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The Rice Inversion Project

• University-industry research consortium in seismic inversion

• Directed since 1992 by W. W. Symes, Computational and Applied Mathematics

• Total research expenditure, industry funds:∼ $1.8 M

• 2005 Sponsors: Amerada Hess, ConocoPhillips, ExxonMobil,Landmark Graph-
ics, Shell, Total

• www.trip.caam.rice.edu
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Goals

• Contribute to the solution of mathematical and computational problems arising
in seismic prospecting and its industrial applications.

• Train applied mathematicians at graduate and postdoctorallevels who can (i)
communicate with scientists and engineers, (ii) identify mathematical and com-
putational issues in scientific and engineering applications, and (iii) bring to bear
appropriate mathematical and computational ideas and tools to solve them.
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TRIP Alumnae, 1992-2004

• Postdocs:Kidane Araya, Philippe Ecoublet, Chaoming Zhang, SeongjaiKim,
Michel Kern, Senren Liu, Lucio Santos, Alan Sei Huy Tran, Roelof Versteeg,
Christiaan Stolk

• PhD Students:Clifford Nolan, Maissa abd El-Mageed, Joakim Blanch, Susan
Minkoff, Jianliang Qian, Hua Song, Mark Gockenbach, Peng Shen, Eric Dus-
saud

• MA Students:Nate Winslow, Shannon Scott, Regina Hill, Hala Dajani
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TRIP Contributions

• Differential semblance velocity analysis - concept and various implementations
(WWS,...,Shen)

• Eikonal solvers: first fast upwind solvers, first anisotropic and high-order solvers
(van Trier & WWS, Kim, Qian)

• Eulerian methods for multiarrival traveltime computation- slowness matching

• GRT modeling, migration, inversion with Eikonal-derived inputs

• FD methods for viscoelasticity with controlled numerical dispersion (Blanch &
Robertsson)

• Iterative inversion for anelastic models (Blanch)

• Joint inversion for source and medium - concept and demonstration (Minkoff,
Winslow)

• Stability of velocity analysis via interferometry (Dussaud)
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TRIP Staff, 2005-6

• Director: William W. Symes

• Postdoc: TBN

• PhD Students: Eric Dussaud (stochastic effects in velocityanalysis, PhD de-
fended 12/12/05, currently Total E&P USA), Jintan Li (differential semblance
velocity analysis via Kirchhoff migration, MS expected 5/06), Sichao Chen
(globalizing nonlinear inversion, MS expected 5/06)

• Visiting Student: Alex Khoury (differential semblance velocity analysis using
common azimuth migration, supported by Total E&P USA)
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TRIP SEG Presentations, 2005

• ,Velocity analysis from interferometric data, Eric A. Dussaud and William W.
Symes SPVA 1

• Differential semblance velocity analysis via shot profile migration, Peng Shen,
William W. Symes, Scott Morton, and Henri Calendra, SPVA 1

• Fast interval velocity estimation via NMO-based differential semblance, Jintan
Li and William W. Symes, SPVA 1

• Kinematics of prestack shot-geophone migration, Christiaan C. Stolk, Maarten
de Hoop, and William W. Symes, SPMI 2
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Today’s Agenda

0900 - 0910: Welcome and Overview (William W. Symes)
0910 - 1000: Student Presentations (Jintan Li, Alex Khoury,Sichao Chen)
1000 - 1015: TRIP Software (Symes)
1015 - 1030: Break
1030 - 1115: Traveltime computation and tomography based onthe Liouville
equation (Jianliang Qian)
1115 - 1200: Velocity analysis and nonlinear inverse scattering (Symes)
1200 - 1300: Lunch, Cohen House
1300 - 1400: Coffee and Discussion of Project Accomplishments and
Directions (1049 DH)
1400: meeting adjourns
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TRIP Software

• Released today: DSVA-NMO package

• Early spring (?!): RTFD S-G migration, serial version

• Late spring (Jintan’s MS thesis project): DSVA-Kirch

• In planning stages: RTFD S-G migraiton, parallel version + DSVA

All TRIP software is mixed-language (C/C++/F77) and depends on SU and on the
Rice Vector Library= C++ framework for vector calculus, and on Tony Padula’s
Algorithmpackage = C++ framework for expression of iterative algorithms.

Each package comes with documentation (self-docs and/or web-browsable) and
test/demo suites.

Access method for private TRIP releases:blind web site. See printed agenda for
URL.
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Velocity Analysis and Nonlinear Inverse

Scattering

Versions of this talk given at

• American Geophysical Union spring meeting (May 05),

• Colorado School of Mines (June 05),

• Applied Inverse Problems 05 (June 05)

• University of British Columbia (August 05).

• TRIP sponsor labs.
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Why Differential Semblance (1)

Velocity analysis driven byflatness of gathers- and this is measurable! Several
approaches tried in the 80’s:

• maximizing stack power / semblance - Toldi, Fowler, al-Yahya;

• output least squares - Tarantola

These optimize avelocity-dependent quadratic form in inverted or migrateddata-
but OLS is notoriously dysfunctional -many local minima. Stack power has similar
properties.

Necessary for good optimization behaviour with Newton-type methods: objective
should be

• smooth in both velocity and data

• unimodal: no spurious stationary points
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Why Differential Semblance (2)

• Stolk & WWS,Inverse Problems03, TRIP 02: DS isonlyv-dependent quadratic
form in data which is (i) smooth underarbitrary finite energy data perturbations
and spatially smooth perturbations inv. Stack power and OLS are not smooth in
this sense.

• Drop quadratic form requirement:any smooth function of (finite energy) data
and smoothv, minimized at correctv for noise-free data,mustbe tangent to DS
to 2nd order.

• WWS, TRIP 99 & 01: Layered medium DS (based on linearized waveequation
or its approximations, eg. HF asymptotics): under reasonable circumstances, DS
is unimodal- this is true also for finite bandwidth data, for which SP and OLS
are (formally) smooth but not unimodal.

What is the best imaging approach for DSVA in laterally heterogeneous media?
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Shot-geophone prestack migration

Claerbout (1971): given velocity fieldv(x, z) (ref. model), compute:

• source wavefieldS(xs; z, x̄s, t) - continue the source at(zs, xs) to the “sunken
source” at(z, x̄s), z > 0 (i.e. solve wave eqn withsourceas source);

• receiver wavefieldR(xs; z, x̄r, t) - continue recorded data for the source at(zs, xs)
to the “sunken receiver” at(z, x̄r) (solve wave eqn withdataas source);

• image volumēI(z, x̄r, x̄s) - time cross-correlateS andR at zero lag, same depth,
sum over sources:

Ī(z, x̄s, x̄r) =

∫

dxs

∫

dtR(xs, z, x̄r, t)S(xs, z, x̄s, t)

• Claerbout’s imaging condition: extractimageI(z, x) where sunken source and
receiver coincide,̄xr = x̄s = x (“zero offset”): I(z, x) = Ī(z, x, x) - related to
ordinary Born inversion.
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Why S-G? (1)

The competition = common bin migration:

• common shot

• common offset

• common scattering angle

Each data bin imaged independently - for CO and CSA, only Kirchhoff approach is
feasible.

Nolan & WWS (TRIP 95, SEG 96, Comm. PDE 97), Stolk & WWS (Geophys.
04): All of these methods producekinematic artifactswhenv is complex enough to
produce multipathing. That is: gathers arenot flat at correctv.
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Valhall cartoon
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Typical Shot Record
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Kirchhoff vs. S-G Angle Gathers
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Why S-G? (2)

Kinematic artifact = coherent noise due to energy migratingalong wrong ray pair.

Knownv ⇒ can process these out - but with inexactv can’t tell noise from signal -
disaster for automatic VA!

Stolk & de Hoop 01 MSRI prepring, Stolk, de Hoop, & WWS 05 (subm. to Geo-
phys.): provided that rays carrying significant energy

• do not turn (necessary for depth extrap. implementation!)

• are determined by data phases (always in 2D and “true” 3D, sometimes for nar-
row azimuth)

S-G image volumes arefree of kinematic artifacts: offset gathers are focussed,
angle gathers are flat when velocity is correct.
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Objective velocity analysis via S-G

Based onClaerbout’s focusing principle:Velocity correct⇒ image volumeĪ [v]
focusesat zero (subsurface) half offseth = (x̄r − x̄s)/2, i.e. exhibits essentially no
energy at|h| > 0.

How to measure focusing ath = 0: multiply by h! If product isbig RMS, image is
unfocused, velocity iswrong. If product issmallRMS, image is focused, velocity
is right.

Focusing as an optimization problem: minimize‖hĪ [v]‖2 overv (‖ · ‖ = L2 norm).

Minor extension of Stolk & S., IP 2003: this is essentially the only nontrivial
quadratic form in image volume which (a) varies smoothly as function ofv and
d, and (b) vanishes for focused̄I.

First results: Shen et al, SEG 2003. Following example also due to P. Shen.
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Objective velocity analysis in Marmousi: initial

velocity, image

,

Left: Initial velocity Right: image (h = 0 section from volume)
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Objective velocity analysis in Marmousi: final

velocity, image

,

Left: Final estimated velocityRight: image (h = 0 section from image volume)
after 47 iterations of LMBFGS. Pretty good image - but input is Born data!!!
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MVA does not account for multiple reflections
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Left : Three layer modelCenter: Data - source wavelet = 4-10-30-40 Hz bandpass.
Free surface multiple is about same size as second primary.Right: S-G Migration
at goodv - note focused primary, defocused image of surface multiple.

21



What to do about multiply reflected energy?

• suppress it: the traditional option - predictive decon,...., SRME. Not always easy!

• suppress on the basis of moveoutduring VA:

– Gockenbach & WWS, TRIP 98, SEG 99:extremal regularizaton(constrained
opt problem to perturb data as well as velocity);

– Mulder & Plessix 01: multiples areslower- can be discriminated from pri-
maries inimage volumevia Fourier/dip filter [Demo using DSVA-NMO...]

• but multiple reflection is physical - why not include it in themodel that drives
VA?

22



Nonlinear Least Squares Inversion

Modeling operator give byv → D, whereD(xs; xr, t) = P (xs; z, x, t)z=zr,x=xr

u(z, x)
∂2P

∂t2
(xs; z, x, t) −∇2

z,xP (xs; z, x, t) = w(t)δ(z − zs)δ(x − xs)

andu = v−2 (square slowness).

Least squares inversion: given dataDobs, adjustv (or u) so that predicted dataD[u]
fits observed data as well as possible:

minimizeu ‖D[u] − Dobs‖2

(some regularization usually a good idea).

Upshot of much work from 80’s on: LS inversion (i) handles multiples, i.e. does
not produce artifact images due to multiples, but (ii) requires a very good initial
estimate -domain of attractionof global minimizer has small “measure”.
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NLS does not make large velocity updates
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Left : Data from three layer modelRight: Inversions (solid lines) from three initial
v’s (dashed lines). 30-40 its of LMBFGS, redn in gradient length by10−2.
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Nonlinearizing MVA, step 1

Get from linear to nonlinear in two steps:

(1) recognize that shot-geophone prestack migration opd → Ī is adjoint of ex-
tended Born modeling op̄I → d; modeling op given byd(xs; xr, t) = p(xs; z, x, t)z=zr,x=xr

wherezr = recvr depth and
(

1

v(z, x)2
∂2p

∂t2
−∇2

z,xp

)

(xs; z, x, t) =

∫

dx̄S(xs; z, x̄, t)Ī(z, x, x̄)

(this is best seen using Green’s functions to represent solutions);

If Ī is physical= focusedat zero offset, i.e.Ī(z, x, x̄) = I(z, x)δ(x − x̄) with
I = 2δv/v3, then extended Born modeling specializes to ordinary Born modeling.
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Nonlinearizing MVA, step 2

(2) recognize that preceding eqn isperturbation equationof extended model
∫

dx̄U (z, x, x̄)
∂2P

∂t2
(xs; z, x̄, t) −∇2

z,xP (xs; z, x, t) = w(t)δ(z − zs)δ(x − xs)

That is,replace velocity (or square slowness) with SPD bounded operator - exis-
tence theory for such problems due to Lions, late 60’s.

If U (z, x, x̄) ' v(z, x)−2δ(x − x̄) + Ī(z, x, x̄), thenP (xs; z, x, t) ' S(...) + p(...).

In particular, ifU is physical= focusedat zero offset, i.e.U (z, x, x̄) =

v−2(z, x)δ(x − x̄), then the extended model becomes the ordinary acoustic model.
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Extended NLS

Given observed dataDobs(xr, xs, t), find extended sqr slownessU (z, x, x̄) so that
predicted dataD[U ](xs; xr, t) = P (xs; z, x, t)z=zr,x=xr fits observed data:D[U ] '
Dobs. [Formulate as least squares, use nonlinear optimization,blah, blah, blah....]

This problem isunderdetermined: can fit data equally well with many extended sqr
slownesses.

BUT: physicalsqr slownessesfocuses at zero offset[Claerbout redux!]:
U (z, x, x̄) ' v(z, x)−2δ(x − x̄)

Hypothesis: focusing of extended square slowness at zero offset⇔ correct kine-
matics for primary reflections (like MVA), multiple energy assigned to primary
reflectors (“multiples suppressed in image”, like NLS).

Initial numerical exploration: layered models⇒ U is convolution op inx variables
⇒ diagonalized by cosine transform⇒ cheap!

27



Model and data
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Left : Three layer modelRight: Data - source wavelet = 4-10-30-40 Hz bandpass.
Free surface multiple is about same size as second primary.
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Migration vs. Inversion
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Left : Migration of three-layer data atv = 1.5 km/s for z < 0.2km, else= 2.5

km/s. Right: inversion,∼ 40 LMBFGS iterations beginning at migrationv. Note
disappearance of migrated multiple.
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Three extended NLS inversions
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Different initial estimates of extended square slownessU (same as for NLS exam-
ple), then LMBFGS until fit error reduced to< 10−2 × ‖Dobs‖.
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Resimulations (predicted data)
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All three fit the data equally well...

31



Images (filtered zero offset sections)
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But only focused extended velocity produces image with correct reflector depths
and multiple energy assigned to primaries.

32



Summary

• MVA can be formulated as optimization problem amenable to Newton: can re-
cover from large initial errors inv, but based on Born approximation⇒ degraded
by nonlinear effects in data (multiple scattering).

• NLS accomodates any modeled physics, linear or nonlinear, but cannot recover
from large initial errors inv.

• Migration operator = adjoint toextendedlinearized modeling operator

• Focusing criterion fornonlinear extended modelgeneralizes both MVA and NLS
- and does this by generalizing S-G migration [there are simpler variants gener-
alizing binwise migration], so some hope for complex structure!
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Outlook

Automation: apply focusing condition via constrained least squares (as in MVA):

minimizeU ‖hU‖2 subject to ‖D[U ] − Dobs‖ ≤ ε

Two major obstacles to making this work (“research opportunities”):

(1) simulation: can’t afford full matrix multiply in every time step - must find basis
in which U is sparse, analog of cosine transform for layered models - windowed
Fourier / curvelets?

(2) optimization: in MVA, (smooth) velocity parametrizes solutions, allows effi-
cient reduced basisapproach, long steps within very curvyfeasible setof models
fitting data. What is replacement in nonlinear setting?
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Plans

• Jintan project: DSVA via CO Kirchhoff and collaboration with J-L Qian - good
for mild structure

• Sichao project: nonlinear p-bin DS for layered acoustics - sandbox for theory

• Alex project: DSVA via DSR/Common Azimuth migration - practical?

• Multidimensional (linear) DSVA theory, either binwise or S-G - can we gener-
alize layered result?

• Implementation of RT S-G DSVA - parallelization necessary

• Nonlinear DSVA: more numerical experimentation with layered case.

• Nonlinear theory: What is needed to get a handle on properties of nonlinear ex-
tension? Needmuchbetter understanding of wavefield response todiscontinuous
velocity perturbations. Even layered medium question is interesting (mathemat-
ically).
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