Eulerian Gaussian beams for high frequency wave propagation

Jianliang Qian

Wichita State University, Wichita, KS and TRIP, Rice University TRIP Annual Meeting

January 26, 2007

1

Outline

- Geometrical optics and Gaussian beams
- Lagrangian Gaussian beams: basics
- Eulerian Gaussian beams: global Cartesian coordinates
- Numerical results
- Conclusions and future work

Geometrical optics and Gaussian beams

- Traditional geometrical optics yields unbounded amplitude at caustics.
- A Gaussian beam around a central ray always has regular behavior at caustics and interference of multiple arrivals is achieved by summing up a bundle of Gaussian beams (Cerveny'82, White'87, etc).
- Traditional GBs are based on Lagrangian ray tracing.

■ Combining the GB ansatz (Ralston'83, Tanushev-Qian-Ralston'06) with the paraxial Liouville formulation (Qian-Leung'04,'06) ⇒ Eulerian GB summation method (Leung-Qian-Burridge'06).

Lagrangian Gaussian beams

Eikonal and transport equations

• Wave equation for $U(x, z, \omega)$,

$$\nabla^2 U(x, z, \omega) + \frac{\omega^2}{v^2(z, x)} U(x, z, \omega) = -\delta(x - x_s)\delta(z - z_s),$$

 $\Omega = \{(x, z) : x_{\min} \le x \le x_{\max}, 0 \le z \le z_{\max}\},\$ where ω frequency, v(z, x) velocity, and (z_s, x_s) a source point.

GO ansatz:

$$\left(\frac{\partial\tau}{\partial x}\right)^2 + \left(\frac{\partial\tau}{\partial z}\right)^2 = \frac{1}{v^2(x,z)},$$
$$\nabla\tau \cdot \nabla A + \frac{1}{2}A\nabla^2\tau = 0.$$

Paraxial Eikonal equations

Gray-May'95, Qian-Symes'02)

$$\frac{\partial \tau}{\partial z} - \sqrt{\frac{1}{v^2} - \left(\frac{\partial \tau}{\partial x}\right)^2} = 0, \quad z \ge 0, \quad x_{\min} \le x \le x_{\max}$$

$$\tau(0, x) = \tau_0(x), \quad \operatorname{Im} \tau_0 \ge 0, \quad \nabla \tau|_{z=0} = \xi(x),$$

where $\tau_0(x)$ and $\xi(x)$ are given complex smooth functions satisfying the compatibility conditions.

Eikonal eqns: initial condition

At $(z_s, x_s) = (0, x_s)$, specify initial conditions,

$$\tau_0(x_s) = 0, \quad \xi_1(x_s; \theta_s) = \frac{\sin \theta_s}{v(0, x_s)}, \quad |\theta_s| \le \theta_{\max} < \frac{\pi}{2},$$

where

 $(x_s, \theta_s) \in \Omega_p = \{(x, \theta) : x_{\min} \le x \le x_{\max}, |\theta| \le \theta_{\max}\}.$

Construct a τ in a neighborhood of the source:

$$\tau_0(x;x_s) = \tau_0(x_s) + \xi_1(x_s;\theta_s) \cdot (x-x_s) + i\frac{\epsilon}{2}(x-x_s)^2 \cos^2\theta_s.$$

Gaussian beam theory (1)

Let the central ray of a beam be given by x = X(z), travel time by $\tau = T(z)$, and the Hamiltonian $H(z, X, p) = -\sqrt{\frac{1}{v^2(z, X)} - p^2}$, where $p(z) = \tau_x(z, X(z))$.

Ray tracing system:

$$\dot{X}(z) = H_p = \frac{p}{\sqrt{\frac{1}{v^2} - p^2}}, X|_{z=0} = x_s;$$

$$\dot{p}(z) = -H_X = \frac{-v_X}{v^3 \sqrt{\frac{1}{v^2} - p^2}}, p|_{z=0} = \xi_1(x_s; \theta_s);$$

$$\dot{T}(z) = \frac{1}{v^2 \sqrt{\frac{1}{v^2} - p^2}}, T|_{z=0} = \tau_0(x_s).$$

Gaussian beam theory (2)

Dynamic ray tracing (DRT) system, where $B(z; x_s, \theta_s) = \frac{\partial p(z; x_s, \theta_s)}{\partial \alpha}$ and $C(z; x_s, \theta_s) = \frac{\partial X(z; x_s, \theta_s)}{\partial \alpha}$, and $\epsilon > 0$,

$$\dot{B}(z) = -H_{X,p}B - H_{X,X}C, \quad B(z)|_{z=0} = i\epsilon \cos^2 \theta_s, \dot{C}(z) = H_{p,p}B + H_{p,X}C, \quad C(z)|_{z=0} = 1.$$

Traveltime near a central ray

Gaussian beam theory implies that $Im(BC^{-1})$ remains positive if it is positive initially, i.e. if ϵ is positive. (Leung-Qian-Burridge'06).

By $\tau_x = p$ and $\tau_{xx} = \delta p / \delta x = (\partial p / \partial \alpha) / (\partial x / \partial \alpha) = B / C$, in the neighborhood of *X*,

$$\tau(z, x; x_s, \theta_s) = T(z; x_s, \theta_s) + p(z) \cdot (x - X(z)) + \frac{1}{2} (x - X(z))^2 B(z) C^{-1}(z),$$

Let the angle the central ray of a beam makes with the *z*-direction at *z* be the arrival angle $\Theta(z; x_s, \theta_s)$, and let $p(z) = \frac{\sin \Theta(z)}{v(z, X(z))}$.

Lagrangian systems

The ray tracing system, the DRT system, and amplitude nonzero everywhere (L-Q-B'06)

$$\begin{aligned} \frac{dX}{dz}(z) &= \tan\Theta, X(0) = x_s, \\ \frac{d\Theta}{dz}(z) &= \frac{1}{v}(v_z \tan\Theta - v_x), \Theta(0) = \theta_s, \\ \frac{dT}{dz}(z) &= \frac{1}{v(z, X(z; x_s, \theta_s)) \cos\Theta(z; x_s, \theta_s)}, T|_{z=0} = 0, \\ \dot{B}(z) &= -H_{X,p}B - H_{X,X}C, B(z)|_{z=0} = i\epsilon \cos^2 \theta_s, \\ \dot{C}(z) &= H_{p,p}B + H_{p,X}C, C(z)|_{z=0} = 1; \\ A(z; x_s, \theta_s) &= \frac{\sqrt{C(0)v(z, X(z)) \cos\theta_s}}{\sqrt{v(z_s, x_s)C(z; x_s, \theta_s) \cos\Theta(z)}}. \end{aligned}$$

Lagrangian GB summation

The wavefield due to one Gaussian beam parameterized with initial take-off angle θ_s is

 $\Psi(z, x; x_s, \theta_s) = \psi_0 A(z; x_s, \theta_s) \exp[i\omega\tau(z, x; x_s, \theta_s)],$

where
$$p(z) = \frac{\sin \Theta(z; x_s, \theta_s)}{v(z, X(z; x_s, \theta_s))}$$
 and
 $\tau(z, x; x_s, \theta_s) = T(z; x_s, \theta_s) + p(z) \cdot (x - X(z)) + \frac{1}{2}(x - X(z))^2 B(z) C^{-1}(z).$

The wavefield generated by a point source at x_s ,

$$U(z,x;x_s) = \int_{-\pi/2}^{\pi/2} \Psi(z,x;x_s,\theta_s) d\theta_s.$$

Eulerian Gaussian beams

Paraxial Liouville equations

(Qian-Leung'04,06). Introduce a function,

 $\phi = \phi(z, x, \theta) : [0, z_{\max}] \times \Omega_p \to [x_{\min}, x_{\max}],$

such that, for any $x_s \in [x_{\min}, x_{\max}]$ and $z \in [0, z_{\max}]$,

 $\Gamma(z; x_s) = \{ (X(z), \Theta(z)) : \phi(z, X(z), \Theta(z)) = x_s \}$

gives the location of the reduced bicharacteristic strip $(X(z), \Theta(z))$ emanating from the source x_s with takeoff angles $-\theta_{\max} \le \theta_s \le \theta_{\max}$.

Differentiate with respect to *z* to obtain

$$\phi_z + u\phi_x + w\phi_\theta = 0,$$

$$\phi(0, x, \theta) = x, \quad (x, \theta) \in \Omega_p.$$

Level sets (1)

For a fixed $x_s \in [x_{\min}, x_{\max}]$, the location where $\phi(0, x, \theta) = x_s$ holds is

 $\Gamma(0; x_s) = \{ (x, \theta) : x = x_s, -\theta_{\max} \le \theta \le \theta_{\max} \},\$

which states that the initial takeoff angle varies from $-\theta_{\text{max}}$ to θ_{max} at the source location x_s .

- Evolving level set equations will transport source locations ("tag") to any z according to the vector fields u and w.
- Given $z \in [0, z_{\max}]$ and $x_s \in [x_{\min}, x_{\max}]$, the set $\Gamma(z; x_s)$ is a curve in Ω_p , which defines an implicit function between X and Θ .

Level sets (2)

- When z = 0, $\Gamma(0; x_s)$ is a vertical line in Ω_p , indicating that the rays with takeoff angles from $-\theta_{\max}$ to θ_{\max} emanate from the source location x_s .
- When $z \neq 0$, $\Gamma(z; x_s)$ being a curve indicates that for some $X = x^*$ there are more than one $\Theta = \theta_a^*$ such that $\phi(z, x^*, \theta_a^*) = x_s$, implying that more than one rays emanating from the source x_s reach the physical location (z, x^*) with different arrival angles θ_a^* .

Multivaluedness: illustration

Figure 1: Multivaluedness.

Takeoff angles, traveltimes

To sum Gaussian beams, parametrize $\Gamma(z; x_s)$ with takeoff angles: transport the initial takeoff angle, ψ ,

$$\psi_z + u\psi_x + w\psi_\theta = 0,$$

$$\psi(0, x, \theta) = \theta, \quad (x, \theta) \in \Omega_p$$

For each point $(x^*, \theta^*) \in \Gamma(z; x_s)$, the unique takeoff angle is $\psi(z, x^*, \theta^*)$.

■ Map $\Gamma(z; x_s)$ into $\psi(z, \Gamma(z; x_s)) \subset [-\theta_{\max}, \theta_{\max}]$; mapping from $\Gamma(z; x_s)$ to $\psi(z, \Gamma(z; x_s))$ is 1-1.

The traveltime for those multiple rays:

$$T_z + uT_x + wT_\theta = \frac{1}{v\cos\theta}, \quad T(0, x, \theta) = 0.$$

Liouville for *B* and *C*

 \blacksquare *B* and *C* satisfy

$$B_{z} + uB_{x} + wB_{\theta} = -H_{x,p}B - H_{x,x}C,$$

$$B(x, \theta, z = z_{s}) = i\epsilon \cos^{2} \theta,$$

$$C_{z} + uC_{x} + wC_{\theta} = H_{p,p}B + H_{x,p}C,$$

$$C(x, \theta, z = z_{s}) = 1.$$

The Eulerian amplitude is

$$A(z, x, \theta) = \frac{\sqrt{C(0)v(z, x)\cos\psi(z, x, \theta)}}{\sqrt{v(z_s, x_s)C(z, x, \theta)\cos\theta}}$$

Eulerian GB summation (1)

Gaussian beam summation formula in phase space,

$$U(z, x; x_s) = \int_{I(z; x_s)} \frac{A(z, x', \theta')}{4\pi} \times \exp\left[i\omega\tau(z, x; x', \theta') + \frac{i\pi}{2}\right] d\theta_s,$$

where $(x', \theta') \in \Gamma(z; x_s)$, $\psi = \psi(z, x', \theta')$,

$$I = \psi(z, \Gamma(z; x_s))$$

= { $\theta_s : \theta_s = \psi(z, x', \theta')$ for $(x', \theta') \in \Gamma(z; x_s)$ }
 $\subset [-\theta_{\max}, \theta_{\max}].$

Eulerian GB summation (2)

Traveltime

$$\tau(z, x; x', \theta') = T(z, x', \theta') + \frac{(x - x')\sin\theta'}{v(z, x')} + \frac{1}{2}(x - x')^2 BC^{-1}(z, x', \theta')$$

- I = I(z; x_s) is an interval because Γ(z; x_s) is a continuous curve and the takeoff angle parametrizes this curve continuously.
- Efficient numerical procedures (Leung-Qian-Burridge'06).

Waveguide model

Figure 2: $\omega = 8\pi$. $x_s = 0$ and $x_s = 0.5$.

Sinusoidal model

Figure 3: $\omega = 16\pi$. $x_s = 0$ and $x_s = 0.5$.

Conclusion and future work

- Developed a Eulerian Gaussian beam method for high frequency waves.
- Future work consists of
 - **3-D** implementation ...
 - incorporating this into seismic migration ...
 - open to suggestions ...