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Geometrical optics and
Gaussian beams

Traditional geometrical optics yields unbounded
amplitude at caustics.
A Gaussian beam around a central ray always has
regular behavior at caustics and interference of
multiple arrivals is achieved by summing up a bundle
of Gaussian beams (Cerveny’82, White’87, etc).
Traditional GBs are based on Lagrangian ray tracing.
Combining the GB ansatz (Ralston’83,
Tanushev-Qian-Ralston’06) with the paraxial Liouville
formulation (Qian-Leung’04,’06) ⇒ Eulerian GB
summation method (Leung-Qian-Burridge’06).
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Lagrangian Gaussian beams
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Eikonal and transport
equations

Wave equation for U(x, z, ω),

∇2U(x, z, ω) +
ω2

v2(z, x)
U(x, z, ω) = −δ(x− xs)δ(z − zs),

Ω = {(x, z) : xmin ≤ x ≤ xmax, 0 ≤ z ≤ zmax},

where ω frequency, v(z, x) velocity, and (zs, xs) a
source point.
GO ansatz:

(

∂τ

∂x

)2

+

(

∂τ

∂z

)2

=
1

v2(x, z)
,

∇τ · ∇A+
1

2
A∇2τ = 0. 5



Paraxial Eikonal equations
(Gray-May’95, Qian-Symes’02)

∂τ

∂z
−

√

1

v2
−

(

∂τ

∂x

)2

= 0, z ≥ 0, xmin ≤ x ≤ xmax,

τ(0, x) = τ0(x), Im τ0 ≥ 0, ∇τ |z=0 = ξ(x),

where τ0(x) and ξ(x) are given complex smooth
functions satisfying the compatibility conditions.
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Eikonal eqns: initial
condition

At (zs, xs) = (0, xs), specify initial conditions,

τ0(xs) = 0, ξ1(xs; θs) =
sin θs
v(0, xs)

, |θs| ≤ θmax <
π

2
,

where

(xs, θs) ∈ Ωp = {(x, θ) : xmin ≤ x ≤ xmax, |θ| ≤ θmax}.

Construct a τ in a neighborhood of the source:

τ0(x;xs) = τ0(xs) + ξ1(xs; θs) · (x− xs)

+i
ε

2
(x− xs)

2 cos2 θs.
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Gaussian beam theory (1)
Let the central ray of a beam be given by x = X(z),
travel time by τ = T (z), and the Hamiltonian
H(z,X, p) = −

√

1
v2(z,X) − p2, where p(z) = τx(z,X(z)).

Ray tracing system:

Ẋ(z) = Hp =
p

√

1
v2 − p2

, X|z=0 = xs;

ṗ(z) = −HX =
−vX

v3
√

1
v2 − p2

, p|z=0 = ξ1(xs; θs);

Ṫ (z) =
1

v2
√

1
v2 − p2

, T |z=0 = τ0(xs).
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Gaussian beam theory (2)
Dynamic ray tracing (DRT) system, where
B(z;xs, θs) = ∂p(z;xs,θs)

∂α and C(z;xs, θs) = ∂X(z;xs,θs)
∂α ,

and ε > 0,

Ḃ(z) = −HX,pB −HX,XC, B(z)|z=0 = iε cos2 θs,

Ċ(z) = Hp,pB +Hp,XC, C(z)|z=0 = 1.
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Traveltime near a central ray

Gaussian beam theory implies that Im(BC−1)
remains positive if it is positive initially, i.e. if ε is
positive. (Leung-Qian-Burridge’06).
By τx = p and τxx = δp/δx = (∂p/∂α)/(∂x/∂α) = B/C,
in the neighborhood of X,

τ(z, x;xs, θs) = T (z;xs, θs) + p(z) · (x−X(z))

+
1

2
(x−X(z))2B(z)C−1(z),

Let the angle the central ray of a beam makes with
the z-direction at z be the arrival angle Θ(z;xs, θs),
and let p(z) = sin Θ(z)

v(z,X(z)) .
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Lagrangian systems
The ray tracing system, the DRT system, and
amplitude nonzero everywhere (L-Q-B’06)

dX

dz
(z) = tan Θ, X(0) = xs,

dΘ

dz
(z) =

1

v
(vz tan Θ − vx),Θ(0) = θs,

dT

dz
(z) =

1

v(z,X(z;xs, θs)) cos Θ(z;xs, θs)
, T |z=0 = 0,

Ḃ(z) = −HX,pB −HX,XC,B(z)|z=0 = iε cos2 θs,

Ċ(z) = Hp,pB +Hp,XC,C(z)|z=0 = 1;

A(z;xs, θs) =

√

C(0)v(z,X(z)) cos θs
√

v(zs, xs)C(z;xs, θs) cos Θ(z)
.
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Lagrangian GB summation
The wavefield due to one Gaussian beam
parameterized with initial take-off angle θs is

Ψ(z, x;xs, θs) = ψ0A(z;xs, θs) exp[iωτ(z, x;xs, θs)] ,

where p(z) = sin Θ(z;xs,θs)
v(z,X(z;xs,θs))

and

τ(z, x;xs, θs) = T (z;xs, θs) + p(z) · (x−X(z)) +

1

2
(x−X(z))2B(z)C−1(z).

The wavefield generated by a point source at xs,

U(z, x;xs) =

∫ π/2

−π/2
Ψ(z, x;xs, θs)dθs. 12



Eulerian Gaussian beams
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Paraxial Liouville equations
(Qian-Leung’04,06). Introduce a function,

φ = φ(z, x, θ) : [0, zmax] × Ωp → [xmin, xmax],

such that, for any xs ∈ [xmin, xmax] and z ∈ [0, zmax],

Γ(z;xs) = {(X(z),Θ(z)) : φ(z,X(z),Θ(z)) = xs}

gives the location of the reduced bicharacteristic strip
(X(z),Θ(z)) emanating from the source xs with
takeoff angles −θmax ≤ θs ≤ θmax.
Differentiate with respect to z to obtain

φz + uφx + wφθ = 0 ,

φ(0, x, θ) = x, (x, θ) ∈ Ωp.

where u(z, x, θ) = tan θ, and w = 1
v (vz tan θ − vx).
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Level sets (1)
For a fixed xs ∈ [xmin, xmax], the location where
φ(0, x, θ) = xs holds is

Γ(0;xs) = {(x, θ) : x = xs,−θmax ≤ θ ≤ θmax},

which states that the initial takeoff angle varies from
−θmax to θmax at the source location xs.
Evolving level set equations will transport source
locations (“tag”) to any z according to the vector
fields u and w.
Given z ∈ [0, zmax] and xs ∈ [xmin, xmax], the set
Γ(z;xs) is a curve in Ωp, which defines an implicit
function between X and Θ.
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Level sets (2)
When z = 0, Γ(0;xs) is a vertical line in Ωp, indicating
that the rays with takeoff angles from −θmax to θmax

emanate from the source location xs.
When z 6= 0, Γ(z;xs) being a curve indicates that for
some X = x∗ there are more than one Θ = θ∗a such
that φ(z, x∗, θ∗a) = xs, implying that more than one
rays emanating from the source xs reach the physical
location (z, x∗) with different arrival angles θ∗a.

16



Multivaluedness: illustration
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Figure 1: Multivaluedness.
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Takeoff angles, traveltimes
To sum Gaussian beams, parametrize Γ(z;xs) with
takeoff angles: transport the initial takeoff angle, ψ,

ψz + uψx + wψθ = 0 ,

ψ(0, x, θ) = θ, (x, θ) ∈ Ωp.

For each point (x∗, θ∗) ∈ Γ(z;xs), the unique takeoff
angle is ψ(z, x∗, θ∗).
Map Γ(z;xs) into ψ(z,Γ(z;xs)) ⊂ [−θmax, θmax];
mapping from Γ(z;xs) to ψ(z,Γ(z;xs)) is 1-1.
The traveltime for those multiple rays:

Tz + uTx + wTθ =
1

v cos θ
, T (0, x, θ) = 0 .
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Liouville for B and C

B and C satisfy

Bz + uBx + wBθ = −Hx,pB −Hx,xC,

B(x, θ, z = zs) = iε cos2 θ ,

Cz + uCx + wCθ = Hp,pB +Hx,pC,

C(x, θ, z = zs) = 1 .

The Eulerian amplitude is

A(z, x, θ) =

√

C(0)v(z, x) cosψ(z, x, θ)
√

v(zs, xs)C(z, x, θ) cos θ
.

19



Eulerian GB summation (1)
Gaussian beam summation formula in phase space,

U(z, x;xs) =

∫

I(z;xs)

A(z, x′, θ′)

4π

× exp

[

iωτ(z, x; x′, θ′) +
iπ

2

]

dθs,

where (x′, θ′) ∈ Γ(z;xs), ψ = ψ(z, x′, θ′),

I = ψ(z,Γ(z;xs))

= {θs : θs = ψ(z, x′, θ′) for (x′, θ′) ∈ Γ(z;xs)}

⊂ [−θmax, θmax].
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Eulerian GB summation (2)
Traveltime

τ(z, x;x′, θ′) = T (z, x′, θ′) +
(x− x′) sin θ′

v(z, x′)

+
1

2
(x− x′)2BC−1(z, x′, θ′)

I = I(z;xs) is an interval because Γ(z;xs) is a
continuous curve and the takeoff angle parametrizes
this curve continuously.
Efficient numerical procedures
(Leung-Qian-Burridge’06).
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Waveguide model
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Figure 2: ω = 8π. xs = 0 and xs = 0.5.
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Sinusoidal model
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Figure 3: ω = 16π. xs = 0 and xs = 0.5.
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Conclusion and future work
Developed a Eulerian Gaussian beam method for
high frequency waves.
Future work consists of

3-D implementation ...
incorporating this into seismic migration ...
open to suggestions ...
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