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Agenda

e Downward continuation via explicit extrapolation.

e Design of explicit extrapolators.

— Design of 1-D convolution operators.
— Transformation filters.

e Extension to unequal sampling - Li correction.
e Application to common-azimuth migration.

e Conclusions and future work.




Explicit extrapolation (1/3)

e Downward continuation of zero-offset data:

oP
0z

e The analytical solution is given by:

4?

—(ky, by, 2, w) = ik, Pk, ky, 2,w), k.= \/— — k- k.

Plky, ky, 2 + Az, w) = M2 P(ky by, 2,w) = W(ky, by, Az, ) P(w, ky, Ky, 2).
e Inverse Fourier transform ovér, andk, yields:

p(.I',:g,Z-FAZ,W) :w(['E)y?w)*p(x?y)Z)w)

_ // da'dy w(x',y',w)p(x — o',y — i, 2 + Az, w)




Explicit extrapolation (2/3)

e Lateral changes im are accommodated by “allowing? to vary laterally, I.e.
write w(x', ', w) = w(x,y, 2, 3y, w) in the previous expression.

e |n practice, substitute with convolution operatorg that are designed to fit the
exact operator for a range of/v ratios.

e The operatorg are optimized in such a way that their Fourier transfdtfraver
k., andk, approximate the exact phase-shift operator.




Explicit extrapolation (3/3)

e Major drawback of the method: computationaligry expensive.

e Hale (1991): break the design procedure iwo parts,

—computation of the coefficients of 1-D extrapolation filtdrat would be used
for 2-D migration.

— computation of a small transformation filter that can be usg¢thnsform 1-D
extrapolation operators into 2-D ones.

Upshot computational cost is greatly reduced, and the desigmiplgied.




Design of 1-D convolution operators

e Compute 1-D short convolution operatgfise, Az, w) with complex coefficients
fn = fn(Az,w,v), and with a wavenumber spectrum:

2
F(ky, Az, w) ~ Wik, Az,w) = exp liAzy/u; — k%] ke €10, k]
v

e The (discrete) Fourier transform ¢fx, Az, w) Is:

(N-1)/2 (N—-1)/2
F(ky, Az,w) & Z fe ATk — g4 9 Z fncos (nAzk,).
n=(—N+1)/2 n=1

e Optimization problem: find the coefficienfs so as to minimizel F' — W ||.

e Do it for a range ofv/v ratios and store the coefficients in a file.




Principle of recursive extrapolation

Courtesy: Jan Thorbecke




Transformation filters (1/3)

e To transform 1-D filters into 2-D filters, use the fact that:

W (ks by, A2, w) = W(k|, Az,w), (K| = (/K2 + k2

(N-1)/2
F(ky, ky, Az,w) = fo+ 2 Z fncos (naz|k|) (1)

n=1

Therefore:

e Use the Chebyshev recursion formula
cos(nAx|k|) = 2cos(Az|k|) cos [(n — 1)Ax|k|] — cos [(n — 2)Az|k|]
to write:

—1)/2
F(ky, ky, Az, w) Z s"(Azlk|)




Transformation filters (2/3)

e TO approximateos(Azx|k|), Hale (1991) suggested the following transform:

COS (Agy, [k2 4+ ]{5) ~ Gk, k) =—1+ % [1 4 cos(Azk,)] [1 + cos(Azk,)]
— g [1 — cos(2Axk,)] [1 — cos(2Azk,)]

with ¢ = 0.0255.

e Denote byy(x, y) the correspondingxb spatial stencil (obtained byT):

—c/8 0 c/4 0 —c/8]
0 1/8 1/4  1/8 0

glx,y) = | ¢/4 1/4 —(1+¢)/2 1/4 c¢/4
0 1/8 1/4 1/8 0

—c/8 0 c/4 0 —c¢/8
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Transformation filters (3/3)

e The 2-D inverse Fourier transform of (1) is given by:

N
fla,y, 8z,w) = fod(z,y) + 2> fogala,y),
n=1

wheregy(z,y) = d(z,y), gi(z,y) = g(z,y) and g, = 2g,-1* g — gn-2,n > 1.

e The extrapolation step consists of convolving the wavehett f(z,y, Az, w):

N
plx,y, 2+ Az,w) = fop(z,y,2,0) +2)  fulgn * plz,y, 2,w)]

n=1
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Depth (km)
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IFP model: migrated section using an explicit scheme.
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IFP model: migrated section using GSP.
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Extensions

e Accomodate unequal in-line and cross-line sampling i@stvfollowing the
Idea set forth by Levin (1999, 2004).

e Application of a correction filter (Li correction) to remow®me of the phase
error introduced by the Hale-McClellan tranformation fi{gtgen and Nichols,
1999).
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Synthetic data created witld1 cross-lines spacedm apart, and01 in-lines spaced>m apart.
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Vertical slice through the migrated cube of an impulse raspan a two-velocity medium. The
operator used is 2b-point WLSQ operator, along with the Hale-McClellan traorsf.
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Same result with the Li correction applied evefysteps.
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Application to common-azimuth migration

e Convenient restriction of the DSR operator for downwardtswing data that
share a single azimuth (Biondi & Palacharla, 1996).

e After approximation with splitting, the dispersion retatiassociated with common-
azimuth downward continuation is given by:

. 2] 4 2

Convolution inz Convolutlon |ny
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Common-azimuth migration

e Downward-continuation step:

Pk, ks by, 2 + 8z,w) = Di(. . ) Da(. . ) Ds(. . ) Pk, kinys By 2, 0),
with:

21
D1(kp,, kn,, Az,w) = exp |iAz w_2 — 7 (K, — khx)Z
/US
_ w? 1 5
Dok, kn,, Az, w) = exp 1Az [ — — 1 (km, + kn,)
v
g

Ds3(kp,, Az,w) = exp fiAz\/— — ky, ——




Implementation (1/2)

e The operatoiD; is designed and implemented exactly as in the zero-offset. ca

e ConsiderD,. Settingk, = k,,,,—ky,, we have:

. w? 1 5 Az [4w?
D1(kp,, kn,, Az,w) = exp |iAz 1 (km, — kn,)"| =exp |1 > \/ 7z k2
It can be approximated by the finite-length summation:
Np—1
Dy (kp,, kn,, Az, w) == dy + 2 Z d,, cos(nAxks), (2)
n=1

whereAx represents the CMP in-line sampling interval.
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Implementation (2/2)

e The Chebyshev recursion can be used to writénAzxk,) in terms of ann-th
order polynomial otos(Azks).

e Need to find spatial stencil corresponding:te(Azk,). We have:

G(km,, kn,) = cos | Az (ky,, — kn, )]
= cos (Axk,,, ) cos (Axky, ) + sin (Axk,, )sin (Axky, )

By inverse Fourier transform, we obtain:

g(mxa hm) —

o O O
o Ol

- O O

e Note: the main anti-diagonal of the filter represents theulsgresponse of the
cos k filter, that is, the convolution is done in effect along thetstiirection.
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SEG-EAGE salt model: in-line section at constant cross-dioordinate; = 9, 820m.
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Same section obtained using split COMAZ via the explicitesab.
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Same section obtained using COMAZ via GSP.
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SEG-EAGE salt model: cross-line section at constant ie-¢ioordinater = 7, 440m.
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Same section obtained using split COMAZ via the explicitesab.
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Same section obtained using COMAZ via GSP.
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Summary

e Broad overview of 3-D depth-extrapolation methods.
e Migration of common-offset common-azimuth data with anlexpscheme.

e Future work: extension to the full DSR operator?
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