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Outline

Upscaling in the Context of Multiscale Methods.

Upscaling for the Acoustic Wave Equation

Description of the Method
Numerical Implementation
Numerical Experiments

Work in progress: Upscaling for the Elastic Wave Equation
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Multiscale Methods

Why do we need multiscale methods?

Many processes in nature involve multiple scales.

Goal: to design a numerical technique that

produces accurate solution on the coarse scale;
is more efficient than solving full fine scale problem.

Multiscale problems:

composite materials
(10−9 m - large scales
depend on applications),

protein folding
(10−15 - 10−1 s),

flow in porous media
(10−2 - 104 m).

http://www.ticam.utexas.edu/Groups/SubSurfMod/ACTI/IPARS.htm
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Upscaling Methods

Highly detailed
physical models

Upscaling−−−−−−→
Feasible

simulation grids

Upscaling is the process of converting the problem from the fine
scale where physical parameters are defined to a coarse scale.

Averaging: Review by Renard and Marsily (1997).

Renormalization: King (1989).

Homogenization: Bensoussan, Lions, Papanicolaou (1978).

Multiscale FEM: Hou, Wu (1997).

Mortar Upscaling: Peszynska, Wheeler, Yotov (2002).

Variational Multiscale Method: Hughes (1995).

Operator Upscaling: Arbogast, Minkoff, Keenan (1998).
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Velocity Model

Mechanical properties of the Earth are very heterogeneous.

Fine scale: ≈ 10 m. Large scale: ≈ 104 − 105 m.

Typical grid size: 106 − 108 in 2D, 109 − 1012 in 3D.
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Model problem: The Acoustic Wave Equation

1

c2

∂2p

∂t2
−∆p = f

p is the pressure,
u is the acceleration,

f is the source of acoustic energy,
c(x , y) is the sound velocity.

The First Order System
u = −∇p in Ω,

1

c2(x , y)

∂2p

∂t2
+∇ · u = f in Ω

Boundary and Initial Conditions

u · ν = 0, on ∂Ω,
p = 0, on ∂Ω,

p(0, x , y) = p0,
∂p

∂t
(0, x , y) = p1.
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Finite Element Spaces

Goal: Capture fine-scale behavior on the coarse grid.
Two-scale grid:

Fine scale: Raviart-Thomas (RT-0) spaces on each coarse element:

Pressure: Wh={piecewise discontinuous constant functions}
Acceleration:
δVh = {δv = (a1x + b1, a2y + b2) : ∇ · δv ∈ L2(Ec),

δv · ν = 0, on ∂Ec}
Coarse scale:
VH = {v = (a1x + b1, a2y + b2) : ∇ · v ∈ L2, v · ν = 0, on ∂Ω}
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Two-Stage Algorithm: VH,h = VH ⊕ δVh

Step 1: On each coarse element Ec solve the subgrid problem:

Find (δU,P) ∈ δVh(Ec)×W (Ec) such that:(
1

c2

∂2P

∂t2
,w

)
Ec

− (∇ · (δU + UH),w)Ec = (f ,w)Ec ,

(δU + UH , δv)Ec − (P,∇ · δv)Ec = 0,

for all δv ∈ δVh(Ec) and w ∈ W (Ec).

Step 2: Use the subgrid solutions to solve the coarse-grid problem:

Find UH ∈ VH such that:

((UH + δU), v)Ω − (P,∇ · v)Ω = 0,

for all v ∈ VH .
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Parallel Performance
Cost of subgrid problems

p
+ Cost of coarse problem

Subgrid problems: Embarrassingly parallel

No communication between processors.
No additional ghost-cell memory allocations.
Explicit difference scheme.
Later implementation avoids numerical Green’s functions.

Coarse problem: Solve in serial. Explicit difference equation.

p total total total subgrid coarse post
time (FD) time (NG) time (noNG) problems problem process

1 29.43 45.65 29.70 29.69 0.00060 0.0026
2 - 23.18 15.46 15.38 0.00045 0.0711
4 - 11.72 7.63 7.56 0.00049 0.0707
6 - 7.97 5.23 5.14 0.00048 0.0749
8 - 7.05 4.37 4.26 0.00046 0.0896
12 - 4.92 3.07 2.94 0.00045 0.1150

FD – finite differences
NG – numerical Green’s functions
noNG – no numerical Green’s functions
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Acoustic Numerical Experiment

Domain is of size 10× 10 km.

Fine grid: 1000× 1000. Coarse grid: 100× 100.

Gaussian source, 350 time steps.

Mixture of two materials with sound velocities of 3500 and
4500 m/s.

Sound velocity field Gaussian Source
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Horizontal Acceleration

Full finite-difference
solution

Augmented upscaled
solution
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Horizontal Acceleration

Full finite-difference
solution

Coarse component of
solution

Vdovina, Minkoff, Korostyshevskaya (2005)
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Work in Progress: Elastic Wave Equation

The First Order System

ρ(x)
∂v(t, x)

∂t
= ∇ · σ + f,

ρ(x)
∂u(t, x)

∂t
= ρ(x)v(t, x),

v is velocity,
u is displacement,
ρ is density,

σ is the stress tensor,
f is a body force,
x is in R3

Boundary and Initial Conditions

u(0, x) = u0(x),
v(0, x) = v0(x),

σ · ν = 0 on Γ.
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Weak Formulation

Cohen (2002), Komatitch et.al.(1999), SpecFEM 3D

Velocity and displacement space

W = {w ∈ H1(Ω), w(x) = 0 on Γ}.

Find v(t, x) and u(t, x) in W such that:(
ρ
∂v

∂t
,w

)
= − (σ,∇w) + (f,w) ,(

ρ
∂u

∂t
,w

)
= (ρv,w) ,

for w(x) in W and t ∈ [0,T ].

Eliminate components of the stress tensor:

σi ,j = λ

3∑
k

∂uk

∂xk
δij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
.
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Weak Formulation (continued)

First component of velocity:(
ρ
∂v1

∂t
,w

)
= −

(
(λ + 2µ)

∂u1

∂x
+ λ

∂u2

∂y
+ λ

∂u3

∂z
,
∂w

∂x

)
−

(
µ

∂u1

∂y
+ µ

∂u2

∂x
,
∂w

∂y

)
−

(
µ

∂u1

∂z
+ µ

∂u3

∂x
,
∂w

∂z

)
+ (f1,w) ,

First component of displacement:(
ρ
∂u1

∂t
,w

)
= (ρv1,w) ,

Upscale both variables
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Finite Element Method
Subgrid Scale:

piece-wise trilinear functions
zero boundary conditions

Coarse Scale:

piece-wise trilinear functions
original boundary conditions

First component of velocity:(
ρ

∂

∂t
(v c

1 + δv1),w

)
= −

(
(λ + 2µ)

∂

∂x
(uc

1 + δu1) + λ
∂

∂y
(uc

2 + δu2) + λ
∂

∂z
(uc

3 + δu3),
∂

∂x
w

)
−

(
µ

∂

∂y
(uc

1 + δu1) + µ
∂

∂x
(uc

2 + δu2),
∂w

∂y

)
−

(
µ

∂

∂z
(uc

1 + δu1) + µ
∂

∂x
(uc

3 + δu3),
∂w

∂z

)
+ (f1,w) ,

First component of displacement:(
ρ

∂

∂t
(uc

1 + δu1),w

)
= (ρ(v c

1 + δv1),w) ,
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Elastic Numerical Experiment I

Domain is of size 12× 12× 12 km.

Fine grid: 120× 120× 120. Coarse grid: 24× 24× 24.

Gaussian source, 35 time steps.

Layered medium.

Compressional velocity (yz-slice) Source in 1D
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First Component of the Velocity Solution (yz-plane)

Full finite-element
solution

Reconstructed upscaled
solution
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Second Component of the Velocity Solution (yz-plane)

Full finite-element
solution

Reconstructed augmented
solution
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Second Component of the Velocity Solution (yz-plane)

Full finite-element
solution

Coarse component of
solution
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Summary and Future Work

Operator upscaling captures local phenomena on the coarse
scale.

Elastic equation: extension of operator upscaling to the mixed
formulation.

perfectly matched layers
higher order interpolating polynomials

Operator upscaling with discontinuous Galerkin methods for
wave equations.

Acknowledgment

This research was performed with funding from the
Collaborative Math-Geoscience Program at NSF (2002-2005)
and fellowship provided by NASA Goddard’s Earth Sciences
and Technology Center (GEST) (2005-2006).

T. Vdovina, TRIP Meeting, CAAM, Rice University Operator Upscaling 21/23


