(x)

Z

dx′×

δv̄(x,x′)
1

v2(x′)

∂2G

∂t2
(t− τ,x′;xs).

Change variables of integration from (x,x′) to h ← (x′ −
x)/2 and x ← (x′ + x)/2. Then the above integral is equal
to

=
∂2

∂t2

Z

dx

Z

dh

Z

dτ

G(τ,x+h;xr)G(t− τ,x−h;xs)
2

v(x + h)v2(x− h)
δv̄(x,h).

Considerable numerical evidence points to surjectivity
of DF̄DO[v], provided that v is confined to a suitable admis-
sible set and D is defined properly. No theoretical studies of
this question have appeared, to the author’s knowledge.

The adjoint tangent extended modeling operator is ev-
idently

DF̄DO[v]∗(d− F [v])(x,h) =
2

v(x + h)v2(x− h)

×

Z

dxs

Z

dxr

Z

dt

Z

dτG(t− τ,x+h;xr)G(τ,x−h;xs)×

∂3(d− F [v])

∂t3
(t,xr;xs),

which of course is exactly (10). That is,

the depth oriented image volume (output of survey sinking or
“wave equation migration”) is the image of the data under the
adjoint tangent extended modeling operator, for the depth ori-
ented offset extension:

ISS = DF̄DO[v]∗(d− F [v]), I = E∗
DOISS.

As noted above, in a much wider range of cases, includ-
ing all in which rays carrying significant energy propagate
without turning horizontal, the tangent extended operator
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for the depth oriented extension is near-unitary: its pseu-
doinverse differs from its adjoint by dip-dependent scaling
and filterin. Otherwise put, the normal operator for tangent
extended depth oriented extended modeling is pseudodiffer-
ential, absent turning rays. This variant of prestack depth
migration does produce image volumes near the range of the
extension map E for data-consistent velocity models, even
in the presence of significant multipathing.

OBJECTIVE MIGRATION VELOCITY

ANALYSIS

Migration velocity analysis has a very simple description in
the context of tangent extended modeling:

migration velocity analysis ≡ adjust the velocity model v to
bring the pseudoinverse solution of the linearized inverse problem
DF̄ [v]†(d−F [v]), or its prestack depth migration approximation
DF̄ [v]∗(d−F [v]), as near as possible to the range of the extension
map E (the physical models).

The pseudoinverse solution is only computationally feasi-
ble when it is closely related (by dip-dependent scaling and
filtering) to the prestack depth migration operator. There-
fore this procedure really only makes sense for the surface
oriented extension when energy moves from data to image
volume along essentially unique ray paths. When multiple
ray paths carry any significant amount of energy, the depth
oriented extension provides a more robust framework for ve-
locity analysis.

Many software tools exist to carry out this task inter-
actively. However it is also possible to view the aim of mi-
gration velocity analysis as inversion, and to automate its
accomplishment. In fact,

Provided that the underlying extemsion is invertible, migration
velocity analysis is an approximate solution method for the par-
tially linearized inverse problem: given data d, find velocity model
v and short-scale perturbation δv so that DF [v]δv ≃ d in the least
squares sense.

To see this, suppose that migration velocity analysis pro-
duces a pseudoinverse solution DF̄ [v]†(d − F [v]) that lies
near the range of E, i.e.

DF̄ [v]†(d− F [v]) ≃ Eδv

for a perturbational model δv. Invertibility of the extension
implies that

DF [v]δv ≃ DF̄ [v]DF̄ [v]†(d− F [v]) ≃ d− F [v]

That is, v and δv solve the partially linearized inverse prob-
lem.

For those cases in which the pseudoinverse is closely
related to the adjoint, i.e. in the absence of kinematic ar-
tifacts, the criteria for membership in the range of E may
be verified by examination of DF̄ [v]∗(d − F [v]) instead, as
already noted.

Annihilators

Since migration velocity analysis actually (implicitly) solves
a version of the waveform inversion problem, it is natural to
seek objectives whose extrema represent the solution. Since

the range of E is a linear subspace of M̄ , any linear op-
erator vanishing on this subspace gives rise to a quadratic
form which can serve as such an objective. A (possibly) v-
dependent map A[v] from extended model space M̄ to some
other Hilbert space H is an annihilator of the range of E if

r = Eδv ⇔ A[v]r = 0

.
If A[v] is an annihilator in the sense just defined, then

the function

JA[v, d] ≡
1

2
‖A[v]DF̄ [v]†(d− F [v])‖2 (14)

attains its global minimum at velocities which produce phys-
ical short-scale models, i.e. image volumes in the range of
the extension operator. Any such function could potentially
serve as the objective for an optimization approach to mi-
gration velocity analysis. Computational advantage can be
gained if the pseudoinverse DF̄ [v]† can be replaced by the
adjoint DF̄ [v]∗ (i.e. prestack depth migration instead of lin-
earized inversion) without seriously perturbing the locations
of minimizing models. Such replacement is possible with
some choices of A[v].

Of course, the linear space of operators A[v] annihilating
the range of E typically has high dimension. Somewhat more
surprisingly, the behaviour of the corresponding functions
JA varies dramatically with the choice of A[v]. The following
three types of annihilator have been studied extensively:

• A[v] = (DF [v]DF [v]† − I)DF̄ [v].Under the standing
assumption on invertibility of the extension,

JA[v, d] =
1

2
‖(DF [v]DF [v]† − I)DF̄ [v]DF̄ [v]†(d− F [v])‖2

≃
1

2
‖DF [v]DF [v]†(d− F [v]) − (d− F [v])‖2

= minδv

1

2
‖DF [v]δv − (d− F [v])‖2.

Thus minimizing JA over v is equivalent to output least
squares solution of the partially linearized problem. So even
output least squares fits in this “annihilator” framework.
• A = EE† − I . Note that

‖(EE† − I)r‖2 = ‖EE†r‖2 − 2〈r, EE†r〉+ ‖r‖2.

Recalling that E may be taken to be an isometry, i.e. E∗ =
E†. Using this fact and the pseudoinverse property EE†E =
E, the last line simplifies to

= ‖r‖2 − ‖E†r‖2.

Thus minimizing JA in this case is the same as maximiz-
ing ‖E†DF̄ [v]†(d − F [v])‖2. Provided that DF̄ [v] is almost
unitary, same optima occur using prestack depth migration
rather than pseudoinversion, i.e. minimizing JA yields the
same velocity model as does maximizing ‖E∗DF̄ [v]∗(d −
F [v])‖2 = ‖DF [v]∗(d − F [v])‖2. For the surface oriented
extension, the resulting functional is the simplest version
of (total)stack power, and was studied in the context of
convolutional modeling by Toldi (1989). For either type of
extension described above, it amounts to the image power
(Soubaras & Gratacos 2006; Shen & Calandra 2005).
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• A = (1−∇2

x,h)−
1

2 ∂h for the surface oriented extension,
and h (i.e. multiplication by offset) for the depth oriented
extension, and various inessential modifications of these op-
erators. Introduced by the author (Symes 1986b), this type
of annihilator has come to be called differential semblance.

We have already discussed the behaviour of the out-
put least squares function at some length, and this partially
linearized version of it shares the same propensity for mul-
timodality. Prestack depth migration cannot in general be
used as a straightforward substitute for linearized inversion
in this partially linearized output least squares formulation
of objective velocity analysis: the mismatches of amplitudes
can actually generate yet more spurious stationary points.

The second choice (image power) is much less affected
by the amplitude differences between (pseudo)inversion and
prestack depth migration, but also exhibits a pronounced
tendency to multimodality: with prototypical data band-
width and acquisition geometry, many critical points typ-
ically appear, most having nothing to do with a physically
meaningful solution. Chauris has carefully illustrated this
phenomenon, and noted that it is caused by isolated tan-
gencies between unrelated events in predicted and target
data (Chauris 2000; Chauris & Noble 2001). As is the case
with output least squares, a sufficiently good initial guess,
made easier to supply by downfiltering the data in early
stages, can yield convergence for image power optimization.
Soubaras has recently provided an excellent example of this
strategy (Soubaras & Gratacos 2006), and it has been used
to good effect by Shen and colleagues as well (Shen & Ca-
landra 2005; Shen et al. 2005a).

The differential semblance class (third option from list
above) has many variants, some employing prestack depth
migration (i.e. DF̄ [v]∗) rather than (pseudo)inversion to
construct the function JA. Differential semblance variants
based on surface oriented extension have used

• convolutional model simulation of plane wave data
(Symes 1986b, 1990; Symes & Carazzone 1991; Symes 1991b;
Symes & Carazzone 1992; Minkoff & Symes 1997),

• convolutional model simulation of CMP data (Symes
1993; Symes & Gockenbach 1995; Symes 1998; Li & Symes
2005; Dussaud & Symes 2005; Verm & Symes 2006),

• two-way wave equation modeling (two-way reverse time
migration) (Symes 1991c; Symes & Versteeg 1993; Kern &
Symes 1994),

• generalized Radon transform simulation of acoustic
scattering (Kirchhoff migration) (Chauris & Noble 2001;
Mulder & ten Kroode 2002; de Hoop et al. 2003), and

• generalized Radon transform simulation of anisotropic
elastic scattering (de Hoop et al. 2005).

Variants based on depth oriented extension have employed

• one-way wave equation migration of shot profiles (Shen
et al. 2005b; Albertin et al. 2006), and

• one-way wave equation migration via the DSR equation
(Shen et al. 2003; Khoury et al. 2006).

The same concept has been applied to cross-well tomography
(Plessix 2000).

Mathematical Characterization of Differential

Semblance

Differential semblance has a precise mathematical char-
acterization, which partly explains its significance:
Amongst all possible quadratic forms in the data, parametrized

by velocity, of the form given in equation (14), only differential
semblance (and inessential variations thereof) is smooth jointly
as a function of smooth perturbations in velocity and finite energy
perturbations in data (Stolk & Symes 2003).

More precisely, the annihilator A must be belong to
the class of pseudodifferential operators, mentioned earlier
in connection with the normal (Hessian) operator of linear
scattering. This statement is a paraphrase of the precise
mathematical fact; the reader may consult the reference for
the “fine print”. The significance of this statement lies in
the requirement of smoothness under variation of both ve-
locity and finite energy data, i.e. data perturbations of un-
limited bandwidth. A related statement is that the shape of
the differential semblance objective function is stable as data
sampling is refined and/or upper bandlimit increased, and
no other form of JA has this property - not image power,
not output least squares, nor any other yet-to-be-invented
quadratic forms. Since any smooth objective in this sense
necessarily has a partial Hessian operator in d, of the form
given in equation (14), this result also shows that any func-
tion of v, d must be identical to differential semblance to
second order in d, if it is to be smooth in the sense specified.

Pseudodifferential operators share many properties
with differential operators: indeed, they form an algebra,
generated by differential operators and all powers of the
Laplace operator. They are expressed as integral operators
whose kernel is a the product of the Fourier sinusoid with
a so-called symbol, a function of position and wavenumber.
The symbol and its derivatives are required to grow like a ho-
mogeneous function of the wavenumber, at large wavenum-
ber, as do polynomials (but so do some non-polynomial func-
tions); differential operators form a special subalgebra, for
which the symbol is a polynomial in wavenumber. It is a
remarkable fact that annihilators generating smooth objec-
tives for migration velocity analysis must belong to this very
special class of operators.

The argument given in (Stolk & Symes 2003) is quite
technical; it generaizes a characterization of pseudodiffer-
ential operators due to Cordes (Taylor (1981), Ch. VIII).
The essence however is fairly straightforward, and a sim-
ple one-dimensional model problem will give the reader
some inkling. Observe that migration involves moving and
stretching of events. The linear operator of composition
with affine motion of the real line is thus a simple ana-
log of migration. The analog of the question answered in
(Stolk & Symes 2003) is: for which bounded operators A on
square-integrable functions is the quadratic form, generated
by composing the operator with affine motions, smooth as
a function of the affine motion parameters and the input
square-integrable function?

Affine motions of the line take the form t 7→ τ +αt, and
are parametrized by a shift τ and a dilation factor α Com-
position of a function u(t) with an affine motion of shift by
τ and stretch or dilation by the factor α yields the operator
Tτ,αu(t) = u(τ + αt).

Given a bounded operator A on the Hilbert space
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of square-integrable functions on the real line, define the
quadratic form in JA[τ, α; u], parametrized by τ, α, by anal-
ogy with the construction explained in the preceding sub-
section:

JA[τ, α; u] =
1

2

Z

dt|(ATτ,αu)(t)|2

For convenience I will assume that A is represented by an
integral with kernel a:

Au(t) =

Z

ds a(t, s)u(s)

and that a(t, s) vanishes for large |t|, |s|. This assumption
is not essential, and can be removed at the price of a more
sophisticated and less transparent argument.

Smoothness of the quadratic forms mentioned in the
preceding subsection is analogous to smoothness of

(τ, α, u) 7→ JA[τ, α; u].

If the gradient (in u) of JA is to be smooth as well (as is
required for reliable convergence of Newton’s method), then
the mappings

(τ, u) 7→ T ∗
τ,0BTτ,0u, (α, u) 7→ T ∗

0,αBT0,αu

must also be differentiable; here B = A∗A is also an integral
operator, with kernel related to that of A. Since the kernel
of A is assumed to vanish outside a square, it follows that
the kernel b(t, s) of B vanishes outside a (possiblly bigger)
square. Assume that b is also regular enough to have a well-
defined Fourier transform p(t, ω) in its second argument, i.e.

p(t, ω) =

Z

ds e−isωb(t, s).

Then by Plancherel’s Theorem,

Bu(t) =
1

2π

Z

dωp(t, ω)eiωtû(ω)

in which û is the Fourier transform of u. Thus p plays the
role of a symbol, and B is a pseudodifferential operator if p
grows like a homogeneous function of |ω| for large ω. It is
straightforward to see that

∂

∂τ
T ∗

τ,0BTτ,0u

˛

˛

˛

˛

τ=0

=
1

2π

Z

dω
∂p

∂t
(t, ω)eiωtû(ω)

∂

∂α
T ∗

0,αBT0,αu

˛

˛

˛

˛

τ=0

=
1

2π

Z

dω

„

ω
∂p

∂ω
− t

∂p

∂t

«

(t, ω)eiωtû(ω).

Since the support of b is bounded, the choice u(t) = e−iω0t

is effectively square-integrable (set to zero where b=0), so
that for a constant K independent of ω0 and t,

˛

˛

˛

˛

∂p

∂t
(t, ω0)

˛

˛

˛

˛

≤ K,

˛

˛

˛

˛

ω
∂p

∂ω
(t, ω0)

˛

˛

˛

˛

≤ K.

Iterating this reasoning and rearranging, conclude that for
any k, m ≥ 0,

˛

˛

˛

˛

∂k

∂tk

∂m

∂ωm
p(t, ω)

˛

˛

˛

˛

≤ Kk,m(1 + |ω|)−m

for a sequence of constants Kk,m independent of t and ω.
This estimate says precisely that the symbol p, together
with all of its derivatives, grows like a homogenous func-
tion (of order zero) as |ω| → ∞, i.e. has the property re-
quired to conclude that B is a pseudodifferential operator.

This argument does not show that A is pseudodifferential.
However symmetric nonnegative definite pseudodifferential
operators like B have pseudodifferential square roots. Re-

placing A with B
1

2 does not change the quadratic form JA,
whence A might as well be pseudodifferential.

Technically more involved arguments are required to
replace affine motions with the prestack migration opera-
tor DF̄ [v] and to conclude that annihilators A generating
smooth (in v, d) quadratic forms JA[v, d] for migration ve-
locity analysis must be pseudodifferential, but the essential
concept is the same.

The numerical work cited above suggest in one way or
another than not only is the differential semblance objec-
tive stable against high-frequency data perturbation, but
it is also essentially monomodal: the only stationary points
are physically significant solutions of the waveform inversion
problem (and, in particular, velocities kinematically consis-
tent with data). In one special case, this has even been
proven with mathematical rigor: for the differential sem-
blance variant for CMP data, based on hyperbolic NMO
(Symes & Gockenbach 1995; Symes 1998; Li & Symes 2005;
Verm & Symes 2006; Li & Symes 2007), all stationary points
are global minima, up to an error proportional to a domi-
nant wavelength (Symes 1999, 2001). The essential idea of
the proof is the relation between the differential semblance
objective and fitting of apparent velocities in the data, an
approach to velocity estimation also known as stereotomog-
raphy (Billette & Lambaré 1998). That is, differential sem-
blance is essentially data-weighted stereotomography, im-
plicitly computed without event picking (see also (Chauris
2000; Chauris & Noble 2001)).

Influence of Coherent Noise

The linearized description of seismic scattering models sin-
gle or primary scattering. It neglects multiple scattering, so
that any multiply scattered energy in the data appears as
coherent noise, with apparent velocity differing from that of
the primary events. Since multiple reflections are not a neg-
ligible component of typical reflection data, the influence of
this signal type on objective migration velocity analysis al-
gorithms must necessarily play a role in determining their
practical impact.

The contrasting behaviors of the various migration ve-
locity analysis objectives carry over to their response to the
presence of coherent noise such as multiple reflections. As
noted above, output least squares and image power opti-
mization via Newton-like algorithms require good initial es-
timates of velocity structure in order to converge to a phys-
ically relevant final velocity estimate. However, output least
squares and image power optima are not much influenced by
presence of events with differing apparent velocity, which are
effectively orthogonal signal components hence thrown into
the residual (output least squares) or stacked out (image
power). Differential semblance optima, on the other hand,
are quite stable against changes in initial estimate but are
strongly influenced by coherent noise, tending to yield av-
erages of apparent velocities weighted by the corresponding
event strengths (Gockenbach & Symes 1999; Mulder & ten
Kroode 2002; Li & Symes 2005; Verm & Symes 2006).

Several “signal processing” approaches have been sug-
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gested to retain the global convergence properties of differ-
ential semblance optimization while reducing its sensitivity
to coherent noise. An obvious approach is application of one
or more multiple suppression algorithms to the data, to ren-
der it more similar to the primaries-only data modeled by
the Born approximation (Gockenbach & Symes 1999; Li &
Symes 2005). Since the tendency of differential semblance is
to average the apparent velocities of events, the lower ve-
locities of multiple reflections in near-layered structures will
tend to appear undercorrected in image gathers, whereas
the primary events appear overcorrected. Therefore, dip-
filtering the undercorrected events and remodeling will have
the effect of suppressing multiple reflections, under these as-
sumptions (Mulder & ten Kroode 2002; Li & Symes 2007).
Finally, the extremal regularization algorithm (Gockenbach
& Symes 1999) perturbs data as well as velocity to find the
well-fit data closest to given data. In the event that the pri-
mary reflections form the strongest consistent family of re-
flections in the data, the extremal regularization algorithm
will find them (Gockenbach & Symes 1999).

Another approach to desensitization of differential sem-
blance optimization to the presence of coherent noise re-
lies on continuation or homotopy, using the differential sem-
blance velocity estimate as a starting guess, then introducing
either a blend of differential semblance and image power or
output least squares objectives, or simply switching to im-
age power or output least squares. Gockenbach analyzed a
homotopy between differential semblance and output least
squares in his thesis, and showed that with some reasonable
assumptions one could guarantee that the path beginning
at the differential semblance solution terminates as the out-
put least squares solution (Gockenbach et al. 1995). Chau-
ris (2000); Chauris & Noble (2001) employed a similar ap-
proach using image power, as did Shen and collaborators
(Shen et al. 2005b; Shen & Calandra 2005). Celis and Larner
proposed a similar homotopy, computing image power or an
equivalent crosscorrelation over offset windows of varying
width; in the limit of small width, the crosscorrelation is
very close to differential semblance in its behviour (Celis
& Larner 2002). All of these homotopies share an implicit
constraint on the overall noise energy with extremal reg-
ularization: if the noise is sufficiently large, the homotopy
begins at a highly corrupted differential semblance estimate
and terminates at a spurious stack power peak or output
least squares local minimum.

All of these ideas have been shown to be effective in
limited circumstances. However, all are somewhat ad hoc.
Multiple scattering is a physical phenomenon predicted by
modeling, and evident in much - perhaps almost all - field
data. This observation suggests development of a different
and more fundamental approach to migration velocity anal-
ysis, based on full nonlinear modeling. Such an approach
would at first appear to suffer from internal contradiction,
since migration is tied to linearized modeling. However the
extended modeling point of view provides a way to resolve
this conceptual conflict.

TOWARDS EFFECTIVE NONLINEAR

WAVEFORM INVERSION

Each of the extensions underlying the two common vari-

ants of prestack depth migration is the linearization of a full
waveform modeling extension. In all cases examined in this
paper, the extension map E is linear, so linear annihilators
A may be used to characterize its range and hence the phys-
ically significant solutions of the extended nonlinear inverse
problem.

Accordingly, suppose that F̄ : M̄ → D and E : M →
M̄ form an extension of F : M → D, and that A is an
annihilator of the range of E. For the present discussion, in
contrast to that of the last section and without compelling
reason to do otherwise, suppose that A is a fixed, linear map.
Given d ∈ D and a fit tolerance ǫ > 0, define the feasible
model set Sǫ[d] by

Sǫ[d] = {m̄ ∈ M̄ : ‖F̄ [m̄]− d‖ ≤ ǫ‖d‖},

and JA : M̄ → R by

JA[m̄] =
1

2
‖Am̄‖2.

A solution of the constrained optimization problem

minimize JA[m̄] subject to m̄ ∈ Sǫ[d] (15)

is then a candidate for solution of the waveform inversion
problem. If the objective value is near zero, then the solu-
tion m̄ predicts the data to within the specified tolerance,
and is close to the range of E in the sense that its image
under A is small. Therefore there exists a model m ∈ M
with Em ≃ m̄, hence F [m] ≃ d. Conversely, if the data
d ∈ D is consistent with the model to tolerance ǫ, that is, if
m ∈M exists for which ‖F [m]− d‖ < ǫ, then m̄ = Em is a
priori a solution of problem (15). Of course the constrained
optimization problem (15) can be rewritten as an uncon-
strained problem by use of a penalty (Lagrange multiplier)
formulation.

In general, two major issues arise in formulating any
approach to the solution of problem (15):

• representation of the extended model M̄ , and
• parametrization of the feasible model set Sǫ[d].

The first issue presents few difficulties for some surface-
oriented extensions, a circumstance evident in the theory
developed in (Symes 1991a). The extended model simply
amounts to permitting the coefficients in the wave equation
to depend on a surface acquisition parameter, and simula-
tion is independent for each value of the parameter. Thus
the computational complexity of the extended modeling op-
erator is no greater than that of the basic modeling operator.
The memory complexity is equivalent to that of image vol-
ume formation in prestack depth migration. [Common offset
modeling is an exception to this rule - it does not appear to
be possible to model common offset data gathers without
dramatically increased computational effort, essentially the
same effort as modeling each trace independently.]

For depth oriented extensions, the coefficients in the
wave equation (vectors in the extended model space) are
positive definite symmetric operators. The kernels or ma-
trices of these operators occupy storage equivalent to that
of image volumes in prestack depth migration. However the
computational complexity of modeling via timestepping for
generalized wave equations such as (12) is potentially enor-
mous, apparently involving a matrix multiplication at each
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time step. In special cases, such as the layered model dis-
cussed below, the cost of modeling can be reduced dramati-
cally by judicious choice of basis in model space. I will come
back to this issue, which is currently very much open, in the
concluding discussion.

The force of the second issue arises from the very irreg-
ular geometry of the set Sǫ[d]. [For an explicit discussion of
a closely related phenomenon and a careful quantification,
see (Chavent 1991).] This puts the constrained optimiza-
tion problem (15), in its original form, beyond the reach of
sequential quadratic programming, which amounts to New-
ton’s method applied to the first order necessary conditions
for a constrained optimum (Nocedal & Wright 1999). As for
all other versions of Newton’s method, smoothness of the
objective (in this case, the Lagrangian function) is essential.
However the Lagrangian is just as irregular as the output
least squares objective discussed earlier. A reparametriza-
tion is essential, so that the problem becomes a smooth one
amenable to relatives of Newton’s method.

Note that migration velocity analysis, viewed as a route
to partially linearized inversion via tangent extended mod-
eling, could be formulated in the same way, with the same
difficulty. A reparametrization of the feasible set is built into
the formulation of the problem: the analogue of Sǫ for migra-
tion velocity analysis consists of the set of pairs v, DF̄ [v]†d,
parametrized by the macromodel velocity v and the data d.
That is, for migration velocity analysis, the velocity model
naturally parametrizes the feasible set. This set is also highly
curved, but the evaluation of JA (as defined in this section)
on this set, viewed as a function of v, is smooth provided
that an appropriate choice of A is made, as noted above.

An effective reparametrization of Sǫ[d] for layered mod-
eling uses the well-known slowness-dependent traveltime
parametrization of depth. The author studied a penalty re-
formulation of (15) for plane wave solutions of a layered
acoustic model with surface-oriented extension in (Symes
1991a). I used traveltime parametrization and a natural ver-
sion of differential semblance for A. I showed that the Hes-
sian of the penalty function at a consistent solution is pos-
itive definite, which implies the uniqueness of the station-
ary point at least locally, i.e. absence of spurious stationary
points. To obtain positivity of the Hessian, I imposed a scale
dichotomy property on the model, which is reminiscent of the
scale dichotomy used to justify use of perturbation theory.
This study did not address the determination of appropri-
ate values for the penalty parameter, an essential step in
any practical implementation.

Parametrization by traveltime is not available in gen-
eral for multidimensional problems. However one can equally
well view this step as parametrization of the model by
the data together with the long-scale part of the velocity
model, which of course determines the relation between trav-
eltime and depth. In the linearized multidimensional set-
ting, this concept was the foundation of the Model-Based
Traveltime approach to migration velocity analysis proposed
by Chavent and his co-workers (Clément & Chavent 1993;
Plessix et al. 1995).

A drawback to parametrizing the feasible set by the
long-scale part of the velocity is the very definition of “long-
scale”: the term refers implicitly to spatial wavelength,
which is model-dependent. An alternative choice would be
the low-frequency band not supplied in field data, via the

solvability of the impulsive inverse problem (i.e. with data
at all frequencies including 0 Hz). This is the approach ac-
tually taken in the layered medium study mentioned above
(Symes 1991a). Some numerical evidence (but little theoret-
ical backup) exists that the impulsive several dimensional
nonlinear problem also has unique solutions. For example,
the previously mentioned work of Bunks, Chavent, and col-
laborators (Bunks et al. 1995), also that of Shin and col-
laborators (Shin & Min 2006), may be interpreted as sug-
gesting that the 2D common source point inverse problem
has a well-defined and computationally tractable solution
provided that essentially impulsive data is available. This
evidence supports the hypothesis that solution of impulsive
source problems may provide appropriate reparametrization
for Sǫ[d], at least for surface oriented extension.

No evidence, numerical or otherwise, seems to exist con-
cerning constructive reparametrization of the depth oriented
extension in its nonlinear form. It is possible however to an-
alyze a special case, that of layered models.

Depth oriented extension for layered models

Assume that the Earth is horizontally layered, and that the
depth oriented extended model (12) should also model lat-
erally homogeneous action-at-a-distance. That is, shifting
the source location xs horizontally should produce a cor-
responding shift in the wavefield ū in the extended model
(12). Assuming that the source and receiver positions lie at
the same depth, and that the offsets are the same from shot
to shot, it follows that the data is also a function of offset
only. Moreover, it follows that the operator v̄−2 is neces-
sarily a convolution operator in the horizontal variables, For
computational purposes, it is convenient to represent v̄2 as
convolution with a kernel σ, and for convenience I will as-
sume a 2D Earth (or equally well a line source in the y
direction). For any function g(z, x) even in x,

v̄2g(z, x) =
1

π

Z

dk cos kxσ̂(z.k)ĝ(z, k),

where ĝ is the cosine transform of g. Assume, also for con-
venience, that the velocity field is known near the surface,
and in particular at the source depth, and is physical: for z
near zs, v̄(z, x) = v0δ(z − zs)δ(x− xs). Locating the source
for convenience at xs = 0, the wavefield u is perforce even
in x. The extended modeling equation (12) then implies for
the cosine transform û

»

∂2

∂t2
− σ̂(z, k)

„

∂2

∂z2
− k2

«–

û(t, z, k) = v2

0w(t)δ(z − zs).

(16)
Representing the operator v̄2 in this way has made its ac-
tion sparse (diagonal) in an appropriate basis, so that its
computational cost is reduced to the same level as that of
a physical velocity model (i.e. multiplication operator). Ac-
cordingly, the wave equation (16) may be solved as efficiently
as the basic modeling equation (2) (actually, more efficiently,
in this case).

The extended forward modeling operator has the rep-
resentation

F̄ [v̄](t, zr, xr) =
1

π

Z

dk cos kxr

∂û

∂t
(t, zr, k) (17)

in terms of the cosine transformed field û, which suggests an
efficient implementation of F̄ .
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A simple finite difference scheme of order 2 in time and 4
in space is amply accurate to approximate the solution of the
extended modeling equation (16). Discrete cosine transform
then provides a natural and efficient implementation of the
extended modeling operator via (17). To obtain points in
the feasible model set Sǫ[d], I approximated the solution of
the extended inversion problem

minimize ‖F̄ [v̄]− d‖ over v̄ (18)

using a quasi-Newton method (limited memory Broyden-
Fletcher-Goldfarb-Shanno, see (Nocedal & Wright 1999)).
This technique required computation of the gradient of the
objective appearing in (18). I computed the gradient using
the adjoint state method (Tarantola 1987; Plessix 2006). A
useful by-product of these constructions was a quasi-Newton
method for solving the output least squares problem (1) for
the basic forward modeling operator F of layered acoustics.

The examples to follow all pertain to the same simple
three-layer model, depicted in Figure 1. The surface z = 0 of
this model is pressure-free, modeled by a Dirichlet boundary
condition. The reflectivities are chosen so that the free sur-
face multiple reflection from the first layer is roughly the
same strength as the primary reflection from the second
layer, see Figure 2.

Iterative output least squares inversion for a layered ve-
locity model yields results which depend strongly on the ini-
tial estimate, consistent with the accumulated experience of
other studies as reviewed above. Three such results are de-
picted in Figure 3. Only the inversion from the initial model
with correct velocity in the second layer (blue curves in Fig-
ure 3) places the second reflector at the right depth. Inver-
sion cannot of course correct the velocity below the second
interface, as no reflections return from deeper in the model.
Each iteration was halted when the gradient decreased in
length by two orders of magnitude from its initial value.

Iterative extended output least squares inversion also
produced results depending on the initial estimate. For the
same initial estimates as in used in the output least squares
trials (Figure 3), or rather their extensions (images under
E), the extended inversions are depicted in Figures 4, 5,
and 6. In all three cases, Broyden-Fletcher-Goldfarb-Shanno
iteration was terminated when the RMS fit error declined
to 1 %. The predicted seismograms, that is, F̄ [v̄], are shown
for the three cases in Figures 7, 8, and 9. All are visually
indistinguishable from the data depicted in Figure 2.

These results suggest several conjectures about this par-
ticular extended inverse problem:

• The range of F̄ appears to be stable (analogue of sur-
jectivity for linearized extention), and fairly precise fits to
data are possible via local optimization (limited memory
Broyden-Fletcher-Goldfarb-Shanno) starting at a wide vari-
ety of initial model estimates;
• Only the extended output least squares estimate pro-

duced by a kinematically accurate initial model (Figure 6)
is reasonably close to the range of the extension map E, i.e.
concentrated near zero offset. Moreover, the degree of con-
centration appears to change smoothly as the initial velocity
becomes kinematically more accurate;
• The treatment of the extended output least squares

problem could benefit from some regularization (not applied
in these experiments): all estimates produced in this series
are relatively noisy.

Thus the nonlinear analogue of the surjectivity prop-
erty important in the migration velocity analysis analysis,
appears to hold at least to the limited extent investigated
in these examples. Furthermore, the behavior of these ex-
tended output least squares inversions is roughly consistent
with the expectation that the function JA, for A = multi-
plication by offset, may in some sense change smoothly with
position in the feasible model set Sǫ[d] (in which Figures 4
through 6 represent three points).

DISCUSSION AND CONCLUSION

The foregoing discussion has reviewed the failure of wave-
form (output least squares) inversion to update macromod-
els and the contrasting ability of migration velocity analysis
to do so. Migration velocity analysis is based on linearized
or Born modeling, and has at least two major variants cor-
responding to two approaches to image volume formation.
The extension concept formalizes image volume formation as
application to data of an adjoint (or pseudoinverse) tangent
modeling operator. This identification clarifies the meaning
of the tendency of surface oriented image volumes to ex-
hibit kinematic artifacts in the presence of multipathing: the
corresponding extended adjoint tangent extended modeling
operator is not a good approximation to the pseudoinverse.
The depth oriented extension on the other hand maintains a
close relationship (modulo dip-dependent amplitude scaling
and filtering) between adjoint and pseudoinverse tangent ex-
tended modeling operators under a much wider range of cir-
cumstances. In both cases, migration velocity analysis may
be cast as an optimization problem in a number of ways.
Only one of these, differential semblance, appears to yield
optima that are robust against large errors in initial model
estimates.

The extension concept permits a unified view of output
least squares and migration velocity analysis approaches to
Earth model estimation: migration velocity analysis can be
regarded as a solution method for a partially linearized out-
put least squares inverse problem. The extension framework
also suggests an approach to nonlinear waveform inversion
incorporating elements of migration velocity analysis. Pre-
liminary numerical experiments hint that this nonlinear ex-
tension may serve as the basis for model updates incorpo-
rating substantial velocity changes and accounting properly
for multiple reflections (and, in more general settings, other
physics of waves).

Two remaining obstacles must be overcome before this
nonlinear migration velocity analysis approach to waveform
inversion becomes in any sense practical. The first concerns
the depth oriented extension: in this formulation, nonphysi-
cal models are operators, and must be represented as sparse
matrices in order that timestepping simulation is compu-
tationally feasible. The simple solution sketched above for
layered models, via convolution and the Fourier transform,
is not available in general. A possible resolution may lie in
a phase space representation: the kernels of these operators
are analogous to space shift image volumes in survey-sinking
prestack depth migration, and these data tend to be very
sparse in phase space (one or at most a few dips at any
one point in space). Fast algorithms have been developed in
the last few years for representation of functions possessing
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the typical phase space sparsity properties of seismic images
(Candes & Demanet 2005; Chauris 2006). The operator coef-
ficients appearing in the nonlinear depth oriented extension
thus might be expected to be sparse in phase space as well,
that is, to have a sparse matrix representation in terms of
curvelets or another multiresolution frame.

The second obstacle is the problem of extreme geomet-
ric irregularity of the feasible model set Sǫ[d], and the conse-
quent poor performance of standard constrained optimiza-
tion tools such as sequential quadratic programming, which
typically fail to solve the problem (15) when applied directly.
Earlier work on the layered acoustic problem (Symes 1991a)
suggested that reparametrizing the feasible model set via
impulse response inversion (that is, viewing the missing low
frequency components as parameters) may circumvent this
difficulty. Some numerical evidence indicates that impulse
response inversion for surface oriented extensions may in-
deed be possible, for nonlayered problems as well. Whether
a similar statement can be made for depth oriented exten-
sions remains to be seen. This is a matter of some import, as
the nonlinear scattering effects which motivate the nonlinear
migration velocity analysis approach sketched here tend to
occur in conjunction with complex ray geometry. A notori-
ous example of this phenomenon occurs in the vicinity of salt
bodies embedded in sedimentary sequences, giving rise to ru-
gose high contrast interfaces generating complex ray paths
and strong multiple reflections. In the presence of such com-
plexity (multipathing), the structure of the inverse problem
for depth oriented extensions is simpler (more straightfor-
ward relation between adjoint and pseudoinverse for tangent
operators) than is the case for surface oriented extensions.
This reasoning suggests that the impulse response inverse
problem for depth oriented extension is worth some study.
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FIGURE CAPTIONS

Figure 1. A simple three layer velocity model.
Figure 2. Common shot gather for velocity model of Figure
1. Source wavelet is (4,10,30,40) Hz trapezoidal zero-phase
bandpass filter.
Figure 3. Results of three trials of output least squares in-
version for the data of Figure 2. In each case (red, green,
blue), the dashed line is the initial velocity estimate, the
wiggly line is the final estimate. Limited memory Broyden-
Fletcher-Goldfarb-Shanno iteration halted when the gradi-
ent norm dropped to 1% of its initial value. Note that (a)
only when the initial velocity is correct up to the second
interface (blue lines) is the estimate of the second interface
position correct; (b) the surface multiple from the second in-
terface shows up as an inhomogeneity in the estimated veloc-
ity for both the constant velocity initial estimate (red lines)
and the estimate with a second layer at 2.0 km/s (green
lines), but disappears when the kinematics are correct (blue
lines); (c) the iteration fails in both of the first two cases
to update the second layer mean velocity; (d) in all cases
the velocity below the second interface remains at its initial
value, because no constraint is present in the data.
Figure 4. Inversion for extended model, constant initial
velocity (≡ 1.5 km/s, red dashed line in Figure 3). Note the
large amount of energy spread across the entire offset range.
Figure 5. Inversion for extended model, initial velocity in-
cludes jump to 2 km/s at depth of 0.2 km (green dashed line
in Figure 3). Energy still present at nonzero offsets, but less
so than in Figure 4.
Figure 6. Inversion for extended model, initial velocity in-
cludes jump to 2.4 km/s at depth of 0.2 km (blue dashed line
in Figure 3), which is kinematically correct down to the sec-
ond interface. Energy mostly focused at zero offset, except
for inversion noise which should be suppressed by proper
regularization. Note that second reflector now appears at
correct depth, and multiple reflection (visible in Figures 4
and 5) has disappeared.
Figure 7. Resimulated data from inverted model of Figure
4.
Figure 8. Resimulated data from inverted model of Figure
5.
Figure 9. Resimulated data from inverted model of Figure
6.
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