2006-Present:

- Computational And Applied Mathematics, Rice University
- Advisor: Dr. William Symes

2002-2006:

- BS in Information and Computational Science
- Nanjing University, China
Interval velocity estimation via NMO-based Differential Semblance

Chao Wang

Advisor: Dr. William Symes
CAAM, Rice University

TRIP Annual Meeting 2008
Classical Semblance is equivalent to least squares data fitting and has local maxima.

All stationary points of Differential Semblance are global minimizers.

A recent approach to Differential Semblance has some numerical problems. I proposed an alternative approach to overcome these difficulties.
The simplest acoustic model

The acoustic wave equation where density is considered constant and equal to one, with a point source:

\[
\frac{1}{c^2(x)} \frac{\partial^2 p}{\partial t^2}(x, t; x_s) - \nabla^2 p(x, t; x_s) = f(t)\delta(x - x_s)
\]

\(x\) is the position vector
\(x_s\) is the position of the point source
\(f(t)\) is the source time function
\(c(x)\) is the particle velocity
\(p(x, t; x_s)\) is the pressure
Forward map: \(S[c] = p|_{Y=(x_r,t;x_s)} \) (predicted seismic data)
\(x_r \) is the receiver position and \(x_s \) is the source position.

Inverse problem: given observed seismic data \(d \), find velocity field \(c \) so that

\[
S[c] \approx d
\]

The inverse problem is large scale and nonlinear.
Write $c = v(1 + r)$, then $\delta p(x, t; x_s)$ satisfies

$$\frac{1}{v^2(x)} \frac{\partial^2 \delta p}{\partial t^2}(x, t, x_s) - \nabla^2 \delta p(x, t, x_s) = \frac{2r(x)}{v^2(x)} \frac{\partial^2 p}{\partial t^2}(x, t, x_s)$$

Linearized forward map: $F[v] r = \delta p|_{Y=(x_r, t; x_s)}$

- v smooth, r oscillatory $\Rightarrow F[v] r$ approximates primary reflections
- Error consists of multiple reflections.
- No mathematical results are known which justify these observations in any rigorous way.
Convolutional model for layered media

(Theoretical derivation by Winslow 2000, based on linearization and high frequency approximation)

\[F[v]r(t, h) = f(t) \ast r(T_0(t, h)) \]

\(h \) is the half offset
\(t_0 \) is the traveltime at zero offset
\(f(t) \) is the source time function
\(r(t_0) = \frac{\delta v(t_0)}{v(t_0)} \)
\(T_0(t, h) \) is a change of variables function. It is the inverse function of \(T(t_0, h) \) (Hyperbolic approximation to two-way traveltime)

Ideal case: \(f(t) = \delta(t) \). Then

\[F[v]r(t, h) = r(T_0(t, h)) \]
Classical Semblance is equivalent to least squares data fitting

Turn the linearized inverse problem into a least squares problem: given CMP data \(d\), find \(v\), \(r\) so that

\[
\min J[v, r] = \|F[v]r - d\|^2
\]

\[
= \int \int dt \, dh \, (r(T_0(t, h)) - d(t, h))^2
\]

\[
= \|d\|^2 + \int \int dt_0 \, dh \, \frac{\partial T}{\partial t_0}(t_0, h) \times (r(t_0)^2 - 2r(t_0)d(T(t_0, h), h))
\]

\[
= \|d\|^2 + \int dt_0 \, j(t_0) r(t_0)^2 - 2 \int dt_0 \, r(t_0) \int dh \, \frac{\partial T}{\partial t_0}(t_0, h) \times d(T(t_0, h), h)
\]
Then
\[J[v, r] = \| d \|^2 + < jr, r > - 2 < r, Sd >, \]
where \(Sd \) is the weighted stacking
\[Sd[v](t_0) = \int dh \frac{\partial T}{\partial t_0}(t_0, h)d(T(t_0, h), h), \]
and
\[j[v](t_0) = \int dh \frac{\partial T}{\partial t_0}(t_0, h). \]

Since \(Sd, j \) only depend on \(v \), then if \(v \) is fixed, we can get the optimal \(r = \frac{1}{j} Sd \)

\[\min J[v, r] = \| d \|^2 - \left< \frac{1}{j} Sd, Sd \right> \]
\[\iff \max J_S[v] = \left< \frac{1}{j} Sd, Sd \right> \]

Then the classical semblance turns out to be equivalent to the least squares data fitting.
Introduce nonphysical model \(r(t_0, h) \). Physical model satisfies constraint \(\frac{\partial r}{\partial h} = 0 \).

\[
\min J[v, r] = \int \int dt \; dh \; (r(T_0(t, h), h) - d(t, h))^2
\]

\[
= \int \int dt_0 \; dh \; \frac{\partial T}{\partial t_0}(t_0, h)(r(t_0, h) - d(T(t_0, h), h))^2
\]

The objective function is very easy to minimize without constraint: \(r(t_0, h) = d(T(t_0, h), h) \). Then the model is infeasible since

\[
\left\| \frac{\partial r}{\partial h} \right\|^2 > 0.
\]

To reduce the infeasibility: \(\min_v \left\| \frac{\partial r}{\partial h} \right\|^2 \)

Differential Semblance objective function is

\[
J_{DS}[v] = \left\| \frac{\partial}{\partial h} d(T(t_0, h), h) \right\|^2
\]
Comparison between Classical Semblance and Differential Semblance

(a) Classical Semblance (Chauris, 2001):

Figure: Classical Semblance cost function
(b) Differential Semblance (Chauris, 2001):

Figure: Differential Semblance cost function
Motivation for DS

- **DS**
 - All stationary points of DS are global minimizers. (Symes, TR99-09)
 - DS uses gradient method to solve the optimization problem.

- **OLS**
 - Output Least squares objective function has local minima and these local minimizers are far from any global minimizer.
 - Gradient methods are unreliable.
 - Computational cost for global optimization methods is high.
A recent approach to DS (Jintan Li, 2007)

- **Objective function:**

\[J[v] = \left\| \frac{\partial}{\partial h} d(T(t_0, h), h) \right\|^2 \]

- \(J[v] \) and \(\nabla J[v] \) have to be computed numerically. But grid points in the \(t_0 \) axis are not mapped to grid points in the \(t \) axis.

\[d(t, h) \rightarrow d(T(t_0, h), h) \]

- Local cubic interpolation is needed to compute the oscillatory data \(d \) which will cause error.
Discretization

\(t_{0j} = j \Delta t_0, \ h_i = i \Delta h, \)

\[d(T(t_{0j}, h_i), h_i) \simeq d^{\text{int}}(T(t_{0j}, h_i), h_i) \]

\[\frac{\partial}{\partial h} d(T(t_{0j}, h_i), h_i) \simeq \frac{1}{\Delta h} (d^{\text{int}}(T(t_{0j}, h_{i+1}), h_{i+1}) - d^{\text{int}}(T(t_{0j}, h_i), h_i)) \]

Define the discrete moveout derivative operator:

\[M[v] d(t_{0j}, h_i) = \frac{1}{\Delta h} (d^{\text{int}}(T(t_{0j}, h_{i+1}), h_{i+1}) - d^{\text{int}}(T(t_{0j}, h_i), h_i)) \]

Thus the discrete objective function

\[J[v] = \sum_{ij} | M[v] d(t_{0j}, h_i) |^2 \]
Figure: Original CDP

Figure: Corrected CDP
Figure: Instability of DSVA velocity estimates
Alternative approach to DS

\[J[\nu] = \left\| \left(p \frac{\partial d}{\partial t} + \frac{\partial d}{\partial h} \right)(t, h) \right\|^2 \]

where slowness

\[p(t, h) = \frac{\partial T}{\partial h}(T_0(t, h), h) \]

This approach involves interpolation of smooth function \(p(t, h) \) instead of oscillatory data \(d(t, h) \), then the interpolation error in \(p \) is smaller than the previous approach. Then the noises in \(J \) and \(\nabla J \) are smaller. Thus this optimization is more stable.
Recall

\[J[\nu] = \left\| (p \frac{\partial d}{\partial t} + \frac{\partial d}{\partial h})(t, h) \right\|^2 \]

Since \(t \) is oversampled, we don’t have problem in computing \(\frac{\partial d}{\partial t} \). Since offset \(h \) is often undersampled, \(\frac{\partial d}{\partial h} \) has to be calculated carefully.

How to deal with \(\frac{\partial d}{\partial h} \)?
If $v_0 - \Delta v \leq v \leq v_0 + \Delta v$, then

$$p \frac{\partial d}{\partial t} - \frac{\partial d}{\partial h} \simeq N[v_0]d + (p - p_0) \frac{\partial d}{\partial t}$$

where operator N has been defined by

$$N[v]d(t_j, h_i) = M[v]d(T_0(t_j, h_i), h_i)$$

Then

$$(p \frac{\partial d}{\partial t} - \frac{\partial d}{\partial h})(t_j, h_i) \simeq N[v_0]d(t_j, h_i) + (p - p_0) \frac{\partial d}{\partial t}(t_j, h_i)$$

This will be accurate if $f_{max} \leq f(\Delta v)$
Summary:

- CS vs. DS
- Recent approach vs. my approach

Future works:

- Justify the proposed strategy.
- Implement the algorithm
Thank you