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The Viscoelastic Wave Equation
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where v is velocity, σ is stress, C is the Hooke tensor, ρ is density,
and ∗t indicates time convolution.



A One-D Viscoelastic Equation

A simple model for viscoelasticity in one dimen-
sion is

0 = ζwt + px

0 = pt + ζwx + ap

−aα

∫ t

−∞

e−α(t−s)p(x , s)ds

p is pressure, w is velocity, ζ is impedance, a,
and α are attenuation coefficients. x is travel-
time.
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The Causal Impulse Response

We consider the causal impulse response. If p(0, t) = δ(t), the
impulse response is w(0, t) = h(t). In this context, there are two
main problems:

◮ The forward problem, ζ → h.
◮ What is the range of the forward map?
◮ What does this tell us about the attenuation coefficients a and

α?

◮ The inverse problem, h → ζ.
◮ Can we solve the inverse problem explicitly?
◮ Can we solve for any of the attenuation coefficients?



The Forward Map

For the forward map, it can be shown that the range of the
forward map for the viscoelastic problem is contained within the
range of the forward map for the conservative problem.

◮ Is this containment strict? If yes, then this could give an
indication of how to choose the attenuation coefficients.

◮ In the continuous case, this is unknown.
◮ In a simple discretization of the continuum problem, we can

show that the containment is in fact strict.



The Forward Map - Acoustic Transparency

In order to analyze the forward map, we construct the operator
R : L2[0, 2X ] → L2[0, 2X ]

Rf (t) =

∫ 2X

0
[h(t − τ) + h(τ − t)]f (τ) dτ,

and consider the modulus of acoustic transparency

ǫ = inf
f 6=0

〈f ,Rf 〉

〈f , f 〉



The Forward Map for the Conservative Problem

Theorem (Symes)

For the lossless problem, there is a one-to-one correspondence

between ζ ∈ H1[0,X ] and h with h ∈ L2[0, 2X ] such that the

operator R is positive definite as an operator on L2[0, 2X ].

In other words, for any ζ ∈ H1[0,X ], there is a unique impulse
response with positive acoustic transparency, and vice versa.



Viscoelastic Transparency

Theorem
In the viscoelastic case, the operator

Rf (t) =

∫ 2X

0
[h(t − τ) + h(τ − t)]f (τ) dτ

mapping L2[0, 2X ] to itself is positive definite; that is, there exists

an ǫ > 0 such that 〈f ,Rf 〉 ≥ ǫ〈f , f 〉 for all f ∈ L2[0, 2X ].

So while we do not have the correspondence that exists in the
conservative case, we do have that the range of the viscoelastic
forward map is a subset of the conservative forward map.



The Discrete Problem

Turning to the discrete problem, if pi
0 = δi0/2∆ (where ∆ is the

mesh size in both the x and t directions), then hk = w2k
0 is the

discrete impulse response. We construct the discrete version of the
R operator by constructing the matrix

H =
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











h0 0 . . . 0
h1 h0 0 . . . 0
...

...
. . .

...
hN−1 hN−2 . . . h0 0
hN hN−1 . . . h0
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
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The we define R = H + HT .



Discrete Transparency

Theorem
The matrix operator R is positive definite.

Proof: Inverse Problems, 22 (6): 1947-1958, 2006.

Corollary

〈f ,Rf 〉 ≥
∆a0

ζ0(1 + 2Xα0)2
〈f , f 〉.

This gives a lower bound for the modulus of acoustic transparency.



The Inverse Problem
An Equation for the impedance

The geometric optics expansion of the impulse response solution

v(x , t) =

N
∑

k=0

v
(k)(x)fk(t − φ(x)) + SN(x , t),

gives the equation:

η(x) = η(0) +

∫ x

0
η(s)

[

U(s, s+)η(0)e
1
2

R s

0 a(ξ)dξ +
1

2
a(s)

]

ds,

where U(x , x+) = U(1) = lim
t→x+

U(x , t) (U is the upward travelling

wave), and η2 = ζ.



Solving the Inverse Problem

This integral equation for the impedance is a
contraction mapping, so it has a unique solution.

We obtain the impedance by performing the fol-
lowing iteration on small slices of the domain:

◮ Start with a guess for the impedance.

◮ Use this to solve the differential equation.

◮ With this solution, find a new impedance
using the integral equation.

◮ With the new impedance, solve the
differential equation again.

◮ Repeat until convergence.

Proof: See Inverse Problems, 22 (5): 1869-
1882, 2006.
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