Eulerian Gaussian beams for high frequency wave propagation

Jianliang Qian

Wichita State University, Wichita, KS
and
TRIP, Rice University
TRIP Annual Meeting
January 26, 2007

Outline

- Geometrical optics and Gaussian beams
- Lagrangian Gaussian beams: basics
- Eulerian Gaussian beams: global Cartesian coordinates
■ Numerical results
■ Conclusions and future work

Geometrical optics and Gaussian beams

■ Traditional geometrical optics yields unbounded amplitude at caustics.

- A Gaussian beam around a central ray always has regular behavior at caustics and interference of multiple arrivals is achieved by summing up a bundle of Gaussian beams (Cerveny'82, White'87, etc).
$■$ Traditional GBs are based on Lagrangian ray tracing.
- Combining the GB ansatz (Ralston'83, Tanushev-Qian-Ralston'06) with the paraxial Liouville formulation (Qian-Leung'04,'06) \Rightarrow Eulerian GB summation method (Leung-Qian-Burridge'06).

Lagrangian Gaussian beams

Eikonal and transport equations

■ Wave equation for $U(x, z, \omega)$,

$$
\begin{gathered}
\nabla^{2} U(x, z, \omega)+\frac{\omega^{2}}{v^{2}(z, x)} U(x, z, \omega)=-\delta\left(x-x_{s}\right) \delta\left(z-z_{s}\right) \\
\Omega=\left\{(x, z): x_{\min } \leq x \leq x_{\max }, 0 \leq z \leq z_{\max }\right\}
\end{gathered}
$$

where ω frequency, $v(z, x)$ velocity, and $\left(z_{s}, x_{s}\right)$ a source point.
■ GO ansatz:

$$
\begin{aligned}
\left(\frac{\partial \tau}{\partial x}\right)^{2}+\left(\frac{\partial \tau}{\partial z}\right)^{2} & =\frac{1}{v^{2}(x, z)} \\
\nabla \tau \cdot \nabla A+\frac{1}{2} A \nabla^{2} \tau & =0
\end{aligned}
$$

Paraxial Eikonal equations

■ (Gray-May'95, Qian-Symes'02)

$$
\begin{aligned}
& \quad \frac{\partial \tau}{\partial z}-\sqrt{\frac{1}{v^{2}}-\left(\frac{\partial \tau}{\partial x}\right)^{2}}=0, \quad z \geq 0, \quad x_{\min } \leq x \leq x_{\mathrm{ma}} \\
& \tau(0, x)=\tau_{0}(x), \quad \operatorname{Im} \tau_{0} \geq 0,\left.\quad \nabla \tau\right|_{z=0}=\xi(x), \\
& \text { where } \tau_{0}(x) \text { and } \xi(x) \text { are given complex smooth } \\
& \text { functions satisfying the compatibility conditions. }
\end{aligned}
$$

Eikonal eqns: initial condition

\square At $\left(z_{s}, x_{s}\right)=\left(0, x_{s}\right)$, specify initial conditions,

$$
\tau_{0}\left(x_{s}\right)=0, \quad \xi_{1}\left(x_{s} ; \theta_{s}\right)=\frac{\sin \theta_{s}}{v\left(0, x_{s}\right)}, \quad\left|\theta_{s}\right| \leq \theta_{\max }<\frac{\pi}{2}
$$

where

$$
\left(x_{s}, \theta_{s}\right) \in \Omega_{p}=\left\{(x, \theta): x_{\min } \leq x \leq x_{\max },|\theta| \leq \theta_{\max }\right\} .
$$

■ Construct a τ in a neighborhood of the source:

$$
\begin{aligned}
\tau_{0}\left(x ; x_{s}\right)= & \tau_{0}\left(x_{s}\right)+\xi_{1}\left(x_{s} ; \theta_{s}\right) \cdot\left(x-x_{s}\right) \\
& +i \frac{\epsilon}{2}\left(x-x_{s}\right)^{2} \cos ^{2} \theta_{s}
\end{aligned}
$$

Gaussian beam theory (1)

■ Let the central ray of a beam be given by $x=X(z)$, travel time by $\tau=T(z)$, and the Hamiltonian

$$
H(z, X, p)=-\sqrt{\frac{1}{v^{2}(z, X)}-p^{2}} \text {, where } p(z)=\tau_{x}(z, X(z)) \text {. }
$$

■ Ray tracing system:

$$
\begin{aligned}
& \dot{X}(z)=H_{p}=\frac{p}{\sqrt{\frac{1}{v^{2}}-p^{2}}},\left.X\right|_{z=0}=x_{s} ; \\
& \dot{p}(z)=-H_{X}=\frac{-v_{X}}{v^{3} \sqrt{\frac{1}{v^{2}}-p^{2}}},\left.p\right|_{z=0}=\xi_{1}\left(x_{s} ; \theta_{s}\right) ; \\
& \dot{T}(z)=\frac{1}{v^{2} \sqrt{\frac{1}{v^{2}}-p^{2}}},\left.T\right|_{z=0}=\tau_{0}\left(x_{s}\right) .
\end{aligned}
$$

Gaussian beam theory (2)

- Dynamic ray tracing (DRT) system, where $B\left(z ; x_{s}, \theta_{s}\right)=\frac{\partial p\left(z ; x_{s}, \theta_{s}\right)}{\partial \alpha}$ and $C\left(z ; x_{s}, \theta_{s}\right)=\frac{\partial X\left(z ; x_{s}, \theta_{s}\right)}{\partial \alpha}$, and $\epsilon>0$,

$$
\begin{aligned}
& \dot{B}(z)=-H_{X, p} B-H_{X, X} C,\left.\quad B(z)\right|_{z=0}=i \epsilon \cos ^{2} \theta_{s}, \\
& \dot{C}(z)=H_{p, p} B+H_{p, X} C,\left.\quad C(z)\right|_{z=0}=1 .
\end{aligned}
$$

Traveltime near a central ray

- Gaussian beam theory implies that $\operatorname{Im}\left(B C^{-1}\right)$ remains positive if it is positive initially, i.e. if ϵ is positive. (Leung-Qian-Burridge'06).
\square By $\tau_{x}=p$ and $\tau_{x x}=\delta p / \delta x=(\partial p / \partial \alpha) /(\partial x / \partial \alpha)=B / C$, in the neighborhood of X,

$$
\begin{aligned}
\tau\left(z, x ; x_{s}, \theta_{s}\right)= & T\left(z ; x_{s}, \theta_{s}\right)+p(z) \cdot(x-X(z)) \\
& +\frac{1}{2}(x-X(z))^{2} B(z) C^{-1}(z),
\end{aligned}
$$

- Let the angle the central ray of a beam makes with the z-direction at z be the arrival angle $\Theta\left(z ; x_{s}, \theta_{s}\right)$, and let $p(z)=\frac{\sin \Theta(z)}{v(z, X(z))}$.

Lagrangian systems

- The ray tracing system, the DRT system, and amplitude nonzero everywhere (L-Q-B’06)

$$
\begin{aligned}
& \frac{d X}{d z}(z)=\tan \Theta, X(0)=x_{s}, \\
& \frac{d \Theta}{d z}(z)=\frac{1}{v}\left(v_{z} \tan \Theta-v_{x}\right), \Theta(0)=\theta_{s}, \\
& \frac{d T}{d z}(z)=\frac{1}{v\left(z, X\left(z ; x_{s}, \theta_{s}\right)\right) \cos \Theta\left(z ; x_{s}, \theta_{s}\right)},\left.T\right|_{z=0}=0, \\
& \dot{B}(z)=-H_{X, p} B-H_{X, X} C,\left.B(z)\right|_{z=0}=i \epsilon \cos ^{2} \theta_{s}, \\
& \dot{C}(z)=H_{p, p} B+H_{p, X} C,\left.C(z)\right|_{z=0}=1 ; \\
& A\left(z ; x_{s}, \theta_{s}\right)=\frac{\sqrt{C(0) v(z, X(z)) \cos \theta_{s}}}{\sqrt{v\left(z_{s}, x_{s}\right) C\left(z ; x_{s}, \theta_{s}\right) \cos \Theta(z)}} .
\end{aligned}
$$

Lagrangian GB summation

- The wavefield due to one Gaussian beam parameterized with initial take-off angle θ_{s} is

$$
\Psi\left(z, x ; x_{s}, \theta_{s}\right)=\psi_{0} A\left(z ; x_{s}, \theta_{s}\right) \exp \left[i \omega \tau\left(z, x ; x_{s}, \theta_{s}\right)\right]
$$

where $p(z)=\frac{\sin \Theta\left(z ; x_{s}, \theta_{s}\right)}{v\left(z, X\left(z ; x_{s}, \theta_{s}\right)\right)}$ and

$$
\begin{aligned}
\tau\left(z, x ; x_{s}, \theta_{s}\right)= & T\left(z ; x_{s}, \theta_{s}\right)+p(z) \cdot(x-X(z))+ \\
& \frac{1}{2}(x-X(z))^{2} B(z) C^{-1}(z)
\end{aligned}
$$

- The wavefield generated by a point source at x_{s},

$$
U\left(z, x ; x_{s}\right)=\int_{-\pi / 2}^{\pi / 2} \Psi\left(z, x ; x_{s}, \theta_{s}\right) d \theta_{s} .
$$

Eulerian Gaussian beams

Paraxial Liouville equations

■ (Qian-Leung'04,06). Introduce a function,

$$
\phi=\phi(z, x, \theta):\left[0, z_{\max }\right] \times \Omega_{p} \rightarrow\left[x_{\min }, x_{\max }\right],
$$

such that, for any $x_{s} \in\left[x_{\min }, x_{\max }\right]$ and $z \in\left[0, z_{\max }\right]$,

$$
\Gamma\left(z ; x_{s}\right)=\left\{(X(z), \Theta(z)): \phi(z, X(z), \Theta(z))=x_{s}\right\}
$$

gives the location of the reduced bicharacteristic strip $(X(z), \Theta(z))$ emanating from the source x_{s} with takeoff angles $-\theta_{\text {max }} \leq \theta_{s} \leq \theta_{\text {max }}$.
■ Differentiate with respect to z to obtain

$$
\begin{aligned}
& \phi_{z}+u \phi_{x}+w \phi_{\theta}=0, \\
& \phi(0, x, \theta)=x, \quad(x, \theta) \in \Omega_{p} .
\end{aligned}
$$

Level sets (1)

\square For a fixed $x_{s} \in\left[x_{\min }, x_{\max }\right]$, the location where $\phi(0, x, \theta)=x_{s}$ holds is

$$
\Gamma\left(0 ; x_{s}\right)=\left\{(x, \theta): x=x_{s},-\theta_{\max } \leq \theta \leq \theta_{\max }\right\}
$$

which states that the initial takeoff angle varies from
$-\theta_{\max }$ to $\theta_{\text {max }}$ at the source location x_{s}.
■ Evolving level set equations will transport source locations ("tag") to any z according to the vector fields u and w.
$■$ Given $z \in\left[0, z_{\text {max }}\right]$ and $x_{s} \in\left[x_{\text {min }}, x_{\text {max }}\right]$, the set $\Gamma\left(z ; x_{s}\right)$ is a curve in Ω_{p}, which defines an implicit function between X and Θ.

Level sets (2)

■ When $z=0, \Gamma\left(0 ; x_{s}\right)$ is a vertical line in Ω_{p}, indicating that the rays with takeoff angles from $-\theta_{\max }$ to $\theta_{\text {max }}$ emanate from the source location x_{s}.

- When $z \neq 0, \Gamma\left(z ; x_{s}\right)$ being a curve indicates that for some $X=x^{*}$ there are more than one $\Theta=\theta_{a}^{*}$ such that $\phi\left(z, x^{*}, \theta_{a}^{*}\right)=x_{s}$, implying that more than one rays emanating from the source x_{s} reach the physical location $\left(z, x^{*}\right)$ with different arrival angles θ_{a}^{*}.

Multivaluedness: illustration

Figure 1: Multivaluedness.

Takeoff angles, traveltimes

- To sum Gaussian beams, parametrize $\Gamma\left(z ; x_{s}\right)$ with takeoff angles: transport the initial takeoff angle, ψ,

$$
\begin{aligned}
& \psi_{z}+u \psi_{x}+w \psi_{\theta}=0, \\
& \psi(0, x, \theta)=\theta, \quad(x, \theta) \in \Omega_{p} .
\end{aligned}
$$

■ For each point $\left(x^{*}, \theta^{*}\right) \in \Gamma\left(z ; x_{s}\right)$, the unique takeoff angle is $\psi\left(z, x^{*}, \theta^{*}\right)$.
■ Map $\Gamma\left(z ; x_{s}\right)$ into $\psi\left(z, \Gamma\left(z ; x_{s}\right)\right) \subset\left[-\theta_{\max }, \theta_{\text {max }}\right]$; mapping from $\Gamma\left(z ; x_{s}\right)$ to $\psi\left(z, \Gamma\left(z ; x_{s}\right)\right)$ is $1-1$.

- The traveltime for those multiple rays:

$$
T_{z}+u T_{x}+w T_{\theta}=\frac{1}{v \cos \theta}, \quad T(0, x, \theta)=0 .
$$

Liouville for B and C

$\square B$ and C satisfy

$$
\begin{aligned}
& B_{z}+u B_{x}+w B_{\theta}=-H_{x, p} B-H_{x, x} C \\
& B\left(x, \theta, z=z_{s}\right)=i \epsilon \cos ^{2} \theta \\
& C_{z}+u C_{x}+w C_{\theta}=H_{p, p} B+H_{x, p} C \\
& C\left(x, \theta, z=z_{s}\right)=1
\end{aligned}
$$

■ The Eulerian amplitude is

$$
A(z, x, \theta)=\frac{\sqrt{C(0) v(z, x) \cos \psi(z, x, \theta)}}{\sqrt{v\left(z_{s}, x_{s}\right) C(z, x, \theta) \cos \theta}}
$$

Eulerian GB summation (1)

■ Gaussian beam summation formula in phase space,

$$
\begin{aligned}
U\left(z, x ; x_{s}\right) & =\int_{I\left(z ; x_{s}\right)} \frac{A\left(z, x^{\prime}, \theta^{\prime}\right)}{4 \pi} \\
& \times \exp \left[i \omega \tau\left(z, x ; x^{\prime}, \theta^{\prime}\right)+\frac{i \pi}{2}\right] d \theta_{s}
\end{aligned}
$$

where $\left(x^{\prime}, \theta^{\prime}\right) \in \Gamma\left(z ; x_{s}\right), \psi=\psi\left(z, x^{\prime}, \theta^{\prime}\right)$,

$$
\begin{aligned}
I & =\psi\left(z, \Gamma\left(z ; x_{s}\right)\right) \\
& =\left\{\theta_{s}: \theta_{s}=\psi\left(z, x^{\prime}, \theta^{\prime}\right) \text { for }\left(x^{\prime}, \theta^{\prime}\right) \in \Gamma\left(z ; x_{s}\right)\right\} \\
& \subset\left[-\theta_{\max }, \theta_{\max }\right] .
\end{aligned}
$$

Eulerian GB summation (2)

■ Traveltime

$$
\begin{aligned}
\tau\left(z, x ; x^{\prime}, \theta^{\prime}\right)= & T\left(z, x^{\prime}, \theta^{\prime}\right)+\frac{\left(x-x^{\prime}\right) \sin \theta^{\prime}}{v\left(z, x^{\prime}\right)} \\
& +\frac{1}{2}\left(x-x^{\prime}\right)^{2} B C^{-1}\left(z, x^{\prime}, \theta^{\prime}\right)
\end{aligned}
$$

■ $I=I\left(z ; x_{s}\right)$ is an interval because $\Gamma\left(z ; x_{s}\right)$ is a continuous curve and the takeoff angle parametrizes this curve continuously.

- Efficient numerical procedures (Leung-Qian-Burridge'06).

Waveguide model

Figure 2: $\omega=8 \pi . x_{s}=0$ and $x_{s}=0.5$.

Sinusoidal model

Figure 3: $\omega=16 \pi . x_{s}=0$ and $x_{s}=0.5$.

Conclusion and future work

■ Developed a Eulerian Gaussian beam method for high frequency waves.

■ Future work consists of

- 3-D implementation ...
- incorporating this into seismic migration ...

■ open to suggestions ...

