Eulerian Gaussian beams for high
frequency wave propagation

Jianliang Qian

Wichita State University, Wichita, KS
and
TRIP, Rice University
TRIP Annual Meeting
January 26, 2007


http://www.math.wichita.edu/~qian/

Outline

m Geometrical optics and Gaussian beams
m Lagrangian Gaussian beams: basics

m Eulerian Gaussian beams: global Cartesian
coordinates

m Numerical results
m Conclusions and future work



Geometrical optics and
Gaussian beams

m Traditional geometrical optics yields unbounded
amplitude at caustics.

m A Gaussian beam around a central ray always has
regular behavior at caustics and interference of
multiple arrivals is achieved by summing up a bundle
of Gaussian beams (Cerveny’82, White’87, etc).

m Traditional GBs are based on Lagrangian ray tracing.

m Combining the GB ansatz (Ralston’83,
Tanushev-Qian-Ralston’06) with the paraxial Liouville
formulation (Qian-Leung’04,06) = Eulerian GB
summation method (Leung-Qian-Burridge’06).



Lagrangian Gaussian beams



Eikonal and transport
equations

m Wave equation for U(x, z,w),

VU (z,z,w) +

U(x,z,w) =—0(x —x5)0(z — z5),

v2 (2, x)

() = {(ZL‘, Z) . Tmin S X S mmamo S < S Zmax}v

where w frequency, v(z, x) velocity, and (zs, z5) a
source point.
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m (Gray-May’'95, Qian-Symes’02)

ot 1 or\ 2 0 - <
= = —— =] = 2 Tmin < T < T
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7(0,2) = 79(x), Imm >0, V7|,20=¢&(x),

where 79(x) and &(x) are given complex smooth
functions satisfying the compatibility conditions.



Eikonal egns: initial
condition

m At (z5,25) = (0, z5), Specify initial conditions,

sin 6 7
9 < 9 X < _,
(O,ZUS)7 ‘ S‘ — YINa. 2

7'0(378) =0, gl(xS;QS) — y

where
(3787(98) S Qp — {(SE,@) ! Tmin S T < Tmax, "9| < emax}
m Construct a 7 in a neighborhood of the source:

7'0(373 558) — 7_0(378) -+ 51(*7:8; (98) ' (x — 333)

—I—z%(az — x3)2 cos® B



Gaussian beam theory (1)

m Let the central ray of a beam be given by » = X(2),
travel time by 7 = T'(z), and the Hamiltonian

H(z X,p) = =[xy — 1% Where p(z) = m(2. X (2)).

m Ray tracing system:

1 _pz
U2

. —U

P(2) = —Hx = ———pl==0 = &1(x405)
03\/0_2 _ 2

: 1

T(z) = T],—0 = 10(xs).



Gaussian beam theory (2)

m Dynamic ray tracing (DRT) system, where
B(z;xs,05) = 8p(zéxas,93) and C'(z; xs,05) = 8X(,g;§3,93),
and € > 0,

B(z) = —Hx,B— HxxC, B(z)|,=0 = iecos® s,
C(z) = HppB+ HyxC, C(z)|:=0 = 1.



Traveltime near a central ray

m Gaussian beam theory implies that Im(BC 1)
remains positive if it is positive initially, i.e. if € is
positive. (Leung-Qian-Burridge’06).

mBy 7, =pand,, =dp/dx = (0p/0a)/(0x/0ca) = B/C,
in the neighborhood of X,

7(27:63378708) — T(Zax&@S)_l_p(Z)(x_X(Z))
b(e - X(2)PB()C(2).
m Let the angle the central ray of a beam makes with
the z-direction at =z be the arrival angle ©(z; z, 0,),

and let p(z) = 20U
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Lagrangian systems

m The ray tracing system, the DRT system, and
amplitude nonzero everywhere (L-Q-B’06)

a(z) = tan ©, X (0) = x4,

dO 1

g(z) = ;(vz tan © — vy ), ©(0) = b,
dT 1

= T|,—g =0,
dz(z) v(z, X(z;24,05)) cos O(z; x5,05) 20

B(z) = —Hx ,B — Hx xC, B(2)|,=¢ = i€ cos? b,

C(z) = HypB + H, xC,C(2)] =0 = 1;

~ /C0)u(z, X(2)) cos b
V(zs,25)C(2; 15, 05) cos O(2) y

A(Zstﬂgs)



Lagrangian GB summation

m The wavefield due to one Gaussian beam
parameterized with initial take-off angle 6, is

W (z,2;24,05) = PoA(z; s, 05) expliwT (2, x5 25, 05)]

sin ©(z;xs,05)
=X =iz, 0,)) and

where p(z) =

T(z,2;25,05) = T(z;2s,05) +p(2) - (x— X(2)) +
(@~ X(2)?B()C(2)

m The wavefield generated by a point source at z;,

/2

U(z,x;15) = / U(z, x;xs,0s)d0s.
—7/2
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Eulerian Gaussian beams



Paraxial Liouville equations

m (Qian-Leung’04,06). Introduce a function,
¢ = ¢(2,2,0) 1 [0, 2max] X Qp — [Tmin, Tmax],
such that, for any x; € [Tmin, Tmax] @Nd z € [0, zmax/,
[(z;2s) = {(X(2),0(2)) : ¢(2, X(2),0(2)) = 5}

gives the location of the reduced bicharacteristic strip
(X(2),0(z)) emanating from the source =, with
takeoff angles —0.x < 05 < Opax.

m Differentiate with respect to z to obtain

¢r + uPy +wpg =0,
¢(0,2,0) =z, (x,0) € Q. y



Level sets (1)

m For a fixed zs € [Zmin, Tmax|, the location where
¢(0,x,0) = x5 holds is

F(O;QZS) — {(33,9) =g, —Omax < 0 < Hmax}a

which states that the initial takeoff angle varies from
—0Omax 10 Omax at the source location z;.

m Evolving level set equations will transport source
locations (“tag”) to any z according to the vector
fields v and w.

m Given z € [0, zmax] aNd =5 € [Tmin, Tmax), the set
['(z;z5) IS @ curve in €2, which defines an implicit
function between X and ©.
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Level sets (2)

m When z =0, ['(0; z) IS a vertical line in 2, indicating
that the rays with takeoff angles from —6,,,x t0 Onax
emanate from the source location z..

m When z £ 0, I'(z; x5) being a curve indicates that for
some X = z* there are more than one © = % such
that ¢(z, x*,0%) = x5, implying that more than one
rays emanating from the source x, reach the physical
location (z, z*) with different arrival angles 6.
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Takeoff angles, traveltimes

m To sum Gaussian beams, parametrize I'(z; z5) with
takeoff angles: transport the initial takeoff angle, v,

Vy +uthpy +wipg =0,
V(0,2,0) =0, (x,0) € Q.

m For each point (z*,0%) € I'(z; x4), the unique takeoff
angle is ¢ (z, x*, 0%).

[ Map F(Z, ZCS) Into w(Z, F(Z, 335)) C [_Hmaxa emax];
mapping from I'(z; z5) 10 (2, ['(2; x4)) IS 1-1.

m The traveltime for those multiple rays:

T, +uly, +wly = T0,2,0)=0.

vcosf’
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Liouville for B and C

m B and C satisfy

B, +uB; +wByg = —H; ,B — H, ;C,
B(z,0,z = z,) = iecos* 0,

C,+uCy +wCy=H,,B+ H;,C,
Clx,0,z=25) = 1.

m The Eulerian amplitude is

VC(0)v(z,x coszb(za:@)
Vu(zs,25)C(2, 2, 0) cosf

Az, x,0) =
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Eulerian GB summation (1)

m Gaussian beam summation formula in phase space,

Az, 2,0
Uz, z;15) = / GhALS
I(Z5378) A
LT

X exp [in(z, v: 2, 0)+ —| dbs,

2
where (z/,0") € T'(z; x,), ¥ = (2,2, 8",

I = Yz T(z;zs))
{05 : 05 =(z,2',0) for (2/,0") € T(2;24)}

[_emam Hmax] .

M



Eulerian GB summation (2)

m [raveltime

_ N sin @'
raa 0) = T(sal,0)+ E 20

v(z, x')

+%(m —2')*BC Y(z,2',60)

m/=1I(z;zs)Is an interval because I'(z; z;) is a
continuous curve and the takeoff angle parametrizes
this curve continuously.

m Efficient numerical procedures
(Leung-Qian-Burridge’06).
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Waveguide model

Figure 2: w = 8r. x4, = 0 and x, = 0.5.
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Sinusoidal model
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Figure 3: w = 167. x, = 0 and x, = 0.5.
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Conclusion and future work

Developed a Eulerian Gaussian beam method for
nigh frequency waves.

~uture work consists of
= 3-D implementation ...
® incorporating this into seismic migration ...
® open to suggestions ...

24



	Outline
	Geometrical optics and Gaussian beams
	Lagrangian Gaussian beams
	Eikonal and transport equations
	Paraxial Eikonal equations
	Eikonal eqns: initial condition
	Gaussian beam theory (1)
	Gaussian beam theory (2)
	Traveltime near a central ray
	Lagrangian systems 
	Lagrangian GB summation
	Eulerian Gaussian beams
	Paraxial Liouville equations
	Level sets (1)
	Level sets (2)
	Multivaluedness: illustration
	Takeoff angles, traveltimes
	Liouville for $B$ and $C$
	Eulerian GB summation (1)
	Eulerian GB summation (2)
	Waveguide model
	Sinusoidal model
	Conclusion and future work

