# Interval velocity estimation via Kirchhoff-based differential semblance

Jintan Li and William W. Symes

Rice Inversion Project Annual meeting, January 2006

#### Introduction

Velocity analysis updates velocity parameters to flatten primary reflections in image gathers.

Differential semblance velocity analysis (DSVA) optimizes a differential measure of gather flatness:

• mean square of all differences between *neighboring* traces in prestack image volume (DS). ( so tries to flatten everything !)

Theory:

- DS is *unique* velocity-dependent quadratic form in prestack image volume, which is *smooth in data and velocity* (Kim & WWS 98, Stolk & WWS 03)
- For version based on NMO, *all stationary points are global minima* for noise-free *primaries only* data (WWS 01)

# Versions of DSVA

- Hyperbolic or ray-trace NMO correction in CMP and plane wave domains (Carazzone & S. 91, Minkoff & WWS. 97, S. 98)
- Two way reverse time (Versteeg & WWS. 93, Kern & WWS. 94)
- Prestack Kirchhoff migration (Chauris & Noble 01, Mulder & ten Kroode 01, Brandsberg-Dahl & deHoop 03)
- Shot profile and DSR migration (Shen et al. 03, Foss et al. 04)

For reliable results, all variants require

- suppression of coherent noise (multiples, unmodeled converted waves,...)
- velocity models compatible with imaging engine (usually: nonreflecting)

#### Part I : NMO-based DSVA

When:

- lateral heterogeneity is weak
- coherent noise (eg. multiple reflection) can be suppressed

NMO-based DSVA interval velocity estimation is:

- kinematically accurate
- robust
- fast (100+ traces /s on modest workstation)

# NMO-based DSVA

Simplest possible prestack imaging engine  $\Rightarrow$  *fastest* but accurate only for slow lateral variation of velocity and reflector structure.

Our implementation:

- standard data structure (SEGY) for data input and diagnostic output
- standard preprocessing: filter, mute, various noise suppression methods
- flexible velocity modeling accommodating 1D, 2D, and 3D variation, but enforcing smoothness and upper and lower velocity envelopes( use "PIGrid", see TRIP 2005 report)
- effective numerical optimization (limited memory BFGS)

#### NMO and Derivatives

NMO-based DSVA requires:

- NMO transformation can get this anywhere (eg. SU)
- *Derivative* and *adjoint derivative* of the NMO transformation with respect to velocity
- Implemented hyperbolic moveout using local polynomial interpolation, degree  $\geq$  3 to assure sufficiently smooth response to velocity perturbation

#### Adaptive Choice of Velocity Model Dimension

• First pass: find optimal 1D model. If the gathers are flattened adequately, end; otherwise go to second pass

• Second pass: find optimal 2D model. If the gathers are flattened adequately, end; otherwise go to third pass.

• Third pass: find optimal 3D model, end.

### Example



38 CMPs extracted from the **Viking Graben** data set. Preprocessing: *hyperbolic radon transform multiple suppression*, zero phase band pass filter, mute. (Keys and Foster, 1996)



NMO corrected gathers after DSVA, v(z):



NMO corrected gathers after DSVA, v(x, z):

#### Detail: gathers from v(z) DSVA



#### Detail: gathers from v(x, z) DSVA



#### **DSVA** : v(z) Interval velocities



#### **DSVA** : v(x, z) Interval velocities



### Conclusion for Part I

- For regions of mild lateral heterogeneity and data from which coherent noise can be suppressed, NMO-based DSVA may give useful, fast, and robust initial velocity estimates
- Coherent noise (eg. multiple reflections) degrades accuracy for better automatic VA, such noise must be either suppressed from data or included in VA wave propagation model

## Part II : Kirchhoff migration DSVA

Kirchhoff migration:

- A high-frequency approximation of the wave equation
- Image grid can be arbitrarily specified
- Can yield good and reasonable results except when the multipathing occurs
- Low computational cost

#### Part II: Kirchhoff migration

The image is computed by:

$$r_{[v]}(x,h) = \int dx_s d_{[v]}(x_s, x_r, T_{[v]}(x_s, x) + T_{[v]}(x, x_r)) * A_{[v]}(x_s, h...)$$
(1)

 $T_{[v]}(x_s, x)$ : travel time from source to the reflection point;  $T_{[v]}(x, x_r)$ : travel time from reflection point to receiver

 $A_{[v]}(x_s, h...)$ : the specified amplitude, which can vary under different circumstances

#### Differential semblance

The DS objective is:

$$J[v,d] = \frac{1}{2} \sum \left| \frac{\partial r}{\partial h} \right|^2 = \frac{1}{2} \sum_{i=0}^{Nh-1} \left\langle \frac{r_{i+1} - r_i}{\Delta h}, \frac{r_{i+1} - r_i}{\Delta h} \right\rangle$$
(2)  
(image:  $r_i = r(h_i, \widetilde{x})$ , offset:  $h_i = h_0 + i\Delta h$ )

hence

$$\delta J = \sum_{i=0}^{Nh-1} \left\langle \frac{r_{i+1} - r_i}{\Delta h}, \frac{\delta r_{i+1} - \delta r_i}{\Delta h} \right\rangle$$
(3)

let

$$f_i = \frac{r_{i+1} - r_i}{\Delta h} \tag{4}$$

17

$$\delta J = \sum_{i=0}^{N_h - 1} \langle f_i, \frac{\delta r_{i+1}}{\Delta h} \rangle - \sum_{i=0}^{N_h - 1} \langle f_i, \frac{\delta r_i}{\Delta h} \rangle$$

$$= \langle f_{Nh-1}, \delta r_{Nh} \rangle - \langle f_0, \delta r_0 \rangle + \sum_{i=1}^{N_h - 1} \langle \frac{f_{i-1} - f_i}{\Delta h}, \delta r_i \rangle$$

$$= \sum_{i=1}^{N_h - 1} \langle \frac{r_{i-r_{i-1}}}{\Delta h} - \frac{r_{i+1} - r_i}{\Delta h}, \delta r_i \rangle + \langle f_{Nh-1}, \delta r_{Nh} \rangle - \langle f_0, \delta r_0 \rangle$$

$$= \sum_{i=1}^{N_h - 1} \langle \frac{2r_i - r_{i+1} - r_{i-1}}{\Delta h^2}, \delta r_i \rangle + \langle f_{Nh-1}, \delta r_{Nh} \rangle - \langle f_0, \delta r_0 \rangle$$
(5)

here

$$q(\widetilde{x}) = \begin{cases} f_0 & i = 0\\ \frac{f_{i-1} - f_i}{\Delta h} & i = 1, \dots N_h - 1\\ f_{N_h - 1} & i = N_n \end{cases}$$
(6)

18

#### The derivative of the image

The derivative of the image is:

$$\delta r_{[v]}(\widetilde{x},h) = \int dx_s \frac{\partial d}{\partial t}(x_r, x_s, T_{[v]}(x_s, \widetilde{x})_+ T_{[v]}(x_r, \widetilde{x})) * (\delta T_{[v]}(x_s, \widetilde{x}) + \delta T_{[v]}(x_r, \widetilde{x}))$$
(7)

Bring  $\delta r$  into  $\delta J$ , we get:

$$\delta J = -\sum_{i=0}^{N_h - 1} (\sum_{\widetilde{x}} \sum_{x_s} q_i(\widetilde{x}) \frac{\partial d}{\partial t}(x_r, x_s, T_s + T_r) (\delta T(x, x_s) + \delta T(x_s + 2h, x))$$

$$= -\sum_{\widetilde{x}} g(\widetilde{x}) (\delta T(x, x_s) + \delta T(x_s + 2h, x))$$

$$+ \text{boundary conditions}$$
(8)

#### The gradient of the objective function

Find an operator A(y) such that

$$\langle A(y)g, \delta v \rangle = \langle g(\widetilde{x}), \delta T(y, \widetilde{x}) \rangle$$
 (9)

which means

$$\sum_{\widetilde{x}} (A(y)g)(\widetilde{x})\delta v(\widetilde{x}) = \sum_{\widetilde{x}} g(\widetilde{x})\delta T(y,\widetilde{x})$$
(10)

do this for  $y = x_s$ ,  $y = x_s + 2h$ , then the gradient ojective is:

$$\nabla J[v,d] = \sum_{\widetilde{x},h} (A(x_s)g)(x_s,\widetilde{x},h) + (A(x_s+2h)g)(\widetilde{x},x_s+2h,h)$$
(11)

# Velocity representation

Possibilities:

- constant velocity (test first)
- piecewise linear
- B-splines
- PIGrid ("Partially Irregular Grid")(see 2005 TRIP report)

#### Travel time and amplitude calculation

Travel time calculation:

Fast sweeping method for both time and adjoint calculation (see Jianliang Qian's talk)

Amplitude calculation: (later...)

# Data preparation

• Coherent noise and direct waves should be sufficiently suppressed or muted

• The data is presorted by increasing 3D offset - will work for both 2D and 3D data with the header words critically defined (sx,gx,gelev,selev,offset....) (use suazimuth & susort)

### Implementation

- Define a global image grid (NX,NY,NZ,OX,OY,OZ,dx,dy,dz)
- Loop over each trace in each common offset gather
  - Compute the travel time table and the amplitude on the global image grid
  - Choose the local grid within which all the traveltime  $\langle =$  Max data time (nt \* ns + delrt)
  - Calculate the image on this local grid
- Update the common offset image gather
- Compute the derivative of the image gather
- Compute the objective and the adjoint derivative of the objective

# Acknowledgement

Thanks for Total E & P for their financial support for this work.