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ABSTRACT

In seismic inverse scattering, the data are divided into subsets, each of which is
used to reconstruct the medium discontinuities by linearized inversion. The recon-
structions depend on an a priori unknown, smoothly varying background medium
(velocity model). The semblance principle, which states that the images must agree,
is the basis for the reconstruction of the background medium. Several estimators for
the background medium have been proposed, based on optimization of different ob-
jective functionals. Use of local, gradient-based optimization methods requires that
the functionals to be optimized are smooth. Such a smoothness requirement essen-
tially implies that the objective functional is of differential semblance type. The proof
involves a characterization of pseudodifferential operators as having L? continuous
repeated commutators with order 1 pseudodifferential operators.

1. INTRODUCTION

In a seismic experiment, acoustic waves in the subsurface are generated by a source
at the surface. At positions where there is a strong contrast in mechanical properties of
the medium, part of the energy is reflected. The wavefield is recorded at the surface by
an array of receivers. The experiment is repeated with varying source position. The data
contains a wide frequency range, but low frequencies are absent, meaning that the target
region is many wave lengths away from sources and receivers.

Geophysicists aim to construct an image of the subsurface from the reflections present
in the data. For this purpose the data are modeled using a high-frequency linearization
(“ray-Born approximation”), where the medium coefficient is written as the sum of a
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smooth background constituent and a singular or oscillatory perturbation (reflectivity),
assumed to be small enough that linearization is accurate. The waves propagate accord-
ing to geometrical optics in the background medium, and reflect at singularities of the
reflectivity. Neither the background medium nor the reflectivity are known a priori; both
are to be determined from the data. An additional complication is that the background
medium is generally strongly inhomogeneous. This distinguishes the seismic inverse prob-
lem from other inverse scattering problems such as radar or ultrasonic medical imaging.
While the predicted (“ray-Born”) data depend linearly on the reflectivity component of
the model, its dependence on the background medium is quite nonlinear.

Given a choice of background medium often a set of images of the singular part of
the reflectivity can be obtained. The semblance principle, which states that the different
images in this generally highly redundant set must agree, is used for determination of
the background model (migration velocity analysis (Yilmaz, 1987)). To automate this
procedure several optimization procedures have been proposed, in which a functional
of the set of images having an extremum when the images are the same, is minimized
or maximized (Al-Yahya, 1989; Symes and Carazzone, 1991; Toldi, 1989). The main
examples, all quadratic in the data, are given in section 3. For an overview and more
references see (Chauris and Noble, 2001).

Due to the large size of the problem local, gradient-based optimization methods are
needed to keep the computational cost within reasonable limits. Therefore it is impor-
tant that the objective function is smooth as a function of the background model. The
inevitable presence of noise, which in principle can only be assumed to be square in-
tegrable (i.e. have finite energy), implies that the objective function really needs to be
smooth as a function of background model and data jointly. In this paper we study the
implication of such a smoothness requirement. Our main result is that, under reasonable
additional assumptions explained below, essentially the only quadratic “semblance func-
tional” with smooth dependence on the background medium is a quadratic form in the
set of images defined by a pseudodifferential operator, with symbol depending smoothly
on the background medium (Theorem 5). A similar result for the simpler plane wave
detection problem (Symes, 1994) was established by (Kim and Symes, 1998). Such objec-
tive functionals have received the name “differential semblance” (Symes, 1986; Symes and
Carazzone, 1991). Chauris and Noble have recently given numerical evidence supporting
this claim (Chauris and Noble, 2001). In a numerical example they observed that the
conventional semblance or “stacking power” function had local maxima far away from
the correct maximum, while differential semblance only had a global extremum. Their
results also suggest that both the density and sharpness of the local extrema of conven-
tional semblance increase with the dominant wavenumber of the signal, i.e. the oscillation
of conventional semblance is not bounded under general L? perturbation of the data,
consistent with the results proven here.

In principle implications of C* dependence can be derived from the arguments used
to prove our statement. However, this appears to lead to many technicalities and will not
be discussed here.



Before we give the precise formulation of the result in section 4, there are first two
sections of an introductory nature. In section 2 we describe some well known results in
seismic imaging due primarily to Beylkin. We then describe the class of semblance norms
we consider, and show that the three main examples are in this class. The main result
Theorem 5 and an outline of the proof is given in section 4. The proof is the subject of
sections 5 and 6. In section 7 we further discuss some of the implications of our result
as well as the relation with some other results in the literature. The appendix illustrates
the necessity of one of the assumptions in section 4.

The main intermediate result is given in section 5. Pseudodifferential operators can
be characterized as those operators on L? whose repeated commutators with first order
pseudodifferential operators are bounded on L2. In this section we derive a criterion for
a set of pseudodifferential or differential operators to be sufficiently large, so that this
characterization property is still true for repeated commutators with elements of the set.

2. SEISMIC IMAGING

We assume the medium occupies the half space R*~! x R, and is described by the
soundspeed ¢ = c¢(x) € C®(R* ! x R;). The data are a function of source position,
receiver position and time (s,7,t) in open subset Y of R* 1 x R* ! x Ry, that gives
the pressure field at a surface point r due to point source at s according to the acoustic
equation. In practice of course n = 2 or 3, corresponding to sources and receivers along a
line or covering a plane. We assume that the effects of the boundary, in particular surface
waves and reflections, are suppressed, so that the modeling can be done using a medium
that extends above the surface.

In the Born approximation the medium coefficient is written as the sum of a smooth
background medium, and a perturbation ¢ = cq + dc. The perturbation contains the
discontinuities and is assumed to be small. The background medium is used to describe
the propagation of the wavefield that is transmitted (not reflected at discontinuities). The
single reflected data are modeled by the first order perturbation to the Green’s function,
evaluated at (s,r,t),

d(s,r,t) = 6G(r,s,t),(s,rt) €Y.
It follows that the data are given by a linear map F' = Fl[cy| acting on the singular
medium perturbation (reflectivity) given by f(z) = 20‘;6((;”))3. Using a geometrical optics
approximation the kernel of F' can be written as (Beylkin, 1985)

F(S, T, 13 Jj) = /A(ZB, s, T, T)eiT(t—T(:c,s,r)) dr. (1)

Here T is the two-way travel time function, that is the sum of two one-way travel times
T(.Q?, S, 7") = Tl(xa S) + Tl(xa 7")'

The latter give the travel time along a ray from = to s. We assume such rays are unique in
the domain of interest (no caustics/multipathing). The ray can be determined by solving
a Hamilton system.



Practical data processing involves a joint reconstruction of the background ¢y and the
reflectivity f. This involves two main steps. One is the reconstruction of f given an
estimate for the background medium ¢y, which we discuss in this section. Second is the
estimation of the background, using a set of reconstructions for f, to be discussed in the
following section and the remainder of the paper.

It turns out that, since data are of dimension 2n — 1 and f is of dimension n, the data
can be partitioned into n dimensional subsets, each of which can be used for reconstruc-
tion. Throughout this paper we will assume the data are partitioned into sets of constant
offset h = r — s. The constant offset data are given by d,(r,t) = d(r — h,r,t), and F}, will
be the restriction of F' to constant h = r — s. Alternatively one can use constant source
data subsets (done less in practice), for a which a similar analysis can be done.

Let Ty(z,7) = T(x,r — h,r) and assume

det (22 90) 0. 2)

In (Beylkin, 1985) it was observed that there is a partial (microlocal, see below) inverse
Gr(x;r,t) = /1/1(1" — h,r,t)B(z, h,r, 7)™ T@ =) 47 (3)

Here 1) is a C* cutoff function, equal to one on a subset Y; of the acquisition set Y,
vanishing outside a larger compact subset Yy of Y, and going smoothly from 1 to 0 in
between.

Singularities of distributions can be localized not only in position (cf. the singular
support), but also with respect to direction, i.e. in the cotangent or phase space T*R"\0 =
R™ x (R*\0), by the wave front set (Héormander, 1983). Cotangent vectors will be denoted
by Greek letters, &, 0, p, 7 will be the cotangent vectors with z,s,r,¢t. The operators F'
and G} are Fourier integral operators, for which the mapping of singularities is well
understood (Duistermaat, 1996). The wave front sets WF'(F},), describing the mapping
of singularities from T*R™\0 to 7*R"\0 (Duistermaat, 1996), is given by

o, o

——2 rxT
or’ 7 Ox

Ay =A{(r,Tp(z,7), —T )| (r—h,r,Th(z,7)) € Y, 7 € R\0}.

Only singularities of f whose position in the cotangent space is in the projections of A,
on the right (z,&) variables can be present in the data and can be reconstructed. Thus
the reconstruction is only partial, only the singular (high-frequency) part of f, and then
only the part of singularities that is “illuminated”, is reconstructed.

The set Ay, gives rise to two projection mappings. First from a subset of points (z,r, 7)
to 7"R;\0 and second from the set of (z,7,7) to a subset of T"Kf, ;)\0. By assumption
(2) these mappings are locally invertible. We will assume they are also globally invertible,
so that A, corresponds to an invertible map between subsets of 7*R7?\0 and T*R’(“;’t)\o.
Denote the projection on T*R?\0 by mx. This mapping leads to an h-family of order 0



symbols ¥x (h, z,&) on T*R?\0, through pull back off the cutoff ¢ in (3) by the inverse of
T, Px = (7r§,1h)*d). The reconstruction takes place in the sense that

Gth = w(haanm)f’ (4)

where 9(h, z, D,) is an h-family of pseudodifferential operators in z with principal symbol
1x. We will often write 1) where we mean an operator ¢(h, z, D,) with principal symbol
given by x.

We will assume the data are normalized to be in L? (by convolution in time variable
(1—D?)~("=1/4) and that F, F}, and G}, are modified accordingly to be continuous between
L? spaces. We define the operator G to be the map from data to the set of reconstructions
G :dw— f(h,x) = (Gpd)(z). The operator G depends on which cutoff function ¢ is
chosen. We use the notation Gy, for the operator defined by (3) using cutoff function 4.

3. SEMBLANCE FUNCTIONALS

If the background medium is correctly chosen then the images should agree, as far
as possible given that the inversion of the reflectivity is only partial. Comparing images
for different values of the offset h,h this means that for some cutoff given by 7,5(37,5)
(supported where both v (h, z,£),4(h, z, £) are equal to one) we have

d(z, D) (Grd — Gzd) € C*.

Locally in A it follows from (4) that for the correct background medium the derivatives
of Gj,d with respect to the different components of h

0
oh;

Ghd,

are singular of the same order as Gd, as opposed to one order more singular, which is in
general the case when the background medium is not correctly chosen.

This semblance principle suggests a method to estimate ¢y, namely by maximizing the
similarity of the images f(h,z) in some sense. In this paper we study quadratic similarity

functionals of the form
Jlco] = ||B Nlco] Gleo]d||” (5)

where B : L2(R?*"~!) — L?(R™; R¥), and N|c] is a pseudodifferential factor depending on
the medium. Note that B doesn’t depend on ¢y, the ¢y dependence is through N[co]G]c)-
The latter is of the same form of GG, but possibly with a different amplitude due to N.
Let A= B*B: L*(R* ') — L*(R*!). The expression for J[cy] can be written as

J[co] = {d, Gleo]* Nco|* AN o] Gco]d). (6)

where (-, -) denotes the inner product on L?(R*"~1).



Example 1: For the differential semblance functional (Symes, 1986; Symes and Caraz-

zone, 1991) the images are compared by taking the derivatives aihi' A pseudodiffer-

ential factor, denoted by (1 4+ D?)~%/2 is added so that the operator is continuous
L2<R2n71) - LZ(R2n71;Rm)’

t
Bos = (g (1+ D)2, 50 (14 DY)72)

Note that this only works because WF(R(F')) N {r = 0} = 0. Because of the microlocal
(high-frequency) nature of the inversion for f an additional cutoff around £ =0, or 7 =0
is required (in practice small frequencies are usually not present in the data). This leads
to a norm Jps[ce] that assumes its minimum at a correct choice of cg.

Example 2: The semblance or “stacking power” functional is given by (5) with B given
by

(Bspf)(z / ¢(h (7)

where ¢(h) is some cutoff. Velocity analysis by maximizing this functional has been
investigated in the geophysical literature (Toldi, 1989). The motivation is that only
when the data for different values of A has the same phase a significant contribution
appears, otherwise (7) is small due to destructive interference. From (7) it follows that
the corresponding operator Agp is nonlocal.

Example 3: Given the background medium ¢y, there is a microlocal least squares
(partial) inverse for f using all the data. It can be written in the form

fusleo.d) = [ K (b, D.)(Gd) ) d Q
Here K depends on cy. The least-squares approach to find cq is to minimize
I fusco, d] — d|f?
This amounts to minimizing
—2(F fis[co, d], d) + || F fus[eo, d]|*. (9)

Using (8) it follows that this amounts to minimizing (5) with Bpg of the form

(Busf)(z /¢

where ¢(h) is some cutoff, and some suitable choice Nis[co] for N|co]. As in the previous
example the corresponding operator Arg is nonlocal.



4. SMOOTHNESS IMPLIES DIFFERENTIAL SEMBLANCE

This section contains the statement of our main result. Under assumptions specified
below, smooth dependence of a functional of the form (5) on the background medium,
uniformly for any data in L?(Y'), implies that the operator A = B*B is a pseudodifferential
operator with symbol in S7,,.

We assume that ¢, is in a finite dimensional submanifold C' of C*°(R»~! x R, ), that
must satisfy certain requirements. The basic smoothness requirement is

(d, G;,N*ANGyd) depends in C** fashion on (¢, d) € C x L*(Y). (10)

This is equivalent to the requirement that the dependence is C'*° on ¢y uniformly in d.
Observe that this requirement is stronger when C' is larger, so that there is no loss of
generality when C' is assumed to be finite dimensional.

The requirement (10) by itself is not enough. We make two modifications. In the
previous section we introduced a cutoff in the Fourier domain around

§£=0,0#0,

where 6 is the covector corresponding to h. If x is such a cutoff (which we will assume to
be selfadjoint), then we will study xAx (we will use the notation x both for the symbol
Xx(&, 6) and the corresponding operator). We will assume that when (&, 6) is in the support
of x(&,0), and ||(&,0)|| > 1, then

&>,

for some C' > 0. The cutoff x is chosen independent of ¢5. Only £ # 0 corresponds to
reconstructed discontinuities, so no relevant signal is removed. This cutoff is in addition
to the built in cutoff v discussed in section 2. Thus we consider the functional

J[eo] = (d, GZ[CO]N*[CO] XAx Nco]Gyleold). (11)

In the appendix an example is given which shows that equation (10) with the cutoff
x is not sufficient to guarantee that ¥ xAxvy is pseudodifferential. In addition we require
smooth behavior under translation of data 7}, in h direction

(d, GuN*T_,xAXT NGyd) depends in C* fashion on (c,d,h) € C x L*(Y) x H,, (12)

where Hj is a neighborhood of 0 in R*!. An equivalent requirement is that the depen-
dence on (¢, h) € C x Hy, is C* uniformly in d. The smooth dependence on translations
in h is satisfied for all the examples in section 3.

The key observation to prove our result is that (12) implies continuity of the maps
Ad(P)...Ad(P)(yxAxy) : L* — L7, (13)

for P; in a sufficiently large set S of order 1 pseudodifferential operators. Here Ad(P)A =
[P,A] = PA — AP. It is known that equation (13) can be used to characterize pseudo-
differential operators among all operators on L? according to the next lemma.
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Lemma 4: (H.O. Cordes, see (Taylor, 1981, p. 175)) Let A : D'(R*) — D'(R") be
compactly supported, and suppose that, given any P; € OP Sy, where Sy := {;&;}i j=1,..nY
{&}izt,...n, you have (13). Then A € OP S),,.

In this paper we show that A is pseudodifferential is implied by (13) when the P; are
in a different set S arising from the derivative w.r.t. ¢y of G and translations 7}. This
yields our main result, the following theorem:

Theorem 5: Let J(cg] be of the form (11). There is a smooth finite dimensional sub-
manifold C of C*®°(R*™! x R, ) containing cy = 1, such that if the smoothness requirement
(12) for Jlco] is satisfied for any v of the type described above at co =1 and h =0, then

for any such ¥
hxAxyp € OPSY),. (14)

Thus smoothness of J[cg] restricts our choice of the operator A strongly. The exam-
ples 2 and 3 do not satisfy the smoothness requirement. Since A must be pseudodifferential
it remains only to choose the symbol of A. The symbol of A should have minimum at
f = 0. This naturally leads to the differential semblance norm discussed above where the
symbol A(z,h,&,0) is given by

0 2
A(xahaSae) = %7

(or with possibly a different choice of denominator with essentially the same behavior).

The next section contains our criterion for the set S so that (13) implies that ¥y Ax
is pseudodifferential. Section 6 contains the proof of Theorem 5.

5. CHARACTERIZATION OF OPS%O USING REPEATED
COMMUTATORS

In this section we consider operators
A LA(R™") — L*(R™™).

We will use the notation (z,y) € R™ x R" for the coordinates in this section, i.e. y instead
of z, x instead of h. We assume A satisfies the assumptions

A is compactly supported, (15)
WE'(A) N {(z,y,&m:%,9,&0) [n=0or 7=0} = 0. (16)

The latter condition can be enforced by applying pseudodifferential cutoffs.

We assume there is a set Sy containing symbols L(z,y,n) and symbols &;, such that

Ad(Py(z,y, Dy, Dy)) ... Ad(Py(z,y, D,, D,)A is continuous L*(R™") — L*(R™t"),
(17)



where Ad(P)A = [P, A], for all Py,..., P, € §. We show that, when S; satisfies certain
assumptions, then (17) is in fact valid for all P; in a much larger set. The L(z,y,n) are
independent of ¢ and therefore the corresponding operators are pseudodifferential only in
y, they are smooth z-families of pseudodifferential operators. Using assumption (16) we
can still obtain the desired estimates. In the text we will not always make the distinction
between pseudodifferential operators and z-families of pseudodifferential operators, but
it will be clear from the notation what is meant.

First we assume Sy contains ny symbols Vi(x,y,7), i = 1,...ny, such that the vector
of principal symbols ¥(z,y,n) := (vi(z,y,n), ..., vr(x,y,n)), is uniformly nonzero,

[5(z,y,n)ll = Cllnll, (18)
for all (z,y,n) € R™™™ x R". It follows from (17) and this assumption that
A is continuous L*(R™, H*(R")) — L*(R™, H*(R"))

for any k € Z. By (16) we have
1€11* < ellnll®

on the support of the Fourier transform F Au. Therefore it follows that in fact

A is continuous H*(R™") — HF(R™™).

We assume Sy contains in addition a set of ny, symbols of the form
ny
> Wiz, v, m)Vilz,y.n) = Wiz, y.n) - V(z,y,7),
j=1

i=1,...,nw. Here the W;; are of order 0 (only the principal parts of the V; and the W;;
will be of interest). In case ny = 1 we make the following assumption about the vectors
w;(x,y,n) of principal symbols

the map R™™ x ! 5 R"W .
(z,y,m) = (wi(2,y,m), - - -, Wny (z,y,n)) is an embedding. (19)

In case ny > 1 there is the following generalization of this condition

for all (z,y,n,Z,y,7) € R x 71 x R+ x gl

span ({1 (2,,1) — o 2,557, - By (5 ,0) = g (2,50} =R, 20
for all (z,y,n) € R™™™ x §n~1

Span({ 5521 (2, Y1), - 57 Ty (1,9, 1) }) = ROV (201, (20b)
the above conditions are valid uniformly. (20c)

In addition we assume S, contains the set
{gi}i:L...,m
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Define S by

S = Sll,o(Rm+naRn) U {&}i=1,..m» (21)
(where Sll,O(RmJF”,R“) is the space of symbols of the form L(z,y,n)).
Lemma 6: Suppose that

SOD {Vvla"'avnvavf/l'Va"'aWnW'Vagla"'agm}7 (22)

where the V; and the W; - V satisfy (18) and (20). Suppose A : L? — L? satisfies (15),
(16). Assume that (17) holds for all Py,..., Py in Sy. Then (17) holds for any k order
1 pseudodifferential operators or x-families of pseudodifferential operators P, ..., P, with
principal symbols in S.

Proof. Let P, i =1,...,k bein §. We show that in fact Ad(Py)...Ad(P;)A can be
written as an infinite sum

k
Ad(P) ... AdPYA =)D > BirinindsQui Ad(Li,) .. Ad(Li ) AQa,,  (23)

1=0 i1,..-,% j1,j2€N

where the L; are in &y, the ()’s are order zero pseudodifferential operators, uniformly
bounded on L? and the sequence |B;, . j.j»| is rapidly decreasing as (j1, j2) — oo.

We first show the case £ = 1, denote P = P,. Clearly the statement is true when
P = ¢, for some %, so we consider the case that P has symbol P(z,y,n). There is a vector
P of order 0 pseudodifferential operators, s.t. P = P. V modulo lower order terms. We
have

[A,P]=[A,P-V]=P-[AV]+[A,P]-V.

The first term in the last expression is already of the desired form. We show that the
second term can be written as an infinite sum involving terms [A, W;]- V, and therefore in
the form (23) (for k = 1). The Schwarz kernel of [P, A] - V is given (modulo lower order
terms of the form Q1AQs, with @1, Q2 pseudodifferential of order 0) by

en ™ [ (Playn) = Pla.z.m)ite.z.0)

X A(z,z,T,%)e y—2m+i(Z=9.7) 4, dz dndn,

(24)

where A(z,z,7Z,Z) denotes the kernel of A.

Using the Malgrange preparation theorem (Hérmander, 1983, theorem 7.5.7) we show
in a few steps that there are smooth functions ¢;(z,y,n, Z, §,7) such that

(ﬁ(xayan) ','U ya ZQ'L x,Yy, ’flal" y’n)(u_jz(w’yan) _U_jz(jagaﬁ)) (25)

The ¢; are homogeneous of order 0 separately in 7 and 7. To get to the result (25) first
observe that, by the Malgrange preparation theorem there are ¥;.x(z,y, a, Z, 9, &) such
that

ny m+2n—1

u'fz-(x,y,a) Z Z 72,jk€j -7; Y, ) (-/E g @) )
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By assumption (20b) the 9;.x(z,y, o, Z,y, &) are the coefficients of a matrix (with row
index ¢, and j, k together the column index), that has maximal rank at (z,y, o) = (%, 7, &).
By assumption (20a) the same is true when (z,y, a) # (Z, 7, &). Together with assumption
(20c) it follows that there is v;;.; such that

&( (2,9, ) — (7,9, Z%m wi(, y, @) = 0i(7, 9, @) (26)

Again using the Malgrange preparation theorem there are g;,;; such that

ny m+2n—1

(ﬁ(xayan) .%‘ y, Z Z qz,]keg .I‘ Yy, )k_(x y’ ) ) (27)

Using (26) in (27) yields (25).
Since the g; are smooth they can be expanded as a sum with coefficients (3;.q5.q that
decay rapidly when (a,b,c,d) — oo

(.CU y,n, ZI? y, Z 61 abcdb xz, y)wb(n)bc(i‘a g)wd(ﬁ) (28)
a,b,c,deN

Here the b, can for instance be chosen a Fourier basis of L?(B), where B is a sufficiently
large cube (recall that A is compactly supported), and w, can be chosen to be the spher-
ical harmonics on the n — 1 sphere. For an example of the expansion of symbols for
pseudodifferential operators, see e.g. (Taylor, 1991, proposition 1.1.A).

Inserting (25) and (28) into (24) we find that the operator given by (24) is given by

Z 3 Pl Wil y, D,)wn(Dy) Abelz, )V (z,y. D, )wa(D,)
— bu(2, y)n(Dy) Abc(x, ) Wil y, D,) - V(w,y, Dy)wa(Dy)). (29)

Expression (29) can be written as

Z Z ﬂz abcd JJ y)wb( )[W (.’17 ya ) A]V(.’L‘ ya )bc(xay)wd(Dy)

+b( y)Wi(z,y, Dy), wy(Dy)|Abe(w,y)V (2,9, Dy)wa(D,)
— ba(2,9)wr(Dy) A [be(w, y), Wiz, y, D) - V (2,9, Dy)lwa(Dy)).- (30)

We discuss the sum of the second and third terms in this expression. It is shown in
(Taylor, 1991, (3.6.35)) that, if P = P(z,y,&,n) € S°,

I[be(@, y), P(2, 4, D, Dy)llu-1-522 < Cpllbellpip.
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It is easy to see that this is also true for an z-family of symbols 15(:1:, y,n). This leads to a
bound that is polynomial in c¢. Therefore, after rescaling the coefficient and the operator
[be(2, ), P(x,y, D,)], the infinite sum of the third terms in (30) is of the form (23) (with
k = 0), in particular it is continuous on L?. Tt is observed in (Taylor, 1991, (4.1.7)) that,
if P e St, i
1P (y, Dy), we(Dy)lllze—sz2 < Cle)™,

i.e. there is a polynomial bound in ¢ on the commutator. Therefore the infinite sum of
the second terms in (30) is also of the form (23) (with £ = 0) and is continuous on L2.
It follows after identifying the @)’s, and renumbering to conform with different notation,
that (29) is given by (23) for k£ = 1.

The result for £ > 1 can be derived by induction, using the same argument as above.
E.g. for k = 2 the argument is applied with A replace by the sum (30). The additional
commutator terms that arise are polynomially bounded in the indices a, b, ¢, d, and there-
fore lead to more terms in (23) with finite sum. O

Remarks The addition of the & in the set of symbols (22) is done because the lemma
is used in this setting below. However, they could be omitted from (22) and (21). The
lemma is somewhat more general than needed, because below only the case ny = 1
is used. However, the case ny > 1 is needed to consider an extension to differential
operators. Such an extension is not hard to make. The key point is that the Malgrange
preparation theorem can be used to construct the elements of S. In the case of differential
operators let the V; be linearly independent vector fields that at each p01nt (x,y) span

R*, and the W;; = W;;(z,y) are expansmn coefficients W; = W;(z,y) - V. Then & is
modified to the set vector fields ), u;(z, y) (together with ;> 32;) and (20) is modified to
be conditions for the Malgrange preparatlon ‘theorem in this case as follows

for all (z,y,z,y) € R™t" x R™"
DA ({1(2, ) — T8, 5)s - Ty (2,9) — Ty (2, 0)}) = RV,
for all (z,y) € R™*" span({a( w1($ Y)s s g By (z,y)}) = R (m+n),

the above conditions are valid uniformly.

6. PROOF OF THEOREM 5

Proof. We show that (12) implies continuity of the map
Ad(Py) ... Ad(P) (¢pxAxyp) : AR — LA (R*1), (31)

where the P; are pseudodifferential operators of order 1 with any principal symbols 6; or
Pi(z,h,€) in the set S of (21). We show this by induction on k, using up to k-th order
derivatives in (12). Therefore assume (31) is proved up to order k — 1.

First we show that (31) is valid when the P; are in a smaller, finite, set, obtained by
taking the derivative of (11). Define the operator Hy by

Hy =T,NG,
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The operator Hy is again a Fourier integral operator similar to the operator G. The
pseudodifferential factor NV leads to a modified amplitude, and the translation must be
taken into account. Its kernel can be written in the form

Hy(z,h;r,t,h) = §(h —a — h) /fl(x, hyr, ) (r — h,r,t)e™@hrt) dr

where ¢ = T(xz,r — h,7;¢0) — t (here we indicated explicitly that 7" depends on the
background medium cj).

Consider a finite dimensional space of background mediums C', and let v be local
coordinates on C. The travel time 7', the amplitude A and hence the operator Hy, now
become a function of . Differentiating H, with respect to v, we find

aaz:/’ (. it h) = 6(h — a — h) / (w%

The first term of the sum is of order 1, due to the factor 7 from differentiating the

exponent. Up to principal level the multiplication by ir‘g—f can be seen as the application

y 9 "
Ay + a(wa))e dr. (32)

of a pseudodifferential operator L; to Hy. The remainder % — L;H, in general involves
derivatives of 1, and can therefore not necessarily be written as a pseudodifferential
operator acting on Hy,. However, let ¥ be a different cutoff function that satisfies ¢ > 0
on supp . The lower order terms can be written as a pseudodifferential operator acting
on Hi‘ Hence the derivative 22% can be written as

0vi
OH. ~
P Lty + Ri(w ) g
where L; € OPS}’0 has principal symbol
T
Li(.’L‘,T%) = iTgZ (x, h,r,t) (33)

(defined on a neighborhood of supp ¢ in the cotangent space TrR™). We will define the
L; (first order ¥DO) to be anti-selfadjoint (meaning L} = —L;; note that the principal
symbol is imaginary, so that this only involves the modification of lower order terms) and
R;(%, 15) (a zero order ¥DO) to be selfadjoint. Clearly for the adjoint operator Hj we
have 9

a—%H:/; =—H) Ly + H:jRi(wa ¥).
The derivative with respect to the translation parameter a is also of this form. We let the
L;i,R;; » = dimC +1,...,dimC + n — 1 correspond to translations and we have R = 0
and Liidimc = %-

Using this we first show that
ak
iy - O

k

HyxAxHy = Hj, Ad(L;,) ... Ad(L;,)xAxHy + sum of lower order terms,
(34)

13



where the lower order terms are of the form
H;}}Q{ Ad(P) .. .Ad(Pl)XAXQquz + adjoint (35)

where | < k, the P; are anti selfadjoint first order, and the @; are of order 0, and 1Z is some
cutoff that satisfies 1 > 0 on supp . Equation (34) is proven by induction. Consider the
derivative of (35) with respect to ~;

H3Q7 Ad(Li) Ad(R) ... Ad(P)xAxQ:2Hy
+ H3Q3 Ad(P) ... Ad(P)XAXQ2Hy + H3Q Ad(P) ... Ad(Pr)xAxQ4H;

l
+2Re) H3Q7Ad(P) ... Ad(Pj1) Ad( 5 J

Jj=1

]

It follows by induction that equation (34) is satisfied. This equation is not quite in the
right form, equation (31) involves the operator ¥)xAx%, and not yAx by itself. The
operator Hy can be written

Hy = 1(h, z, D)Hj + lower order terms.

Commuting the cutoffs ¢ for Hy, and H;; we find that (34) is equal to an expression of

the form
ak
5 H xAxHy = Hj Ad(L;,) ... Ad(L;, )y xAxy Hy

+ sum of lower order terms as in (35). (36)

By the induction hypothesis the lower order terms in (36) are continuous L? — L?.
By the smoothness assumption the whole of (36) is continuous L? — L%. It follows that

Ad(L;,) ... Ad(Ly,) (pxAx) is continuous L* — L. (37)

To prove (31) from (37) it remains to show that the L; form a large enough set, so that
Lemma 6 applies. We must show that, for some choice of the manifold of background
velocities C, the set of symbols L; contains a set of the form (22), where the V; and
the W;; are as described. We define the inverse velocity, or medium slowness v = ¢ L
From (33) it follows that we must consider the medium perturbation 67'(z,r,s) of the
travel time 7T'(z, 7, s), when a smooth medium perturbation ov is added to v. We consider
perturbations around v = 1. In this medium all the rays are straight lines and the travel
time is given by the Euclidean length. One can show that in this medium the travel time
perturbation for a single ray segment given by x(t), a < ¢t < b is given by the line integral
(Nolet, 1987)

oT = /b dv(x(t)) dt. (38)

14



It follows that a medium perturbation dov := 1 leads to do7" = T'. It follows that we may
choose V = L, given by 6T (that is nyy = 1, and V is a scalar operator), and that then
(18) is satisfied. In the next lemma we show that there are a set of medium perturbations
o;v, 1 =1,...,k so that the corresponding variations in travel time §;7 lead to operators
of the form W;V, with the W; satisyfing (19).

Lemma 7: Let v = 1. Let a,3 > 0. There are ;v € C“(M), 1=1,...,4n — 3, such
that the map

{z eR" |z, >a} x{(r,;s) eER"™ xR |(r—s) €]B,00[" '} = R"3:

61T 54n—3T
(x,7,8) — ( T T ) (39)

15 an embedding.

Proof. Let ¢(z,) be positive with support in [0, ag], 0 < ap < a. Let

0V = T,
51+i’/:xi7 2':1,...,71—1,
Oniiv = T;P(xy), i=1,....,n—1,
(52n_1+i1/:a:?, 1=1,...,n—1,
(53n_2+i1/:$?, z=1,,n—1

The corresponding travel time perturbations follow from (38). We show that the map

01T O4n—3T 0T O04n—3T
Ty o T 9 T

Denote z = (2', z,,), 2’ = (x1,...,Zn—1). Let u be a parameter that increases linearly from
0 to 1 along source and receiver segment, i.e. for the source ray x; = (s,0) +u(s — 2’, z,,),
X, is defined similarly. Let Ty = /(s — )% + 22, and similarly for T}, then T = T, + T,
and

(z,7r,8) — ( ) is injective, i.e. that ) determines (z, s, 7).

1
5T = / [Tabv (s (w)) + Tobv(x, ()] du (40)
0
It follows that 5T
T _
T 3 ()

whence ‘SITT determines x,. It further follows that

51—|—iT _ Ts Tr
T —orditar

Ti + 3%, i=1,...,n—1.

The line through x and the center of mass of the figure consisting of source and receiver
ray is given by

Xm (u) =

T, T, 1 1;
sz(u) + ?xr(u) =(1-u) (T(S’ 0) + ?(r, 0)> + uz.

15



The value x,(1/2) is determined by the %% 45 =1,...,n. We have

T
5n—|—iT . Ts
T  \2T

Tr 1 1
Si+ =T / d(uz,)(1 —u)du + xz/ d(uxy)udu, i=1,...,n—1.
(42)
Because z, is determined from (41), the integrals fol é(uz,)du and fol d(uzy,)udu are

known. It follows that (42) determines another point on the line 4 +— x,, (), and therefore
fixes £ and my € R*! defined by

I, | I:

my; ‘= Xm’i(O) = TSZ' + T’I“i. (43)
We have
0 n— zT T’s
% == /((1 —u)s; + ux;)® du
1, 2 .
+ o (1 — w)r; + uz;)* du, i=1,...,n—1 (44)
Because x is known the values
T, T,
Mo ; i= ?ssf%—?r?, i=1,...,n—1. (45)
can be found from (44). Similarly from %, i=1,...,n— 1, the values
T T, .
mg; == %sf—!—?ﬁ’, i=1,...,n—1. (46)
can be found. For each 7, equations (43), (45) and (46), form a set three equations with
three unknowns r;, s; and % =1- % By applying a change in coordinates we may

assume that m;; = 0,mg; = 1. It follows (since by assumption r; > s;) that for each 4
there is a unique solution for r;, s; and % given by

r; = % (m3,,~+\/4+m§,i),
s;=1 (m37,~— ,/4+m§7i>,

N

To 1o mas
=3 )
T 2/4 +m3,
By tracing the steps in the determination of (z,r,s) from the 5éFT, 1=1,...,3n — 2 it

follows that in fact the map (39) is immersive and proper. This shows that the map (39)
is an embedding. O

The submanifold C' is chosen of dimension 4n — 2 such that the d;v, i =0,...,4n —3
of the lemma are tangent to the submanifold at v = 1. The operators L; so far are
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only defined microlocally on the set (z,£) that is related to data through the theory of
section 2. They can be modified microlocally outside this set, since ¥ xAx, is smoothing
there, and we also know that for any operator with symbol supported outside this set the
commutator is smoothing, hence continuous on L?. In particular we may assume V = L;
is extended to be nonzero outside this set, and that there are additional W;, supported
outside this set, so that (19) is valid for all (z,£), with z in the support of ¥xAx.

With the set of L; modified in this way we can apply Lemma 6. This completes the
induction and shows that (31) holds. In particular it holds for symbols P; in (with the
notation @ for the covector with h)

St ={& =t,n U{hi& izt =1,0 U{Zi& Fij=1,n U {0 }j=1,. 1 (47)

We can now complete the proof of the theorem by applying arguments similar to
the ones used in the proof of the Cordes lemma in (Taylor, 1981, p. 175). Suppose
B = Ad(FPy)...Ad(P)yxAyx. We show by induction that all such B are contin-
uous H*(R?"-1') — HF(R?™!). Assume the statement is proven for k —1 > 0, let
u € H*(R?>"~1). Then we have to show that D;Bu € H*~! and Bu € H*"1. The latter is
automatic, the former can be shown by commuting D; to the right.

Consider
Bog = Ad(h,z)*Ad(Dy, D;)? (X Axyp).

From (31) and (47) it follows that B,sD7 is continuous L*(R*"~1) — L2(R**~1) if |y| =
|a|. Tt follows that
B, is continuous L*(R*"~') — LA(R"*, H*(R")).

Due to the cutoff x there is C' such that the Fourier transform F(B,gu) decays rapidly
towards infinity for (£, #) in the set given by

101* > Cligll®.

It follows that in fact B,s is continuous L?(R?"~!) — HI®/(R2"~1). Using a similar
argument as above it also follows that

B, is continuous H*(R21) — fktiel(R2n-1), (48)

For the remainder of this proof introduce the notation y = (z,h), n the covector.
Define a(y,n) = e A(e¥"). Then for u € &', Au = (2r)~>"*! [a(y,n)e¥4(n) dny. We
need a(y,n) € S7y. Now DZDSa(y,n) = e " Bqs(e), and (48) implies

1Bas (¥ ")l e < clle”™$(@)[|se-tan, (49)

where ¢ € C°(R** 1) is a cutoff. For |a| = 0,|3] = [n/2] + 1, k = 0, with Sobolev’s
embedding theorem, (49) yields
la(z,&)| < Co. (50)
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To estimate D?DPa(y,n), which is the symbol bas(y,n) of Bag note that bas(y,n)(1 +
n[?)!*/2 is the symbol of E,s = Bag(1+> D2 4+ > D} )l*/2. 1t follows that E,s satisfies
the condition (31) with P; in (47). So the arguments used to show (50) apply. The
operator E,g has bounded symbol, or equivalently

D2 DPa(y,n) < C(1+ |n)~°l.

This proves the theorem. [0

7. DISCUSSION

We conclude with a brief discussion of the practical implications of our result and the
relation with other results in the literature.

Seismic data are the primary source of information in present day exploration for oil
and gas. In the processing of these data velocity estimation is an important bottleneck.
Current practice is largely manual and costly. This is a strong motivation to study
automated methods that treat the problem as an inverse problem. Here we study methods
that in principle use all the data, as opposed to methods that use picking, i.e. extracting
arrival time data of a relatively small number of strong arrivals (which is often difficult
or requires some human intervention.)

As mentioned in the introduction, the low frequencies are generally absent in seismic
data while at the same time very little is known a priori about the large scale structure
of the medium. This is a key reason that conventional least squares inversion is generally
unpractical for seismic problems. For the non-linear problem (full wave form inversion)
it has been shown that, in the absence of low frequencies, gradient based optimization
schemes require good initial estimates that are generally unavailable (Gauthier et al.,
1986; Kolb et al., 1986). Farther away from the correct model the least squares functional
exhibits oscillatory dependence on the velocity model with many local minima. Global
search methods (Sen and Stoffa, 1991; Scales et al., 1991) are still far too expensive for
multidimensional seismic data processing. For the linearized problem discussed in this
paper, similar behavior was observed for the semblance and least squares functionals in-
troduced in section 3 (Chauris and Noble, 2001; Landa et al., 1989). As the frequency
content increases the classical semblance functional becomes increasingly non-smooth. On
the contrary the differential semblance functional introduced in (Symes, 1986; Symes and
Carazzone, 1991) (see Section 3) is smooth for arbitrary high frequency content. Smooth-
ness of the differential semblance function and good convergence were also observed in
numerical experiments (although other obstacles can still be encountered.)

The importance of smoothness of the objective functional for the behavior of optimiza-
tion algorithms naturally leads to the question studied in this paper, i.e. whether there
exist other smooth quadratic objective functionals in addition to differential semblance.
We restricted ourselves to a large class of bilinear functionals, of which the main examples
given in section 3 are members. Our main result Theorem 5 shows that from this class
only the pseudodifferential bilinear forms are smooth, defined as being C*°. It follows
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that the differential semblance functional is essentially the only asymptotically smooth
optimization functional with correct minima — one could in fact call it the differentiable
semblance functional.

Appendix A. APPENDIX

In this appendix we show by an example that (10) does not imply that ¢ A1) € OPS?,O.
Let A = H(hy—a)¢1(h)da(x), where H is the Heaviside function, A4 is the first component
of h, a > 0, ¢; is smooth cutoff with support that contains a neighborhood of h =
(a,0,...,0), and ¢o is a second smooth cutoff. For this operator A (10) is satisfied. We
show that Ay is not pseudodifferential. Given the small support of A, we may assume
that ¢ = (D, D,). Let g € C°(H) be supported around (a,0,...,0). Let f € L*(X)
and assume that WF(f)Nsupp(¢2) x R*\0 is nonempty. Then WF(fg) = {(0,&, h,z) | h €
supp(g), (z,£) € WF(f)}. Let

k(h,x) = [, $AY] f(2)g(R). (A-1)

If u is a distribution on R?" ! we denote by ¥(u) the conic subset of of R?"~! such that the
Fourier transform 4 does not decay in those directions, to be precise a direction (g, 0p) is
not in X(u) if 4(A&, @) decays faster than A= for any N and all (£, ) in a neighborhood
of (&, 0y) (Hormander, 1983, chapter 8). The set ¥(u) is the projection of the wave front
set on the cotangent variable. We show that

%(k) € 2(f9)- (A-2)

The singular contribution in equation (A-1) comes from the derivative of the Heaviside
function. This term is given by

k(6,6) = (6.€) / B(O,€)(B1 * 8)(8) (B2 F)(€) 0"

It follows that X(k) contains elements with nonzero € unlike X(fg). Therefore A is not
pseudodifferential.
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