Explicit extrapolators and common azimuth migration

Eric Dussaud

October 29th, 2004

Agenda

- Downward continuation via explicit extrapolation.
- Design of explicit extrapolators.
- Design of 1-D convolution operators.
- Transformation filters.
- Extension to unequal sampling - Li correction.
- Application to common-azimuth migration.
- Conclusions and future work.

Explicit extrapolation (1/3)

- Downward continuation of zero-offset data:

$$
\frac{\partial P}{\partial z}\left(k_{x}, k_{y}, z, \omega\right)=i k_{z} P\left(k_{x}, k_{y}, z, \omega\right), \quad k_{z}=\sqrt{\frac{4 \omega^{2}}{v^{2}}-k_{x}^{2}-k_{y}^{2}}
$$

- The analytical solution is given by:

$$
P\left(k_{x}, k_{y}, z+\Delta z, \omega\right)=e^{i k_{z} \Delta z} P\left(k_{x}, k_{y}, z, \omega\right) \equiv W\left(k_{x}, k_{y}, \Delta z, \omega\right) P\left(\omega, k_{x}, k_{y}, z\right)
$$

- Inverse Fourier transform over k_{x} and k_{y} yields:

$$
\begin{aligned}
p(x, y, z+\Delta z, \omega) & =w(x, y, \omega) * p(x, y, z, \omega) \\
& =\iint d x^{\prime} d y^{\prime} w\left(x^{\prime}, y^{\prime}, \omega\right) p\left(x-x^{\prime}, y-y^{\prime}, z+\Delta z, \omega\right)
\end{aligned}
$$

Explicit extrapolation (2/3)

- Lateral changes in v are accommodated by "allowing" w to vary laterally, i.e. write $w\left(x^{\prime}, y^{\prime}, \omega\right) \equiv w\left(x, y, x^{\prime}, y^{\prime}, \omega\right)$ in the previous expression.
- In practice, substitute w with convolution operators f that are designed to fit the exact operator for a range of ω / v ratios.
- The operators f are optimized in such a way that their Fourier transform F over k_{x} and k_{y} approximate the exact phase-shift operator.

Explicit extrapolation (3/3)

- Major drawback of the method: computationally very expensive.
- Hale (1991): break the design procedure into two parts,
- computation of the coefficients of 1-D extrapolation filters that would be used for 2-D migration.
- computation of a small transformation filter that can be used to transform 1-D extrapolation operators into 2-D ones.

Upshot: computational cost is greatly reduced, and the design is simplified.

Design of 1-D convolution operators

- Compute 1-D short convolution operators $f(x, \Delta z, \omega)$ with complex coefficients $f_{n} \equiv f_{n}(\Delta z, \omega, v)$, and with a wavenumber spectrum:

$$
F\left(k_{x}, \Delta z, \omega\right) \sim W\left(k_{x}, \Delta z, \omega\right) \equiv \exp \left[i \Delta z \sqrt{\frac{\omega^{2}}{v^{2}}-k_{x}^{2}}\right], \quad\left|k_{x}\right| \in\left[0, k_{c}\right]
$$

- The (discrete) Fourier transform of $f(x, \Delta z, \omega)$ is:

$$
F\left(k_{x}, \Delta z, \omega\right) \approx \sum_{n=(-N+1) / 2}^{(N-1) / 2} f_{n} e^{-i n \Delta x k_{x}}=f_{0}+2 \sum_{n=1}^{(N-1) / 2} f_{n} \cos \left(n \Delta x k_{x}\right)
$$

- Optimization problem: find the coefficients f_{n} so as to minimize $\|F-W\|$.
- Do it for a range of ω / v ratios and store the coefficients in a file.

Principle of recursive extrapolation

Courtesy: Jan Thorbecke.

Transformation filters (1/3)

- To transform 1-D filters into 2-D filters, use the fact that:

$$
W\left(k_{x}, k_{y}, \Delta z, \omega\right)=W(|\mathbf{k}|, \Delta z, \omega), \quad|\mathbf{k}|=\sqrt{k_{x}^{2}+k_{y}^{2}}
$$

Therefore:

$$
\begin{equation*}
F\left(k_{x}, k_{y}, \Delta z, \omega\right) \approx f_{0}+2 \sum_{n=1}^{(N-1) / 2} f_{n} \cos (n \Delta x|\mathbf{k}|) \tag{1}
\end{equation*}
$$

- Use the Chebyshev recursion formula

$$
\cos (n \Delta x|\mathbf{k}|)=2 \cos (\Delta x|\mathbf{k}|) \cos [(n-1) \Delta x|\mathbf{k}|]-\cos [(n-2) \Delta x|\mathbf{k}|]
$$

to write:

$$
F\left(k_{x}, k_{y}, \Delta z, \omega\right) \approx \sum_{n=0}^{(N-1) / 2} \hat{f}_{n} \cos ^{n}(\Delta x|\mathbf{k}|)
$$

Transformation filters (2/3)

- To approximate $\cos (\Delta x|\mathbf{k}|)$, Hale (1991) suggested the following transform:

$$
\begin{aligned}
\cos \left(\Delta x \sqrt{k_{x}^{2}+k_{y}^{2}}\right) \approx G\left(k_{x}, k_{y}\right) \equiv & -1+\frac{1}{2}\left[1+\cos \left(\Delta x k_{x}\right)\right]\left[1+\cos \left(\Delta x k_{y}\right)\right] \\
& -\frac{c}{2}\left[1-\cos \left(2 \Delta x k_{x}\right)\right]\left[1-\cos \left(2 \Delta x k_{y}\right)\right]
\end{aligned}
$$

with $c=0.0255$.

- Denote by $g(x, y)$ the corresponding 5×5 spatial stencil (obtained by IFT):

$$
g(x, y) \equiv\left[\begin{array}{ccccc}
-c / 8 & 0 & c / 4 & 0 & -c / 8 \\
0 & 1 / 8 & 1 / 4 & 1 / 8 & 0 \\
c / 4 & 1 / 4 & -(1+c) / 2 & 1 / 4 & c / 4 \\
0 & 1 / 8 & 1 / 4 & 1 / 8 & 0 \\
-c / 8 & 0 & c / 4 & 0 & -c / 8
\end{array}\right]
$$

Contours of constant amplitude and phase (constant $|\mathbf{k}|$) for the (scaled and shifted) Hazra \& Reddy transformation compared to the improved McClellan transformation.

Transformation filters (3/3)

- The 2-D inverse Fourier transform of (1) is given by:

$$
f(x, y, \Delta z, \omega)=f_{0} \delta(x, y)+2 \sum_{n=1}^{N} f_{n} g_{n}(x, y)
$$

where $g_{0}(x, y) \equiv \delta(x, y), g_{1}(x, y) \equiv g(x, y)$ and $g_{n}=2 g_{n-1} * g-g_{n-2}, n>1$.

- The extrapolation step consists of convolving the wavefield with $f(x, y, \Delta z, \omega)$:

$$
p(x, y, z+\Delta z, \omega)=f_{0} p(x, y, z, \omega)+2 \sum_{n=1}^{N} f_{n}\left[g_{n} * p(x, y, z, \omega)\right]
$$

IFP model: in-line section at constant cross-line coordinate $y=0 \mathrm{~m}$.

IFP model: migrated section using an explicit scheme.

IFP model: migrated section using GSP.

Extensions

- Accomodate unequal in-line and cross-line sampling intervals, following the idea set forth by Levin $(1999,2004)$.
- Application of a correction filter (Li correction) to remove some of the phase error introduced by the Hale-McClellan tranformation filter (Etgen and Nichols, 1999).

Curve model: in-line section at constant cross-line coordinate $y=0 \mathrm{~m}$.

Synthetic data created with 101 cross-lines spaced 40 m apart, and 401 in-lines spaced 25 m apart.

Migrated section obtained using the explicit scheme.

Migrated section obtained using GSP.

Vertical slice through the migrated cube of an impulse response in a two-velocity medium. The operator used is a 25 -point WLSQ operator, along with the Hale-McClellan transform.

Same result with the Li correction applied every 10 steps.

Application to common-azimuth migration

- Convenient restriction of the DSR operator for downward-continuing data that share a single azimuth (Biondi \& Palacharla, 1996).
- After approximation with splitting, the dispersion relation associated with commonazimuth downward continuation is given by:

$$
\widehat{k_{z}}=\underbrace{\sqrt{\frac{\omega^{2}}{v_{s}^{2}}-\frac{1}{4}\left(k_{m_{x}}-k_{h_{x}}\right)^{2}}+\sqrt{\frac{\omega^{2}}{v_{g}^{2}}-\frac{1}{4}\left(k_{m_{x}}+k_{h_{x}}\right)^{2}}}_{\text {Convolution in } x}+\underbrace{\sqrt{\frac{4 \omega^{2}}{v_{m}^{2}}-k_{m_{y}}^{2}}}_{\text {Convolution in } y}-\frac{2 \omega}{v_{m}}
$$

Common-azimuth migration

- Downward-continuation step:

$$
P\left(k_{m_{x}}, k_{m_{y}}, k_{h_{x}}, z+\Delta z, \omega\right)=D_{1}(\ldots) D_{2}(\ldots) D_{3}(\ldots) P\left(k_{m_{x}}, k_{m_{y}}, k_{h_{x}}, z, \omega\right)
$$

with:

$$
\begin{aligned}
D_{1}\left(k_{m_{x}}, k_{h_{x}}, \Delta z, \omega\right) & =\exp \left[i \Delta z \sqrt{\frac{\omega^{2}}{v_{s}^{2}}-\frac{1}{4}\left(k_{m_{x}}-k_{h_{x}}\right)^{2}}\right] \\
D_{2}\left(k_{m_{x}}, k_{h_{x}}, \Delta z, \omega\right) & =\exp \left[i \Delta z \sqrt{\frac{\omega^{2}}{v_{g}^{2}}-\frac{1}{4}\left(k_{m_{x}}+k_{h_{x}}\right)^{2}}\right] \\
D_{3}\left(k_{m_{y}}, \Delta z, \omega\right) & =\exp \left[i \Delta z \sqrt{\frac{4 \omega^{2}}{v_{m}^{2}}-k_{m_{y}}^{2}}-\frac{2 \omega}{v_{m}}\right]
\end{aligned}
$$

Implementation (1/2)

- The operator D_{3} is designed and implemented exactly as in the zero-offset case.
- Consider D_{1}. Setting $k_{s}=k_{m_{x}}-k_{h_{x}}$, we have:

$$
D_{1}\left(k_{m_{x}}, k_{h_{x}}, \Delta z, \omega\right)=\exp \left[i \Delta z \sqrt{\frac{\omega^{2}}{v_{s}^{2}}-\frac{1}{4}\left(k_{m_{x}}-k_{h_{x}}\right)^{2}}\right]=\exp \left[i \frac{\Delta z}{2} \sqrt{\frac{4 \omega^{2}}{v_{s}^{2}}-k_{s}^{2}}\right] .
$$

It can be approximated by the finite-length summation:

$$
\begin{equation*}
D_{1}\left(k_{m_{x}}, k_{h_{x}}, \Delta z, \omega\right) \approx d_{0}+2 \sum_{n=1}^{N_{h}-1} d_{n} \cos \left(n \Delta x k_{s}\right) \tag{2}
\end{equation*}
$$

where Δx represents the CMP in-line sampling interval.

Implementation (2/2)

- The Chebyshev recursion can be used to write $\cos \left(n \Delta x k_{s}\right)$ in terms of an n-th order polynomial of $\cos \left(\Delta x k_{s}\right)$.
- Need to find spatial stencil corresponding to $\cos \left(\Delta x k_{s}\right)$. We have:

$$
\begin{aligned}
G\left(k_{m_{x}}, k_{h_{x}}\right) & \equiv \cos \left[\Delta x\left(k_{m_{x}}-k_{h_{x}}\right)\right] \\
& =\cos \left(\Delta x k_{m_{x}}\right) \cos \left(\Delta x k_{h_{x}}\right)+\sin \left(\Delta x k_{m_{x}}\right) \sin \left(\Delta x k_{h_{x}}\right)
\end{aligned}
$$

By inverse Fourier transform, we obtain:

$$
g\left(m_{x}, h_{x}\right)=\left[\begin{array}{lll}
0 & 0 & \frac{1}{2} \\
0 & 0 & 0 \\
\frac{1}{2} & 0 & 0
\end{array}\right]
$$

- Note: the main anti-diagonal of the filter represents the impulse response of the $\cos k_{s}$ filter, that is, the convolution is done in effect along the shot direction.

SEG-EAGE salt model: in-line section at constant cross-line coordinate $y=9,820 \mathrm{~m}$.

Same section obtained using split COMAZ via the explicit scheme.

Same section obtained using COMAZ via GSP.

SEG-EAGE salt model: cross-line section at constant in-line coordinate $x=7,440 \mathrm{~m}$.

Same section obtained using split COMAZ via the explicit scheme.

Same section obtained using COMAZ via GSP.

Summary

- Broad overview of 3-D depth-extrapolation methods.
- Migration of common-offset common-azimuth data with an explicit scheme.
- Future work: extension to the full DSR operator?

Acknowledgments

I would like to express my gratitude to:

- Henri Calandra and Biaolong Hua (Total) for their guidance and support thoughout the internship, and for allowing to show these results.
- William Symes (Rice University) for many useful suggestions and discussions and Jan Thorbecke (Delft University of Technology) for his help thoughout the summer.

