Reverse time shot-geophone migration
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ABSTRACT

Shot-geophone migration, commonly accomplished using wavefield depth extrapo-
lation (“survey sinking”), has a two way reverse time realization as well. The reverse
time version permits imaging of overturned reflections, in contrast to the conventional
implementation using depth extrapolation (“double square root equation”). However
it is implemented, shot-geophone migration differs from other prestack migrations -
common offset, common shot or shot profile, common angle... - in the definition of
the prestack image volume which it creates. This difference is most clearly seen by i-
dentifying shot-geophone migration as the adjoint of an appropriate forward modeling
operator. The offset vector in shot-geophone migration need not be horizontal, and
this fact can be used to good effect in constructing prestack images of near-vertical
or overturned structures. Unlike other prestack migrations, the image property char-
acteristic of correct velocity - focussing of reflection energy at zero offset - holds in
strongly refracting media.

INTRODUCTION

The basis of migration velocity analysis is the semblance principle: prestack migrated
data volumes contain flat image gathers, i.e. are at least kinematically independent of the
bin or stacking parameter, when the velocity is correct (Yilmaz,...). Migration velocity
analysis (as opposed to standard NMO-based velocity analysis) is most urgently needed in
areas of strong lateral velocity variation, i.e. “complex” structure such as salt flanks, chalk
tectonics, and overthrust geology. However strong refraction implies multiple raypaths
connecting source and receiver locations with reflection points, and multiple raypaths in
turn imply that the semblance principle is not valid: that is, image gathers are not in
general flat when the migration velocity close approximates the true propagation velocity.

The failure of the semblance principle in complex structure afflicts all prestack migra-
tion techniques based on data binning, i.e. for which each data bin creates an independent
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image. This category includes many variants of common shot, common offset and com-
mon scattering angle migration - see (Nolan and Symes, 1996; Nolan and Symes, 1997; Xu
et al., 2001; Prucha et al., 1999; Stolk, ress; Stolk and Symes, 2002). However one well-
known form of prestack image formation does not migrate image bins independently: this
is Claerbout’s survey-sinking migration (Claerbout, 1985), commonly implemented using
the double square root (“DSR”) equation to extrapolate source and receiver depths. The
semblance principle for survey sinking migration is different: rather than being flat in
offset, energy is focussed at zero offset when the velocity is kinematically correct. This
paper refers to this variant of the semblance principle as the focussing property.

Note that survey sinking migration is limited to migration velocity model - data com-
binations in which rays carrying significant energy travel essentially vertically (the “DSR
condition”, per (Stolk and deHoop, 2001)).

Recently (Stolk and deHoop, 2001) showed that survey sinking does not create image
artifacts, i.e. that the focussing property holds in media of essentially arbitrary com-
plexity, provided that the DSR condition is valid. Stolk and deHoop also showed that a
“Kirchhoft” or diffraction sum implementation is possible, which makes it clear that depth
extrapolation per se is not the explanation for the good semblance (focussing) property
of survey sinking migration. The basis of this ray theoretic analysis is a DSR forward
modeling operator, of which the survey-sinking migration operator is the adjoint.

Once one understands survey-sinking migration as the adjoint operator of a shot-
geophone model, it is clear that this migration is a special case of a general class of shot-
geophone migration methods, and that these can be formulated without reference to one-
way wavefield extrapolation. The purpose of this paper is to introduce this more general
family of migration operators, describe two-way reverse time methods for computing them,
and to establish their artifact-free nature. We give a different and somewhat simpler
argument than the one in (Stolk and deHoop, 2001) for the absence of kinematic artifacts.
In contrast to (Claerbout, 1985; Stolk and deHoop, 2001), our formulation and analysis
accomodates non-horizontal offset, and we explain the importance of this generalization
for imaging near-vertical or overturned structure. Imaging of reflectors at arbitrary angle
of dip requires that the dip vector not be parallel to the direction of offset - otherwise the
focussing property is lost, for example in attempting to image a vertical reflector using
only horizontal offsets in shot-geophone migration. We illustrate this phenomenon with
simple examples, and explain it via ray theory.

When the DSR condition holds, our analysis provides an alternate (and, we think,
simpler) justification for the no-artifacts result of (Stolk and deHoop, 2001) than does
that paper, as well as an alternate computational approach. For the general (non-DSR)
case we propose a method for imaging all dips simultaneously by combining two or more
depth offset directions, with appropriate dip filtering. In this case, the focussing property
cannot in general be guaranteed in the simple form for which it holds when the DSR
condition is satisfied. Instead, we show that image volume energy is localized (i) at zero
offset, and (ii) possibly outside a corridor around zero offset. We relate the width of the
corridor to properties of the ray fields, which are necessary for a final stacked image at
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correct velocity to faithfully render the reflectors in the subsurface (traveltime injectivity
condition, no scattering over 7).

The papers (Biondi and Shan, 2002; Biondi and Symes, 2003) introduce essentially the
same family of reverse time algorithms, and discuss some of their properties. In particular
these papers shows that shot-geophone reverse time migration retains the property which
has led in the past to interest in reverse time migration (Whitmore, 1983; Chang and
McMechan, 1994; Yoon et al., 2003): it images reflectors which are invisible to depth
extrapolation migration due to overturned raypaths. The approach to imaging all dips
proposed in (Biondi and Symes, 2003) produces a single angle domain volume, rather than
the three offset domain volumes (one for each coordinate axis) proposed here. The input
to the angle domain image construction is essentially the three image volumes defined in
this paper, however, and the two approaches are very closely related.

TWO WAY SHOT-GEOPHONE MIGRATION

This section introduces shot-geophone migration as the adjoint of a shot-geophone
modeling operator, with a completely general offset vector. In an appendix we show how
Claerbout’s survey sinking migration arises as a special case.

We assume that sources and receivers lie on the same depth plane, and adjust the
depth axis so that the source-receiver plane is z = (0. This restriction is can be removed
at the cost of more complicated notation (and numerics): it is not essential.

While the examples to be presented later are all 2D, the construction is not: in the
following x (and other bold face letters) will denote either two- or three-dimensional
vectors. Source locations are x;, receiver locations are x,.. Note in particular that nothing
about the formulation of the migration method requires that data be given on the full
surface z = 0.

Single scattering

The causal acoustic Green’s function G(x,t;x;) for a point source at x = x; is the
solution of
AC t; ViG(x, ;%) =6 S(t 1
Wﬁ(xa aXS)_ x (X, aXS)_ (X_XS) () ()
with G = 0,1 < 0.

In common with all other migration methods, shot-geophone migration is based on
the Born or single scattering approximation. Denote by r(x) = dv(x)/v(x) a relative
perturbation of the velocity field. Then linearization of the wave equation yields for the
corresponding perturbation of the Green’s function

1 0%G 2r(x) 0
—— 5 (X, ;%) — V2IG(x, 1 x,) = 5 G (X, 1 x, 2
0 i 06 %)~ VaIG( tix) = Gl i) @)
whose solution has the integral representation at the source and receiver points x,, X,
0? 2r(x)
5G(xr,t;x5):?/dx/dh/d7 U2(X)G(X,t—T;XT)G(X,T;XS) (3)
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The singly scattered field is the time convolution of G with a source wavelet (or the
space-time convolution with a radiation pattern operator, for more complex sources). S-
ince the principal concern of this paper is kinematic relationships between data and image,
we will ignore the filtering by the source signature (i.e. replace it with a delta function).
This effective replacement of the source by an impulse does not seem to invalidate the
predictions of the theory, though the matter is certainly worthy of more study.

Thus the Born modeling operator F[v] is
Flolr(x,,t;x5) = 0G (X, t; X5)

Prestack shot profile modeling results from replacing 2r(x)/v?(x) with R(x,x,), i.e.
permitting reflectivity to be defined differently for each shot. Examination of equation (2)
shows that each shot is then modeled independently of every other. The adjoint of the shot
profile modeling operator is shot profile migration; since Born modeling is just shot profile
modeling with R(x,x,) = 2r(x)/v?(x), Born migration is shot profile migration followed
by the adjoint of the “spray” mapping r(x) — R(x,x,) = 2r(x)/v?(x), which is the
stack. The other standard prestack migrations via data binning have similar relationships
to Born migration.

Shot-geophone modeling and migration in midpoint-offset coordinates

Shot-geophone modeling results from a different generalization of reflectivity: replace
2r(x)/v*(x) by R(x,h) where h is the depth (half)offset mentioned in the introduction.
The coordinate x plays the role of midpoint.

Remark: If the velocity is constant, at least locally in a region to be imaged, it is possible
to interpret the midpoint x as an image point (Biondi and Symes, 2003). In general this
is not possible, and only the offset coordinate h has direct physical significance.

Replace the Born scattering field §G by the shot-geophone field §G, defined by equation
(3) by

2
0G(x,, t;x,) = % / dzx / dh / dr R(x,h)G(x+ h,t — 7;x,)G(x — h,7;%x,)  (4)
It is also possible to view dG as the value at y = x, of a modified shot-profile field
u(y, t; x5) which solves

1o
v3(y) ot?

82
(v,t;%s) — Vz,u(y, t;xg) = / dh R(y — h, h)ﬁG(y — 2h, t; x,) (5)
The shot-geophone modeling operator F[v] is given by

Fv]R(x,,t;x5) = 0G(x,, t; Xs)

The field 6G(x, t;x,) is identical to §G(x,t;x,) when

R(x,h) = izgg

d(h)
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i.e. when the generalized reflectivity is concentrated at offset zero. Therefore Born mod-
eling is shot-geophone modeling following the mapping

r(x) - izga(h) (6)

Born migration is then shot-geophone migration followed by the adjoint of the mapping
defined in equation (6), i.e. which is

2R(x,0)
v?(x)

i.e. shot-geophone migration followed by extraction off the zero offset section.

R(x,h) — (7)

The shot-geophone migration operator is the adjoint of the shot-geophone model-
ing operator. Its reverse time implementation is a minor variation on the usual imple-
mentation of reverse time migration (the “adjoint state method”, see eg. (Tarantola,
1987; Whitmore, 1983; Lailly, 1983)). We give a derivation in Appendix A, for the sake
of completeness. The result is

F*[v]d(x, h) / dz / <ngZG> (x — 2h, t;x,) (8)

where the adjoint state or backpropagated field ¢(x,t; x,) satisfies ¢ =0, t > T and
1 02 ) . .
’U(X)2 ﬁ B Vx Q(X, t’ XS) = / dm’“ d(XT’ ta Xs)é(x - Xr) (9)

Remark: Note that the backpropagated field is not in general the physical scattered field,
time-reversed. It is a mathematical convenience which permits a simple computation of
the adjoint, with no immediate physical significance. Discretization of the wave equation
for the scattered field (2), eg. by finite differences, gives a linear system, written implicitly
as a recursion. The calculation specified by equations (8,9) is the continuous limit of the
transposed system, again written implicitly as a recursion.

The migration operator defined by equations (8,9) is very similar to the usual prestack
reverse time migration operator:

1. The adjoint state field ¢ is ezractly the same as the usual adjoint state field which
appears in two-way reverse time migration, i.e. the solution of the problem (9), and
is computed independently for each shot;

2. The Green’s function G(x,t;x,) is ezactly the same reference field used in shot
profile two way reverse time migration, i.e. the solution of the problem (1), and can
also be computed shot-by-shot;

3. The imaging condition (8) is ezactly the same as the usual two-way reverse time
shot profile imaging condition when h = 0; the latter is the reverse time version of
Claerbout’s survey-sinking imaging condition (Claerbout, 1985).

5
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4. Therefore the only real difference with standard two way reverse time migration
comes in the h dependence in (8), which implies a loop over h. Note that this
does not require the solution of any new PDEs: it simply inserts a new loop in the
computation of the adjoint image (migration output), over h. Thus the image can
still be accumulated in a loop over shots of independent, shot-by-shot computations,
exactly as is done in standard reverse time migration. The additional computational
burden of the h loop depends on the sampling and range of h.

Shot-geophone modeling and migration in source-receiver coordinates
It turns out to be convenient to introduce a more symmetrical representation of shot-
geophone modeling, which we dub the source-receiver representation.

Define coordinates y; = x —h, y, = x+ h; these will turn out to be coordinates along
rays from source and receiver respectively. Define the source-receiver reflectivity R by

R(y,,y.) =R (ys ;}’r, i ; ys) , i.e. R(x —h,x+h) = R(x,h)

Then change integration variables in equation (4)

_ 102 _
F[U]R(Xrat;xs) = 5@/dys/dyr/dTR(YsaYT)G(YTat_T;XT)G(YS,T;XS) (10)

It follows that
Fv|R(x,, t;x,) = Fv|R(x,, t;%,) = u(X,, t; X,)

where u solves both

1 0% ) 0?

1260 g 0t %) = Viau(x %) = [ dy, Ry, x)55G (v, tix,) (11)
and _y 52

( R —— (%, t;X) — V2u(x,,t;X) / dy, R(x yT)atQG(yr,t; X;) (12)

The source-receiver representation of shot-geophone migration is
2

F[v]*d(ys’yr):/dxs/dtQ(YTat;Xs)w

G(ys, t; xs) (13)
in which ¢ is the backpropagated field described in the last subsection (solution of equation
(9)). Note that the imaging condition (13) collapses to the usual imaging condition when
ys and y, concide with an image point (zero offset).

Remark: The source-receiver representation is important for the kinematic analysis to
follow. However the midpoint-offset representation is more convenient for computation.
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Kirchhoff representation of shot-geophone migration

An integral or “Kirchhoff” representation of the shot-geophone migration operator
is also possible. We mention this here to emphasize that the computational representa-
tion of the shot-geophone migrated field is not the determinant of its favorable kinematic
properties: two way reverse time, Kirchhoff, and depth extrapolation computations will
yield equivalent migrations, within the domain of validity of each. The Kirchhoff repre-
sentation described here is in principle kinematically equivalent to two-way reverse time
computation, as described in the previous subsection. Depth extrapolation computations
have a more restricted domain of validity.

Application of standard high frequency asymptotics and stationary phase arguments
to the integral representation of the shot-geophone field (3) gives

02 o .
Fv|R(x,,t;xs) = g Z // dz dh AW (x, h, x,,x,) §(t — T (x, h, x,, x,)) R(x, h)
Z,]

(14)
(see REFS) in which T4 (x, h,x,,x,) is the sum of the ith branch of the (one-way)
traveltime from the source point x; to the source-ray scattering point x — h, and the jth
branch of the traveltime from the receiver-ray scattering point x + h to the receiver point
x,, and A®7)(...) is an amplitude involving spreading factors, velocity, etc. The Kirchhoff
shot-geophone migration formula is then

. 2d .
Pl ) = [ [ drdr, A 00 b, x %) S8 (e T (B x,0%,) (15)
%]

These formulas were derived in a different way in (Stolk and deHoop, 2001) for the
special case hs = 0, i.e. horizontal depth-offset, and used to analyze the kinematics of
shot-geophone migration, to which we now turn.

KINEMATICS OF SHOT-GEOPHONE MIGRATION

An event in the data is characterized by its (3D) moveout: locally, by a moveout
equation t = T'(x, X, ), and infinitesimally by the source and receiver slownesses

Ps = vxsTa Pr = VXTT

Significant energy with this moveout implies that locally near (x;, x,, ) the data contains
a plane wave component with wavenumber (wps,wp,,w). These coordinates (position,
wavenumber) give the phase space representation of the event.

Note that for incomplete coverage, eg. marine streamer geometry, an event in the
data will not determine its (3D) moveout uniquely. For example, in (idealized) marine
streamer geometry, with the streamers oriented along the x axis, the y component of p,
is not determined by the data. In the discussion to follow, ps and p, are assumed to be
compatible with a data event.
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Likewise, a reflector (in the source-receiver representation) at (ys,y,) with wavenum-
ber (ks, k;) is characterized in (image volume) phase space by these coordinates.

The kinematical desccription of shot-geophone migration relates the phase space coor-
dinates of events and reflectors. An event with phase space representation (X;, X, ts, WPps, WPy, W)
is the result of a reflector with (double reflector) phase space representation (ys, ¥, ks, k;)
exactly when

e there is a ray (X;, P;) leaving the source point X,(0) = x, at time ¢ = 0 with ray
parameter P,(0) = ps, and arriving at X,(t5) = ys at t = ¢, with ray parameter
Ps(ts) = _ks/w;

e there is a ray (X, P,) leaving X,(¢;) = y, at t = t; with ray parameter P,(t;) =
k,/w and arriving at the receiver point X, (ts,) = X, at time ¢t = t,, = t; + ¢, with
ray parameter P, (ts.) = p;.

This situation is illustrated in Figure .
A derivation of this relation is given in Appendix B.

Note that since P, P, are ray slowness vectors, there is necessarily a length relation
between kg, k,: namely,

1 _ _ ksl
'U(ys) - ||P8(t5)” - |w|
I _ el
U(yr) - ||PT(tT)|| - |w|
whence k| 52
r _ v yS
il = () 16)

The kinematics of shot-geophone migration are somewhat strange, so it is reassuring
to see that for physical reflectors (i.e. R(y,,y,) = r7(x)d(h)) the relation just explained
becomes the familiar one of reflection from a reflecting element according to Snell’s law.
A quick calculation shows that such a physical R has a significant local plane wave com-
ponent near (ys,y,) with wavenumber (kg, k) only if y; = y, = x and r has a significant
local plane wave component near x with wavenumber k, = k; + k,. From equation (16),
k, and k, have the same length, therefore their sum k, is also their bisector, which es-
tablishes Snell’s law. Thus a single (physical) reflector at x with wavenumber & gives rise
to a reflected event at frequency w exactly when the rays (X, P;) and (X, P,) meet at
x at time tg, and the reflector dip k, = w(P,(ts) — Ps(ts)), which is the usual kinematics
of single scattering. See Figure .

It is now possible to answer the question: in the shot-geophone model, to what extent
does a data event determine the corresponding reflector? The rules derived above show
that the reflection point (ys,y,) must lie on the Cartesian product of two rays, (X, Py)
and (X,,P,), consistent with the event, and the total time is also determined. If the
coverage is complete, so that the event uniquely determines the source and receiver rays,



Stolk and Symes Reverse time shot geophone migration

then the source-receiver representation of the source-receiver reflector must lie along this
uniquely determined ray pair. This fact contrasts dramatically with the imaging am-
biguities demonstrated in (Nolan and Symes, 1996; Nolan and Symes, 1997; Xu et al.,
2001; Prucha et al., 1999; Stolk, ress; Stolk and Symes, 2002) for all forms of prestack
depth migration based on data binning. Even when coverage is complete, in these other
forms of prestack migration strong refraction leads to multiple ray pairs connecting da-
ta events and reflectors, whence ambiguous imaging of a single event in more than one
location within the prestack image volume.

Nonetheless reflector location is still not uniquely determined by shot-geophone mi-
gration as defined above, for two reasons:

e Only the total traveltime is specified by the event! Thus if y, = X;(¢,), y» = X, (¢5)
are related as described above to the event determining the ray pair, so is y., =
Xs(th),y. = X, (t,) with ty + ¢, =t, +t, = ts.. See Figure .

e Incomplete coverage may prevent the event from determining its 3D moveout, as
mentioned above, and therefore a family of ray pairs, rather than a unique ray pair,
corresponds to the event.

KINEMATICS WITH RESTRICTED OFFSETS

One way to view the remaining imaging ambiguity in shot-geophone migration as
defined so far is to recognize that the image point coordinates (ys,y.) (or (x,h)) are
six-dimensional (in 3D), whereas the data depends on only five coordinates (x,,t,x) (at
most). Formally, restricting one of the coordinates of the image point to be zero would
at least make the variable counts equal, so that unambiguous imaging would at least
be conceivable. Since physical reflectivities are concentrated at zero (vector) offset, it is
natural to restrict one of the offset coordinates to be zero.

Imaging conditions with restricted offsets

In 3D, there are three possibilities, in which R(x,h) takes one of the three forms
Ry (x, hy, h,)0(hy), Ry(x,hy,hy)0(hy), Ry(X,hy, hy)o(h,)

leading to three restricted modeling operators:

Fov] R (%0, £ %5) = g—;/dx/dhy / dh, / dr

Ry (x, hy, h,)G(x + (0, hy, h,),t — 7;%,)G(x — (0, hy, h,), 75 Xs) (17)
_ o2
By o) R, (. %) = / dz / dhs / dh, / dr

R, (x,hy, h,)G(x + (hy,0,h,),t — 7;%,.)G(x — (hg, 0, hy), 75 X5) (18)
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FlolR.(x, t:x) = 2 / dz / dh, / dh, / dr

t2
R, (X, hy, hy)G(x + (hg, by, 0),t — ;% )G (x — (hy, hy, 0), 75 X5) (19)
The kinematics of these restricted operators follows directly from that of the unrestricted

operator, developed in the preceding section. Denote y, = (5, ys, 25), ks = (ks g, ks,ys ks,z)
etc.

For restricted zx offset,

- [ Ts+ Ty
R(y.sv}"r) = Rz‘ (7

9 7y57y7‘7287'z’r') 5(~Ts - -T'r)

Fourier transformation shows that R has a significant plane wave component with wavenum-
ber (k,,k,) precisely when R, has a significant plane wave component with wavenum-
ber (ksg + krg, ksys bz 2y kry, kr,). Thus a ray pair (X;, Py), (X,,P,) compatible with
a data event with phase space coordinates (X,,Xs,ts, WPs, WPy, w) images at a point
(T, Ysy Yrs Zss 2ry ks ks yy ks 2y kr gy, ki ) provided that for 0 <, < t,r, X, ,(t5) = X, 4(ts) =
z, Xs,y(ts) = Ys X’r,z(ts) = Zs, Xr,y(ts) = Yr, Xr,z(ts) = Zr, Pr,m(ts) - Ps,m(ts) = ks/wa
Py (ts) = ksy/w, etc.

Similarly, for restricted y offset,

- - Yo+ U
R(YSaYT) = Ry (Z‘S’x’r: ) Rsy Zr) 5(3/3 - yr)

and the imaging conditions are X;,(ts) = X, (ts) = y, Pry(ts) — Psy(ts) = ks/w,
Xso(ts) = x5, Ps5(ts) = ks g /w, etc. at image phase space point (s, Ty, Y, Zs, 2r, ks.z, krz, ky, Ks,z, kr.2)-

For restricted z offset,

Z2s + 2
R(ys: yr) = Rz (335,.’13,«, Ysys Yr, T) 5(25 - zr)

and the imaging conditions are X, ,(ts) = X,,(ts) = 2z, Pr,(ts) — Ps.(ts) = k,/w,
Xs,z(ts) = Ts, Ps,w(ts) = ks,w/wa etc. at image phase Space pOiDt (‘TS’ LrsYsy, Yry 2, ks,zc; kr,wa ks,ya kr,ya kz)

Horizontal offset and the DSR condition

As explained in Appendix C, Claerbout’s survey sinking migration is kinematically
equivalent to shot-geophone migration as defined here, under two assumptions:

e offsets are restricted to horizontal (h, = 0);

e rays (either source or receiver) carrying significant energy do not turn, i.e. P, >
0, P., < 0 throughout the propagation.

We call the second condition the “Double Square Root”, or “DSR”, condition, for
reasons explained in Appendix C.

10
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Claim: Under these restrictions, the imaging operator F, can image a ray pair at precisely
one location in image volume phase space. When the velocity is correct, the image energy
is therefore concentrated at zero offset.

To see this, note that the condition X, ,(t;) = X, .(t;) can only be satisfied at one
value of t;. The depth is increasing along the source ray, and decreasing along the receiver
ray - otherwise put, depth is increasing along both rays, if you traverse the receiver ray
backwards. Therefore depth can be used to parametrize the rays. Time is increasing
from zero along the source ray, and decreasing from t,, along the receiver ray (traversed
backwards), viewed as a function of depth. Thus the two times can be equal (to ;) at
exactly one point.

Since the scattering time ¢, is uniquely determined, so are all the other phase space co-
ordinates of the rays, hence of the reflector location in phase space, through the conditions
for F, imaging laid down in the last section.

If furthermore coverage is complete, whence the data event uniquely determines the
rays, then it follows that a data event is imaged at precisely one location. This is the
result established in (Stolk and deHoop, 2001), for which we have now given a different
(and more elementary) proof.

Remark: Note that the DSR assumption precludes the imaging or near- or post-vertical
reflectors.

We present a 2D synthetic example which emphasizes the dramatic contrast, revealed
by the Stolk-deHoop theorem, between the behaviour of shot-geophone migration and
other forms of prestack migration. This example is used in (Stolk, ress; Stolk and Symes,
2002) to show that common offset and Kirchhoff common scattering angle migration
generally produce strong kinematic artifacts in strongly refracting velocity models. The
velocity model consists of a slow Gaussian lens embedded in a constant background. As
shown in Figure , this model is strongly refracting - it produces triplications in rayfields
shot from surface points - while still obeying the DSR condition, for the offsets used in the
example. Below the lens, at a depth of 2 km, we placed a flat reflector. We synthesized
data using a (4, 10, 20, 40) zero phase bandpass filter as (isotropic) source wavelet and
a finite difference scheme with adequate sampling. A typical shot gather (Figure ) shows
the compex pattern of reflections from the flat reflector propagated through the lens.

We migrated this data using the adjoint of the F, modeling operator (equation (19)).
The adjoint state method for this computation amounts to the 2D version of equations
(8, 9) with h, = 0. Inspection of image gathers ((z, h) slices through the (z, z, h) image
volume at various z) show that image energy is focussed at zero offset and at the correct
reflector location (depth), as predicted by the theory (Figure 7).

Contrast this behaviour with that of Kirchhoff common offset and common scattering
angle migration, Figures , reproduced from (Stolk and Symes, 2002). For these prestack
migration methods, defined by surface binning of the data, image gathers should be
flat when correct migration velocity is used (as opposed to focussed at one horizontal
location, as for shot-geophone migration). Instead, numerous highly energetic non-flat
events contaminate the gathers. Missing rays are not the cause: all arrivals are used in

11
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these computations, with correct phase shifts and amplitudes in the imaging formulae.
In fact, these events are kinematic in nature: that is, they cannot be removed by more
sophisticated signal processing, but are intrinsic to the ray geometry of these migration
methods.

Remark: Note that Kirchhoff common scattering angle migration, as used to produce the
gather displayed in Figure , is quite different from the angle domain migration proposed
in (Prucha et al., 1999; Sava and Fomel, ress; Biondi and Symes, 2003). The former uses
an implicit surface-oriented phase space binning of the data, whereas the latter amounts
to a Radon transform of the shot-geophone migration output in depth and offset (or is
closely related to this transform). The focussing property of shot-geophone migration,
just illustrated, implies that angle domain migration also produces artifact-free image
gathers, at least when the DSR condition holds. Figure 7?7 illustrates this contention.

Combining horizontal and vertical offsets: the Traveltime Injectivity Condi-
tion

The DSR assumption will not hold, or permit adequate imaging, in complex lithologic
environments with substantial lateral and vertical velocity variation, vertical or overhang-
ing reflectors, etc. However, two other conditions, both necessary in general for imaging
given correct velocity, are also sufficient to ensure that the energy in a properly filtered
source-receiver restricted offset image volumes is concentrated (i) at zero offset, and pos-
sibly (ii) at offsets greater than a minimum which depends on various characteristics of
the velocity through its ray geometry. That is, in absence of the DSR restriction, energy
may appear at nonzero offsets, even with correct velocity, but not within a corridor about
zero offset, except at zero offset.

This section explains the physical and geometric significance of these conditions, and
the necessity of filtering. Mathematical details appear in Appendix D.

The first of these two conditions is the “no scattering over 7” condition identified al-
ready in (Rakesh, 1988) as essential to accurate migration. That is, no energy along direct
rays connecting source to receiver can appear in the data submitted to migration. We
quantify this condition by demanding that the scattering angle for all ray pairs involved
in image construction be less than a maximum angle, which is less than 7. This “maxi-
mum scattering angle” or MSA condition can in principle be enforced by ray-tracing and
selective muting and Radon filtering.

The second condition is the Traveltime Injectivity Condition or TIC (tenKroode et al.,
1998; Nolan and Symes, 1997). This condition is in general necessary for artifact-free
postmigration stacks - i.e. absence of mispositioned reflectors, not in the prestack image
volume but in the final stacked image. TIC mandates that along any pair of rays, at most
one point of intersection exists with a given traveltime. Clearly TIC is also implied by the
DSR condition, so TIC generalizes DSR. It is also clear that TIC can be violated - see
the cited references for examples.

Under some circumstances standard migration operators (i.e. adjoints of linearized
modeling operators) may produce artifact-free images even when TIC is violated - see

12
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(Stolk, 2000) for a discussion of this point. However in general TIC is necessary for
artifact-free imaging. A quantitative form of TIC, with a specific estimate of distance vs.
time along imaging ray pairs, is explained in Appendix D.

It is less clear how TIC may be enforced for the data submitted to migration. The
present results, like those of (tenKroode et al., 1998), simply presume that (the quanti-
tative form of) TIC holds.

As explained earlier, a simple variable count suggests that unambiguous images can
only be accomplished by restricting the offset to planes (or lines, for 2D shot-geophone
migration). However, without the DSR hypothesis, it is easy to see that the horizontal
offset imaging operator, F}, cannot have the focussing property, i.e. focus energy at zero
offset for correct velocity.

Figures ?? and ?? show why this is so. Both figures are meant to cartoon imaging at
correct velocity, which for convenience is assumed constant near the image point (hence
the locally straight rays). In Figure ??, two rays image an event at their intersection on a
reflector with nonzero z component of dip. Note that as one moves away from the image
point, keeping the total time along the two rays the same, the difference in z components
of the ray locations unavoidably grows, so that these (unrestricted) source-receiver image
points do not appear in the horizontal offset operator output. That is, only the zero
offset image survives restriction to horizontal offset. On the other hand, Figure 7?7 shows
an image point on a vertical reflector; clearly one can move away from the image point,
maintaining the same total time, in such a way that these other unrestricted image points
have the same z components hence survive the restriction to horizontal offset. Obviously
in this case the output of F, will have energy at all offsets sufficiently close to zero, and
the focussing property is lost.

Note that the absence of nonzero offset image energy suggested by Figure 77 is a
local phenomenon. That is, the rays may curve in such a way that points may appear
with the same total travel time and z coordinates, sufficiently far away from the physical
scattering point - Figure 7?7 cartoons this situation. The time difference cannot be close
to zero, however. As shown in Appendix D, together with TIC and MSA this minimum
time difference implies that the offset of any image energy at nonzero offset also exceeds
a minimum.

These are not idle speculations: examples presented in (Biondi and Symes, 2003)
demonstrate the “smearing” of image gathers in horizontal offset shot-geophone migration
(F¥) as reflector dip approaches horizontal. The inescapable conclusion is that horizontal
offset shot-geophone migration cannot image (near) vertical reflectors without degrading
the focussing property characteristic of correct velocity. Precisely analogous reasoning
shows that x- and y-axis vertical offset shot-geophone migration (F, Fy*) cannot image
dips perpindicular to the x-axis and y-axis respectively without smearing in the restricted
offset.

On the other hand, any particular dip is well-imaged by at least one of these operators,
with focussing at zero offset at least locally, as argued above in the horizontal offset case.
The paper (Biondi and Symes, 2003) presents one method to take advantage of this fact
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to image all dips, using transformation to the angle domain. An alternative method works
through image filtering, as follows.

Define a filter ¥, which annihilates the plane wave components of horizontal offset
reflectivities R, with small k, (relative to the other plane wave components). A precise
definition of such a filter is givien in Appendix D, and a cartoon in Figure 7?. Then for any
horizontal offset reflectivity R,, the filtered reflectivity ¥, R, does not contain vertically
oriented reflectors, so that the relationship depicted in Figure ?? does not occur, and
events in F[v],¥,R, are imaged only at zero offset.

Since the relation between event and reflector image location is the same with modeling
and migration, this reasoning indicates that:

The quantitative versions of TIC and MSA, which are necessary for reliable imaging, imply
that the filtered horizontal offset migration R, = WV, F,[v]*d has (for correct migration
velocity v) (i) energy at zero offset, and (ii) all other image energy confined to offsets at
least hopip.

Note the contrast of this statement with the result obtained under the more restrictive
DSR assumption: it is possible for the filtered migrated image volume to have energy at
nonzero offset, even when the velocity is correct - this was impossible under DSR - but
not inside the corridor A < Ampin.

R,, computed as specified above, images reflectors with nonhorizontal dips. To fill out
the dip range, one can adjoin the similarly computed vertical offset images

R, =V, F,[v]*d, R, =V, F,[v]*d

The three volumes R, Ry, R, together image all dips, and each has the local focussing
property analogous to that already described for R,.

As noted in (Biondi and Symes, 2003), it is not possible to simply average the three
volumes R,, Ry, R, to form a single image volume, when the velocity is not correct, due
to a variation on the familiar phenomenon of image point dispersal. Of course when
the velocity is correct, the versions of reflectors contained in the image volumes overlap,
and can be added together to form a final image volume. [The filter definition explained
in Appendix A is formulated to guarantee that this is possible, with no gaps and no
artificially enhanced amplitudes.] However for velocity analysis (i.e. before a correct
velocity has been achieved) these three volumes must be maintained as separate. See
(Biondi and Symes, 2003) for a proposal to produce a single angle domain image volume
which at least in some cases permits averaging the various image volumes (after Radon
transform) even with incorrect velocity.

Two aspects of implementation should be noted immediately. It might be suspected
that the production of three separate image volumes would be three times as expensive
as the production of one image volume, but this is not the case. Most of the work
(solution of the forward (1) and adjoint state (9) problems) is the same: these calculations
must be performed once for each shot. Then the contribution for each shot is summed
into the images according to equation (8) with the integration range of h limited to
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(0, hy, ), (he, 0, h;) and (hg, hy,0), and the corresponding filters W,, ¥y, and W, applied
as postprocesses to produce R;, R,, and R, respectively.

Second, note that the filters W, etc. are truly filters, i.e. there is absolutely no need
for spatial dependence. Therefore the filtering operation can be efficiently implemented
in the Fourier domain.

EXAMPLES

The examples are all 2D (or will be, when they are done).

DISCUSSION

What is extent of the “corridor” around zero offset, how does this impact VA.

How can one enforce TIC and MSA without onerous ray tracing computations.
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APPENDIX A

This appendix gives a quick derivation of equation (8). For several examples of this
type of computation, see (Tarantola, 1987)

The claim is that
2 T 0q
Flo]*d(x, :——/ / Y G2 ) (x — 2h, t: x,
[v]*d(x,xp) () dx ; dt (atv u) (x t;Xs)
where adjoint field g satisfies ¢ =0, t > T and

2
(ia— — V2> Q(X, t; Xs) = / dﬂ?,« d(XTa t; XS)é(X - XT)

To see this, form the standard inner products in the appropriate spaces (image on the
left, data on the right):
< F)*d,r >=<d, Flv]r >

://dxsdxr /OT dtd(XT,t;Xs)g—?(Xr;tQXS)
:/dxs/dx /OTdt {/ dzrd(x”t;xs)é(x—xT)}%(X,t;xs)

T 1 9 oou

T 1 0? dq
:—/dxs/dx/o dt Kﬁﬁ_vﬁ (5u] a(x,t;xs)

(boundary terms in integration by parts vanish because (i) du = 0,t << 0; (ii)
g =0, t>>0; (iii) both vanish for large x, at each t)

T 2r 0%u dq
——/ da:s/dx/o dt <ﬁwa> (X,t,Xs)

= —/ dz, / dxr(x)%/: dt (%%) (x, ;%)

=<r, Fv|"d >
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APPENDIX B

In this appendix we establish the relation between the appearance of events in the
data and the presence of reflectors in the migrated image. This relation is the same for
the forward modeling operator and for its adjoint, the migration operator.

The reasoning presented here shares with (Stolk and deHoop, 2001) the identification
of events, respectively reflectors, by high frequency asymptotics in phase space, but differs
in that it does not explicitly use the oscillatory integral representation of F'[v] derived in
the last section. Instead, this argument follows the pattern of Rakesh’s analysis of shot
profile migration kinematics (Rakesh, 1988). It can be made mathematically rigorous,
by means of the so-called Gabor calculus in the harmonic analysis of singularities (see
(Duistermaat, 1996) Ch. 1).

The appearance of an event at a point (xs,X;, ts) in the data volume is equivalent to
the presence of a sizeable Fourier coefficient for a plane wave component

eiw(t*Ps ‘Ys—Pr 'Yr)

in the acoustic field for frequencies w within the bandwidth of the data, even after muting
out all events at a small distance from (x,, X, ts).

Note that the data does not necessarily fully determine this plane wave component, i.e.
the full 3D event slownesses ps, p,. In this appendix, p,, p, are assumed to be compatible
with the data, in the sense just explained.

Assume that these frequencies are high enough relative to the length scales in the ve-
locity that such local plane wave components propagate according to geometric acoustics.
This assumption tacitly underlies much of reflection processing, and in particular is vital
to the success of migration.

That is, solutions of wave equations such as (11) carry energy in local plane wave com-
ponents along rays. Let (X, (t), P,(t)) denote such a ray, so that X,(ts;) = x, Py (ts) =
p-- Then at some point the ray must pass through a point in phase space at which the
source term (right hand side) of equation (11) has significant energy - otherwise the ray
would never pick up any energy at all, and there would be no event at time %, receiver
position x,, and receiver slowness p,. [Supplemented with proper mathematical boiler-
plate, this statement is the celebrated Propagation of Singularities theorem of Hormander,
(Hormander, 1983; Taylor, 1981).]

The source term involves (i) a product, and (ii) an integral in some of the variables.
The Green’s function G(ys,t,%x,) has high frequency components along rays from the
source, i.e. at points of the form (X;(¢;), Ps(5)) where X;(0) = x, and t; > 0. [Of course
this is just another instance of Propagation of Singularities, as the source term in the
wave equation for G(ys, ts, X,) is singular only at (x4,0).] That is, viewed as a function
of ys and t5, G(-,-;xs) will have significant Fourier coefficients for plane waves

eiw(Ps (ts ) Ys +ts)

18



Stolk and Symes Reverse time shot geophone migration

We characterize reflectors in the same way: that is, there is a (double) reflector at

(¥s,yr) if R has significant Fourier coefficients of a plane wave
ei(ks-y’s—kkT-y’T)
for some pair of wavenumbers k;, k,, and for generic points (y!,y’) near (ys,y,). Pre-
sumably then the product R(y),x)G(y.,ts;%s) has a significant coefficient of the plane
wave component
ei((ks +wPs(ts)) yh+kr x+wts)
for y’ near y,, x near y,; note that implicitly we have assumed that y, (the argument of
G) is located on a ray from the source with time ¢,. The right-hand side of equation (11)
integrates this product over y,. This integral will be negligible unless the phase in y; is
stationary: that is, to produce a substantial contribution to the RHS of equation (11), it
is necessary that
ys = Xs(ts)a ks + WPs(ts) =0 (20)

Supposing that this is so, the remaining exponential suggests that the RHS of equation
(11) has a sizeable passband component of the form

ei(kr-x—l—wts)
for x near y,. As was argued above, this RHS will give rise to a significant plane wave
component in the solution u arriving at x, at time ¢5,. = t;+1, exactly when a ray arriving

at x, at time t,, starts from a position in space-time with the location and wavenumber
of this plane wave, at time t, = t,, — t,: that is,

X, (t,) = yr, WP, (t,) =k, (21)

We end this appendix with a remark about the case of complete coverage, i.e. sources
and receivers densely sample a fully 2D area on or near the surface. Assuming that the
effect of the free surface has been removed, so that all events may be viewed as samplings
of an upcoming wavefield, the data (2D) event slowness uniquely determines the wavefield
(3D) slowness through the eikonal equation. Thus an event in the data is characterized
by its (3D) moveout: locally, by a moveout equation ¢ = T'(X;, X, ), and infinitesimally by
the source and receiver slownesses

Ps = szTa Pr = erT
In this case, the data event uniquely determines the source and receiver rays.

APPENDIX C

Start with zero-offset. Again, assume exploding reflector model:

Flulr(xs,t) = w(x,, 1), X, € X;,0<t < T
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4 9? 5 2r
Basic idea: 2nd order wave equation permits waves to move in all directions, but waves
carrying reflected energy are (mostly) moving up. Should satisfy a 1st order equation for
wave motion in one direction.

For the moment use 2D notation x = (z,z) etc. Write wave equation as evolution
equation in z:
0w 4 92 0 2r
— s -z |w==-4(@)
022 v2ot?  0x?

Suppose that you could take the square root of the operator in parentheses - call it B.
Then the LHS of the wave equation becomes

2

so setting

you get
0 N 2r

which might be the required equation for upcoming waves.

Two major problems: (i) how the h-1 do you take the square root of a PDO? (ii) what
guarantees that the equation just written governs upcoming waves?

Calculus of pseudodifferential operators: recall that products of YDOs are ¥DOs.
Computations simple for subclass of ¥DOs with symbols given by asymptotic expansions:

p(x,€) ~ >~ pi(x,€), [¢ = o0

j<m
in which p; is homogeneous in £ of degree j:

pi(x, 7€) = Tp;(x,7¢), 7, €| > 1

The principal symbol is the homogeneous term of highest degree, i.e. p,, above.
Product rule for ¥DOs: if

(%8 =Y pj(x8), P’(x&E =Y pi(x¢)

j<m! j<m?2

then principal symbol of p'(x, D)p?(x, D) is p. 1 (x,£)p?2(x,£), and there is an algorithm
for computing the rest of the expansion.
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In an open neighborhood X x Z of (xg, &), symbol of p'(x, D)p?(x, D) depends only
on symbols of p!, p? in X x E.

Consequence: if a(x, D) has an asymptotic expansion and is of order m € R, and
am(X0,&) > 0in P C R™"xR™—0, then there exists b(x, D) of order m/2 with asymptotic
expansion for which

(a(x, D) — b(x, D)b(x, D))u € E(R")

for any u € &'(R") with WF(u) C P.
Moreover, by /2(x,£) = y/am(x,§), (x,£) € P. Will call b a microlocal square root of

Similar construction: if a(x,&) # 0 in P, then there is ¢(x, D) of order —m so that
c(x, D)a(x, D)u — u, a(x,D)c(x,D)u—u € ER")

for any v € &'(R™) with WF(u) C P.
Moreover, ¢ ., (x,€) = 1/an(x,£), (x,&) € P. Will call b a microlocal inverse of a.

Application: symbol of

52 4 5 4
D, D,) =2 - 57 = wa el — D
a(z, z, Dy, Dy) 0r?  wv(zr,2)20t2  w(zx,z)? ' ’
is
a(z,z,7,&) = : S
s <y ’U(.T,Z)Z

For 6 > 0, set

Ps(z) = {(:E,t, &T): v(xilz)2T2 > (1+ 5)52}

Then according to the last slide, there is an order 1 ¥DO-valued function of z, b(z, z, Dy, D,),
with principal symbol

1 4 £2
bi(x,z,7,§) = \/WTQ — &= TJ m =T (x,t,&,7) € Ps(2)

for which a(z, z, Dy, Dy)u =~ b(z, z, Dy, Dy)b(x, 2, Dy, Dy)u if WF(u) C Ps(2).
b is the world-famous single square root (“SSR”) operator - see Claerbout, BEL.

To what extent has this construction factored the wave operator:

o . J .
(% —ib(z, 2, Dy, Dt)> (& +1ib(z, z, Dy, Dt)>

2

0 b
= @ =+ b(.’l:, z, Da:a Dt)b(x, z, Dz, Dt) —+ a(l" z, Dw’ Dt)
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SSR Assumption: For some § > 0, the wavefield w satisfies

(2,2,1,6,(,7) € WF(w) = (,t,6,7) € Ps(2) and (> 0
This statement has a ray-theoretic interpretation (which will eventually make sense):

rays carrying significant energy are nowhere horizontal. Along any such ray, z decreases
as t increases - coming up!

w(z, z,t) = (2 +ib(z, z, Dy, Dt)> w(z, 2, t)

0z
b(m,z, Dm,Dt)b(fE,Z, DI,Dt)'LU ~ <WD§ — Dﬁ) w
with a smooth error, so
o . 2r(z, 2)
(& —ib(z, z, Dy, Dt)> w(z, z,t) = _v(x, z)25(t)
+i 3b(aczD Dy) ) w(z, z,t)
82 y &y Mgy Lt ]

(since b depends on z, the z deriv. does not commute with b). So W = Wy + 1, where

o . . 2r(z, 2)
7 _ D,, D o) = —
(82 ib(z, z, t)) Wo(x, 2, 1) v(x,z)Qé(t)
(this is the SSR modeling equation)
—a—'b( D,, D)) | wy(z,2,t) =1 —ab( D,, D) | w(z, 2,1)
5, 0,2, Dy, D)) | 01(2, 2,1) = i | 5-b(2, 2, Dy, Dy) | w(z, 2,

Claim: WF (i) C WF(w).
Granted this = W F (wy) C WF(w) also.
Upshot: SSR modeling

FO[U]T('Z‘S’ Zsy t) = TI)O(.TS, Zs, t)

produces the same singularities (i.e. the same waves) as exploding reflector modeling, so
is as good a basis for migration.

SSR migration: assume that sources all lie on z; = 0.

< By[v]*d,r >=<d, Fy[v]r >
- / dz, / dt d(z,, 1Yo (s, 0, 1)
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:/ dz, / dt/dzd(I_s,t)(s(Z)?I’O(xs’z’t)

Define the adjoint field ¢ by
0
(8_ - b(:r,z,Dw,Dt)> q(z,z,t) = d(z,t)6(2), q(z,2,t)=0,2<0

z

which is equivalent to solving the initial value problem
0o .
5 ib(z, 2z, Dy, Dy) | q(z,2,t) =0, 2 > 0;, ¢(x,0,t) = d(z,t)

Insert in expression for inner product, integrate by parts, use self-adjointness of b, get

. _ 2r(z, 2)
< d, Fylv]r >—/da: / dz Wq(a:,z,(])
whence 5
FO[U] d(xa Z) = W(](QZ: 2, 0)

Standard description of this algorithm:

e downward continue data (i.e. solve for )

e image at t = 0.

The art of SSR migration: computable approximations to b(z, z, D, D;) - swimming pool
operator, many successors.

Unfinished business: proof of claim

Depends on celebrated Propagation of Singularities theorem of Hérmander (1970).

Given symbol p(x, &), order m, with asymptotic expansion, define bicharateristics as
solutions (x(t),&(t)) of Hamiltonian system

dx Op

ax _ op g _ _9p
dt ~ o€

(X, g)’ dt - 8X (X’ g)

with p(x(t),&(t)) = 0.

Theorem: Suppose p(x, D)u = f, and suppose that for ¢, < ¢t < t1, (x(t),£&(t))
WF(f). Then either {(x(t),£(t)) :to <t <t;} C WF(u) or {(x(%),&(t)) s to <t <t}
T*(R") — WF(u).

At least two distinct proofs:

e Nirenberg, 1972
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e Hormander, 1970 (in Taylor, 1981)

Proof of claim: check that bicharacteristics for SSR operator are just upcoming rays of
geom. optics for wave equation. These pass into ¢t < 0 where RHS is smooth, also initial
condn at large z is smooth - so each ray has one “end” outside of W F (). If ray carries
singularity, must pass of W F' of w, but then it’s entirely contained by P of S applied to
w. q. e. d.

Nonzero offset (“prestack”): starting point is integral representation of the scattered
field

Flolr(x,, ;xs) = %/ dz i?}(c})cg / ds G(x,,t — $;%)G (x5, $; X)

By analogy with zero offset case, would like to view this as “exploding reflectors in both
directions”: reflectors propagate energy upward to sources and to receivers. However
can’t do this because reflection location is same for both.

Bold stroke: introduce a new space variable y, define

B 2
Fv|R(x,,t;xs) = %/ / dz dy R(x,y) / ds G(x,,t — $;%X)G(Xs, ;)

and note that F[v]R = F[v]r if

Reey) = o5 (“2¥) o6~ y)

This trick decomposes F'[v] into two “exploding reflectors”:
FIR(x,, t;%,) = (%, 1%, lxox,

where

= Ws (Xsa U X)
(“upward continue the receivers”),

<ﬁ% - Vi) ws(y, t;x) = R(x,y)d(t)

(“upward continue the sources”).

This factorization of F[v] (r — R — F[v]R) leads to a reverse time computation of
adjoint with - will discuss on Friday.

It’s equally possible to continue the receivers first, then the sources, which leads to

<ﬁaa_; N Vi) u(xp, ty) = / dr R(x,y)G(x,, t;x)
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= w’l" (XT'7 t7 Y)

(“upward continue the sources”),

1 0 9 v —
(W@ — Vx> wy(x,t;y) = R(x,y)0(t)

(“upward continue the receivers”).

Apply reverse depth concept: as before, go 2D temporarily, x = (z, 2,),y = (y, 2s), all
sources and receivers on z = 0.

Double Square Root (“DSR”) assumption: For some ¢ > 0, the wavefield u satisfies

('7"7 Zr7t’ y’ 25’67 CS’T7 777 C'f) E WF(U) :>

('7"7 t’ é" T) E PJ(ZT)7 (y’ t? T’, T) E ’PJ(ZS)7 and CTT > 0’ CST > 0’

As for SSR, there is a ray-theoretic interpretation: rays from source and receiver to
scattering point stay away from the vertical and decrease in z for increasing t, i.e. they
are all upcoming.

Since z will be singled out (and eventually R(x,y) will have a factor of (x,y)), impose
the constraint that

R(z,z,z,25) = R(z,y,2)0(z — 2)

Define upcoming projections as for SSR:

_ 0 .
ws = (azs + Zb(yazsaDyaDt)) Ws,

. o .
Wy = (827- +Zb(x7ZT7Dz‘7Dt)> Wy,

. 0 . 0 ,
i = (8,25 +1b(y, 25, Dy, Dt)> (82} + ib(z, 2z, Dy, Dt)> u

Except for lower order commutators which we justify throwing away as before,

( az — by, 25, Dy, Dt)) By = R0(zy — 2,)0(1),

(aa —ib(z, zr, Dy, Dt)> W, = RO(2, — 25)6(2),
Ry

0 . L
(84 —ib(x, 2, Dy, Dt)> U = W,

J o
(azs - Zb(ya Zs) Dya Dt)) U = Wy
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Initial (final) conditions are that ,,ws, and @ all vanish for large z - the equations are
to be solve in decreasing z (“upward continuation”).

Simultaneous upward continuation:

N 0 _ 0
£U($, Z, ta Y, Z) = —’U,(.CE, Zr, tu Y, Z)‘zzzr + —U(JT, Z, ta Y, Zs)|z:zs

0z, 0z
= [ib(z, 2, Dy, Dy)U + W + ib(y, 25, Dy, Dy)0 + W, |

2r=2s=2

Since w,(y, 2, t;,2) = W, (x,2,t;y,2) = R(z,y,2)5(t), @ is seen to satisfy the DSR
modeling equation:

<% - Zb(%, Z, Daza Dt) - Zb(ya 2, Dya Dt)) Ia(l" 2 ta Y, Z) = 2R($, Y, Z)d(t)

Fv]R(z,, t; z5) = ii(z,, 0,1 2,0)

Computation of adjoint follows same pattern as for SSR, and leads to

DSR migration equation: solve

(% —ib(z, z, Dy, Dy) — ib(y, 2, Dy, Dt)) q(z,y,2,t) =0

in increasing z with initial condition at z = 0:
(j(.’]ﬁ,«, Zs, 0, t) = d(xr: Ts, t)

Then Fv]*d(z,y, z) = {(z,y, z,0)

The physical DSR model has R(z,y, z) = r(z,z)d(x — y), so final step in DSR com-

putation of F[v]* is adjoint of r — R:
F]*d(z, 2) = ¢(z, z, 2,0)
Standard description of DSR migration (Claerbout, IEI):

e downward continue sources and receivers (solve DSR migration equation)

e image at t = 0 and zero offset (z = y)

Another moniker: “survey sinking”: DSR field § is (related to) the field that you would
get by conducting the survey with sources and receivers at depth z. At any given depth,
the zero-offset, time-zero part of the field is the instantaneous response to scatterers on
which source = receiver is sitting, therefore constitutes an image.

As for SSR, the art of DSR migration is in the approximation of the DSR operator.
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APPENDIX D

This appendix gives the mathematical details leading to the conclusion:

energy in a properly filtered source-receiver image volume is concentrated (i) at zero
offset, and possibly (ii) at offsets greater than a minimum which depends on various
characteristics of the velocity.

This conclusion depends on quantitative expressions of two conditions which are nec-
essary for reliable imaging, as discussed in the section “Combining horizontal and vertical
offsets”. The first of these is a quantitative version of the “maximum scattering angle”,
or MSA, condition. This hypothesis was shown to be essential for imaging already in
(Rakesh, 1988).

For any pair of rays (X;, P;), (X,, P,), the definition of the scattering angle 6 is
|o(X,)Ps — v(X,)P,||* = 2(1 + cos )

The quantitative MSA condition states that there is an angle 6, < 7 which is not
exceeded by any ray pair carrying significant energy.

At a physical scattering point x, where the rays meet, this means that

1P, — P2 > 2(1 + 08 frma v 2(x)

The second condition is a quantitative version of the Traveltime Injectivity Condition,
or TIC, which was shown to be necessary in general for artifact-free imaging in (tenKroode
et al., 1998). We assume that a constant K > 0 exists so that for any two rays X, X,
meeting at time g, -

.

V1472

That is, for small 7, points on the two rays at times ¢, + 7 are moving away from each
other at rate K, and for large 7 are asymptotically at least K apart.

1Xs(ts +7) = Xt +7)|| > K (22)

_In general, if source and receiver rays (X, P;), (X, P;) produce an image point for
F, (i.e. with X, ,(ts) = X, .(¢s;) then we inherit a trajectory of imaging points for the
unrestricted shot-geophone migration operator

T — (Xs(ts +7), Xy (ts + 7))

One of these is an image point for F}, if X, ,(t;+7) = X, ,(t;—7). From the ray equations,

%[Xs,z(ts +7) = X, (ts + 7)] = V2 (Xs(ts + 7))Ps o (ts + 7) — v2(Xo(ts + 7)) Py o (ts + 7)

Suppose that the velocity is correct, so that the rays image at zero offset: X(ts5) =
X,(ts) = x. Then

d k,
E[Xs,z(ts + T) - Xr,z (ts + T)]T:() = UQ(X)E
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From the slowness part of the ray equations, it follows that

(Xt + )Xty + ]| < L

EU

in which a is either s or 7 and L is a global bound for ||V logv||. From this is is easy to
deduce that another global constant M > 0 exists, depending on L and on the max and
min values of v, so that

[Xs2(ts +7) — X, 2 (ts + 7))

2
:

ar?

for all 7. Thus the smallest nonzero value of 7 for which
Xso(ts+7) =X, (ts +7) =0

has size proportional to k,:

2

k,
7| 2 ()

” (23)

The foregoing suggests that as k, — 0, i.e. as reflector dip approaches vertical, then
other points with arbitrarily small timeshift may image under application of F,, and
indeed this is the case. Even worse from the point of view of velocity analysis, focussing
at hg, hy = 0 is lost: according to quantitative TIC (equation (22)), one would expect
that the imaging offset would vanish along with the time perturbation 7.

For a horizontal offset reflectivity of the form R,(zs,ys, z,, yr, 2), define E, to be the
operator, already introduced, which produces a source-receiver reflectivity function:
25+ Z
EZRZ(yS7 yr) =r (xsa Ys, Lry Yrs %) 6(25 - Z’r)

Define E, and E, similarly. If R is a physical reflectivity, i.e. R(ys,yr) = r((ys +
¥r)/2)0(ys — ¥r), then there are restricted offset reflectivities R,, R,, and R, for which
R =E,R, = E,R, = E,R,, eg. R,(%,Vs, 25, Yrs 2r) = 7(x, (ys + Ur) /2, (25 + 2,)/2)0(ys —
yr)0(2zs — z-). That is, a physical reflectivity can be represented as the output of any of
the three operators F,, E,, E,.

Pick a number a > 1. In Appendix D we show how to construct a triple of spatial
filter operators W, ¥,, ¥, so that

[ ]
Vo (ks Ky ) + Uy (ks ki) + U (ky k) = 1
for all (ks, k,);

‘I’w(ksakr) =0if |ks,w + kr,z‘ < a_l\/|ks,;v + kr,wP + |ks,z + kr,z 2

2

Uy (ko k) = 1if [kyo + kil > @/ lkss + kral? + ks + ki

and similarly for ¥,, ¥,.
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If the reflector wavenumber (kg, k) is such that ¥, (k;, k,) > 0, then from the defining
properties of ¥, it follows that

s,z + r” 1K + ko]
>

2 w2 = ||PS—PT||2

(1+0a%)—=—

> 2(1 + c0S Orax )V 2 (X) (24)

Introduce filters U, \ify, and VU, on restricted offset reflectivities, defined by the rela-
tion

V. E, =E,¥, (25)
and similarly for \le and U,. These filters have the properties

U, (K Ko K Ky k) = 03 || < @7l + ka2 + Koy + kg |2

2

\le (ks,xa ks,y; kr,x; kr,y; kz) =1if |kz| > a\/|k5,m + kr,z|2 + |k8,y + kTsy

and similarly for ¥, \T!y.

Now suppose that horizontal offset reflectivity R, contains a physical reflectivity

Ts+ T +
R Yor 1 2) = 1l2,9,2)8 (0= 20 ) 5 (y = L)+
and that there is a significant component with of the physical reflectivity with vertical
wavenumber k, after filtering by W,. THat is, for rays (X, Py), (X,, P,) and scattering
time ¢, the rays intersect at x with the scatterer wavenumber w(P,(t;) — Ps(ts)) having
z component k,. From relations (25, 24) it follows that

k2 2(1+ cosOmax) 5
£ >
w? — (1+a?) V(%) (26)

From inequalities (26, 23), it follows that any other point on these two rays which are
imaged in ¥, R,, i.e. at which X, ,(t; + 7) = X, ,(ts + 7) for some 7, requires that

7| >

20(x) \l 2(1 + c0S Omax) (27)

M 1+ a?)

The relations (27, 22) therefore imply that any such secondary image point must occur
at an offset (hy, hy) = (Xsz(ts +7) — Xpa(ts +7), Xsy(ts + 7) — Xy 2(ts + 7)) satisfying

h? = h + hi > k. (28)

in which hni, depends on max and min values of velocity and velocity gradient length,
Omax, the TIC constant K, and the filter aperture .
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| \

v N

Fic. 1. Ray theoretic relation between data event and double reflector.
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F1a. 2. Ray theoretic relation between data event and physical (single) reflector.
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X (1) =(t, ),

LX) = (1)

//,
Lo,
/

tHt=to+t,

&

F1G. 3. Ambiguity of event-reflector relation: only total traveltime is constrained.
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ofset (km) ofset km)
02 4l 0 01

01

depth (km)
depth (km)
=
=
depth (km)

=
=

05

Offset Image Gather, x=1km 0IG, x=1 km: vel 10% high 0IG, x=1 km: vel 10% low

Fic. 4. Image gathers of data from random reflectivity, from left to right: correct
velocity, 10% high, 10% low
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receiver position

F1G. 6. Lens model: shot record, offset -.5 km
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offset

16

traveltime s,r
— 11
33
N | S N
--12
31
— 32

24

Fi1G. 7. Lens model: Kirchhoff common offset image gather, z = 0.3 km.

36



Stolk and Symes Reverse time shot geophone migration

Fic. 8. Lens model: Kirchhoff common scattering angle image gather, x = 0.3 km.
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