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Introduction

Velocity analysis updates velocity parameters to flatten primary reflections in image
gathers.

Differential semblance velocity analysis (DSVA) optimizes a differential measure
of gather flatness:

• mean square of all differences between neighboring traces in prestack image
volume (DS). ( so tries to flatten everything !)

Theory:

• DS is unique velocity-dependent quadratic form in prestack image volume, which
is smooth in data and velocity (Kim & WWS 98, Stolk & WWS 03)

• For version based on NMO, all stationary points are global minima for noise-
free primaries only data (WWS 01)
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Versions of DSVA

• Hyperbolic or ray-trace NMO correction in CMP and plane wave domains (Caraz-
zone & S. 91, Minkoff & WWS. 97, S. 98)

• Two way reverse time (Versteeg & WWS. 93, Kern & WWS. 94)

• Prestack Kirchhoff migration (Chauris & Noble 01, Mulder & ten Kroode 01,
Brandsberg-Dahl & deHoop 03)

• Shot profile and DSR migration (Shen et al. 03, Foss et al. 04)

For reliable results, all variants require

• suppression of coherent noise (multiples, unmodeled converted waves,...)

• velocity models compatible with imaging engine (usually: nonreflecting)
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Part I : NMO-based DSVA

When:

• lateral heterogeneity is weak

• coherent noise (eg. multiple reflection) can be suppressed

NMO-based DSVA interval velocity estimation is:

• kinematically accurate

• robust

• fast (100+ traces /s on modest workstation)
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NMO-based DSVA

Simplest possible prestack imaging engine ⇒ fastest but accurate only for slow
lateral variation of velocity and reflector structure.

Our implementation:

• standard data structure (SEGY) for data input and diagnostic output

• standard preprocessing: filter, mute, various noise suppression methods

• flexible velocity modeling accommodating 1D, 2D, and 3D variation, but en-
forcing smoothness and upper and lower velocity envelopes( use ”PIGrid”, see
TRIP 2005 report)

• effective numerical optimization (limited memory BFGS)
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NMO and Derivatives

NMO-based DSVA requires:

• NMO transformation - can get this anywhere (eg. SU)

• Derivative and adjoint derivative of the NMO transformation with respect to ve-
locity

• Implemented hyperbolic moveout using local polynomial interpolation, degree
≥ 3 to assure sufficiently smooth response to velocity perturbation
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Adaptive Choice of Velocity Model Dimension

• First pass: find optimal 1D model. If the gathers are flattened adequately, end;
otherwise go to second pass

• Second pass: find optimal 2D model. If the gathers are flattened adequately, end;
otherwise go to third pass.

• Third pass: find optimal 3D model, end.
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Example
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38 CMPs extracted from the Viking Graben data set. Preprocessing: hyperbolic radon transform

multiple suppression, zero phase band pass filter, mute. (Keys and Foster,1996)
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NMO corrected gathers after DSVA, v(z):
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NMO corrected gathers after DSVA, v(x, z):
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Detail: gathers from v(z) DSVA
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Detail: gathers from v(x, z) DSVA
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DSVA : v(z) Interval velocities
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DSVA : v(x, z) Interval velocities
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Conclusion for Part I

• For regions of mild lateral heterogeneity and data from which coherent noise
can be suppressed, NMO-based DSVA may give useful, fast, and robust initial
velocity estimates

• Coherent noise (eg. multiple reflections) degrades accuracy - for better auto-
matic VA, such noise must be either suppressed from data or included in VA
wave propagation model
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Part II : Kirchhoff migration DSVA

Kirchhoff migration:

• A high-frequency approximation of the wave equation

• Image grid can be arbitrarily specified

• Can yield good and reasonable results except when the multipathing occurs

• Low computational cost
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Part II: Kirchhoff migration

The image is computed by:

r[v](x, h) =

∫
dxsd[v](xs, xr, T[v](xs, x) + T[v](x, xr)) ∗ A[v](xs, h...) (1)

T[v](xs, x): travel time from source to the reflection point;
T[v](x, xr): travel time from reflection point to receiver

A[v](xs, h...): the specified amplitude, which can vary under different circumstances
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Differential semblance

The DS objective is:

J [v, d] =
1

2

∑∣∣∣∣
∂r

∂h

∣∣∣∣
2

=
1

2

Nh−1∑
i=0

〈ri+1 − ri

4h
,
ri+1 − ri

4h
〉 (2)

(image: ri = r(hi, x̃), offset: hi = h0 + i4h)

hence

δJ =

Nh−1∑
i=0

〈ri+1 − ri

4h
,
δri+1 − δri

4h
〉 (3)

let

fi =
ri+1 − ri

4h
(4)
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δJ =
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4h
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4h
〉
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4h
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=
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〈
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=
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(5)

here

q(x̃) =





f0 i = 0
fi−1−fi
4h i = 1, ...Nh − 1

fNh−1 i = Nn

(6)
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The derivative of the image

The derivative of the image is:

δr[v](x̃, h) =

∫
dxs

∂d

∂t
(xr, xs, T[v](xs, x̃)+T[v](xr, x̃)) ∗ (δT[v](xs, x̃) + δT[v](xr, x̃))

(7)

Bring δr into δJ , we get:

δJ = −
Nh−1∑
i=0

(
∑

x̃

∑
xs

qi(x̃)
∂d

∂t
(xr, xs, Ts + Tr)(δT (x, xs) + δT (xs + 2h, x))

= −
∑

x̃

g(x̃)(δT (x, xs) + δT (xs + 2h, x))

+ boundary conditions

(8)
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The gradient of the objective function

Find an operator A(y) such that

〈A(y)g, δv〉 = 〈g(x̃), δT (y, x̃)〉 (9)

which means
∑

x̃

(A(y)g)(x̃)δv(x̃) =
∑

x̃

g(x̃)δT (y, x̃) (10)

do this for y = xs, y = xs + 2h, then the gradient ojective is:

∇J [v, d] =
∑

x̃,h

(A(xs)g)(xs, x̃, h) + (A(xs + 2h)g)(x̃, xs + 2h, h) (11)
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Velocity representation

Possibilities:

• constant velocity (test first)

• piecewise linear

• B-splines

• PIGrid (”Partially Irregular Grid”)(see 2005 TRIP report)

21



Travel time and amplitude calculation

Travel time calculation:

Fast sweeping method for both time and adjoint calculation (see Jianliang Qian’s
talk)

Amplitude calculation: (later...)
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Data preparation

• Coherent noise and direct waves should be sufficiently suppressed or muted

• The data is presorted by increasing 3D offset - will work for both 2D and 3D
data with the header words critically defined (sx,gx,gelev,selev,offset....) (use
suazimuth & susort)
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Implementation

• Define a global image grid (NX,NY,NZ,OX,OY,OZ,dx,dy,dz)

• Loop over each trace in each common offset gather

– Compute the travel time table and the amplitude on the global image grid

– Choose the local grid within which all the traveltime <= Max data time (nt∗
ns + delrt)

– Calculate the image on this local grid

• Update the common offset image gather

• Compute the derivative of the image gather

• Compute the objective and the adjoint derivative of the objective

24



Acknowledgement

Thanks for Total E & P for their financial support for this work.

25


