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Summary

Strongly refracting velocity structure produces image
artifacts in prestack Kirchhoff depth migration, i.e. co-
herent reflectivity not corresponding to actual reflectors.
This effect occurs when the velocity is exactly correct,
for any binning scheme (common source, common offset,
common angle). In particular, image gathers produced
by prestack Kirchhoff migration are not flat even when
the velocity is correct. This result casts doubt on the
prospects for Kirchhoff based migration velocity analysis
in regions of strong lateral heterogeneity.

Introduction

Strong refraction (“complex structure”) is understood
to constitute an impediment to seismic imaging and
velocity analysis based on Kirchhoff migration. Nolan
demonstrated that image gathers (common source,
common offset,...) and partial images from individual
data bins are generally riddled with image artifacts,
i.e. coherent reflectivity not corresponding to actual
reflectors, in strongly refracting media, even when the
velocity model used is correct and all arrivals are used
in the migration process (Nolan and Symes, 1996;
Nolan and Symes, 1997). Ray theory determines the
positions of artifacts (and correct image components),
and these are stable under velocity perturbations. When
the velocity is correct, the artifacts move out with bin
parameter, whereas the correct image components do
not: this accounts for the disappearance of the artifacts
in the final stacked image, as per (Ten Kroode et al.
1998). However image artifacts are present with strength
equal to (or even sometimes greater than) that of correct
image components in the prestack image volume. In
effect, image gathers are generally not flat, even when
the correct velocity is used. Flattening image gathers
is the basis of effective velocity analysis, either directly
or indirectly (through velocity spectrum peak location)
(Yilmaz, 1987; Taner and Koehler, 1969). Thus Nolan’s
result casts doubt on the possibility of velocity analysis
using Kirchhoff migration of any sort in complex velocity
structures, at least with common source binning.

Common scattering angle prestack depth migration, an
extension of the p-7 imaging concept to laterally hetero-
geneous media, has been studied recently by a number of
authors in both Kirchhoff (Xu et al., 2001; Brandsberg-
Dahl et al., 1999)), and wave equation (Prucha et al.,
1999; Sava et al., 2001) variants. Perusal of the exam-
ples presented in these papers suggests that angle images
and angle domain image gathers appear to be quite a bit
“cleaner” than their offset domain analogues. In fact, (Xu
et al., 2001) assert that common angle prestack Kirch-

hoff depth migration does not produce image artifacts. If
true, this observation would single out the common angle
domain as particularly appropriate for velocity analysis.
The examples presented in (Xu et al., 2001), however, are
too complex to convincingly support such a conclusion,
nor could a few examples in themselves establish such a
categorical assertion.

This abstract presents a common framework for under-
standing the presence or absence of image artifacts in
both offset and angle domain Kirchhoff migration. In
another place (Stolk, 2001) we have presented a math-
ematical analysis of this question which establishes the
existence of kinematic artifacts (i.e. in map migration,
using the ray geometry associated with Kirchhoff migra-
tion) for strongly refracting velocity models. In this pa-
per we use an example very similar to that of (Nolan and
Symes, 1996) to show that image artifacts may be present
in prestack Kirchhoff images, in both the common angle
and common offset domains. In particular, contrary to
the assertion in (Xu et al., 2001), angle domain image
gathers are not in general flat even when the velocity is
correct. At least from the point of view of Kirchhoff mi-
gration, the angle domain does not appear to be categor-
ically superior to the offset domain for velocity analysis.

The next section presents a mathematical description of
Kirchhoff depth migration, originally developed in (Stolk
and De Hoop, 2002), sufficiently general to encompass
both common offset and common angle imaging. Note
that this formulation includes all arrivals in image for-
mation: the necessity of including all arrivals is implicit
in the results of (Ten Kroode et al., 1998), and was ex-
plicitly demonstrated in (Operto et al., 2001). In the fol-
lowing section we use an implementation of this operator
to examine angle and offset domain image volumes for a
strongly refracting 2D Gaussian lens. We end the paper
with a discussion of the implications for velocity analysis,
the generic nature of these results, and the relation with
recent work on wave equation angle domain imaging.

Prestack Kirchhoff imaging formulas, theory

A reflecting pair of geometrical optics rays can be
parametrized by the reflection point x in the subsurface,
and the take off angles for the source and receiver rays
(B8,a). The intersection point s(z,3) of the source ray
with the acquistion plane can be determined together with
the corresponding travel time ts(z,3), and similarly for
the receiver r(z, a), t:(z,a), see Figure 1.

Inversion of the map (z,8) to (z,s) yields the angle
function a(’)(w, s), and the one-way travel time function
Tl(l)(x,s). These functions are multivalued: index the
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Fig. 1: Reflected ray pair, notation

branches by i. Each branch is defined on a domain D® of
(z, s) pairs, which generally varies from branch to branch.
The two way travel time T (z, s, 7) is defined by

T (2,5,r) = T (@,8) + T (@,r). (1)
In two dimensions we can define the opening angle
6% (z,s,7) by

O(i’j)(x, s,r) = a(j)(x, r) — a(i)(m, s). (2)
(for three dimension see (Burridge and Beylkin, 1988)).
The domains D®9) of these functions consist of the points
(z,s,7) with (z,s) € D@ and (z,r) € D?. We also
define a cutoff (mute) function A% (z, s, r), that is equal
to one on a subset of of D7) and goes to zero smoothly

near the boundary. The cutoff can be calculated as a
product of cutoffs for the source and receiver domains.

A Kirchhoff imaging formula is given by

flz) = Z/ds dr AGD (g, r, s)
1Y)

y (anlfa'(i)fo'(j)

d)(r,5, 7 (z,1,5)). (3)
Here H is the Hilbert transform with respect to time,
and o is the KMAH index, to account for the phase
shift that occurs when the rays go through a caustic. The
prestack imaging formulas are obtained by restricting the
integral over (s,7) to a constant value of the image param-
eter. The latter can be viewed as a function e of (z,a, 3),
and hence as a multivalued function e )(m, s,r), defined
on D7), Restricting the integral (3) by inserting a -
function we obtain the following form for the prestack
imaging formula

fe(z) = Z/ds dr A% (g, s, 7)5(e — e (2, 5,7))
i,

G)_ (@

x (H""'7° d)(s,r, T (z,5,7)), (4)

The parameter e can be either offset of angle. For the
offset case we have

e(i’j)(m, s,r)=r-—as.

In the angle case e (z,s,r) = 69 (x,s,7) as defined
in (2).

To discretize (4), a numerical approximation to the 4-
function was chosen based on adjoint interpolation. If
the center eg of the §-function is between two grid points
€1, €2, then there is contribution proportional to |eq — é2|
at €1, and similarly with 1, 2 interchanged.

Example

In this section we study a simple example where the
medium contains a horizontal reflector below a low ve-
locity lens that leads to multipathing. This example is
very similar to the one used in (Nolan and Symes, 1996).
The lens is located at 1 km below the origin of the co-
ordinate system. Coordinates are written (z1,2); x1 is
the horizontal coordinate, x2 the vertical coordinate. The
velocity is given by

(@1, 22) =1 — 0.4 2FFTE =D e (5)
We assume a horizontal reflector is located at z2 = 2
km. Background velocity and reflector are displayed in
Figure 2, together with some of the rays and wave fronts.
A triplication occurs below the lens.

A synthetic dataset was computed for this medium using
a finite difference wave equation solver. The data con-
sists of 401 shotrecords for s with interval 0.01 km from
—2 to 2 km. For each shot the response was recorder
at 401 receivers also with interval 0.01 km, from —2 to
2 km. No absorbing boundary conditions where applied,
but the domain was chosen so large that reflections from
the boundary came in significantly later, with different
move-out, so that there is no significant effect on the im-
ages. A shot record for s = 0.5 km is given in Figure 3.
A stacked image, obtained by applying (3) to the data,
is given in Figure 4. The reflector is indeed recovered at
the correct position, as predicted by (Ten Kroode et al.,
1998).

Imaging equations that describe the position of artifacts
in the image were derived in (Stolk, 2001). These equa-
tions predict the position of coherent reflectivity in the
image, from the positions of wave fronts in the data, and
the normals to the wave fronts. Given a point (s,r,t)
in acquisition space, and slownesses (ps, p:), the positions
(z,e) of both correct and artifact contributions can be de-
termined. Solutions can be found numerically by rewrit-
ing the ray and imaging equations in a suitable form and
applying a numerical ordinary differential equation solver
and a root finding procedure that can be found in stan-
dard mathematical software (we used the software pack-
age Mathematica”™). Tn (Stolk, 2001) we applied this
procedure to the model just described. Here we com-
pare these kinematic predictions with images produced
by Kirchhoff migration of the synthetic data.

The offset case: We have computed ray pairs that lead
to contributions to the image for a reflecting element at
z = (0.303, 2), with opening angle 28.05 degree (chosen so
that the offset was equal to 1). The kinematic computa-
tion predicts that the reflected energy in the data due to
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this reflecting element gives rise to three image elements,
one correct and two artifacts. A constant offset image for
offset h = 1 km, with part of the ray pairs overlaid, shows
that indeed this energy is imaged at the reflection points
of the different ray pairs, see Figure 5.

Using the imaging equations we predicted the positions of
wave fronts in the offset CIG for horizontal position z; =
0.3 km, in effect a map migration. These are presented
as the light gray lines in Figure 6. The graylevel plot in
Figure 6 represents the Kirchhoff migrated CIG. All the
events predicted from the kinematics are clearly visible.

The angle case: In the angle case we did similar cal-
culations. An angle domain Kirchhoff migration CIG is
given in Figure 7, together with the predictions obtained
by solving the imaging equations. Again all the predicted
kinematic artifacts can be observed in the Kirchhoff mi-
gration.

Discussion

The examples presented here and in (Nolan and Symes,
1996) establish that image artifacts, i.e.  coherent
reflectivity not corresponding to actual reflectors, can
exist in prestack image volumes for Kirchhoff prestack
depth migration in the common source, offset and angle
domains, for sufficiently strongly refracting velocity
models. In particular, formulation of Kirchhoff migration
in the common angle domain does not suppress imaging
artifacts, contrary to assertions in the literature (Xu et
al., 2001).

Perhaps the most striking conclusion to be drawn from
our analysis is that image gathers produced by Kirchhoff
migration are not in general flat in the presence of strong
refraction, even when the velocity model is precisely cor-
rect, because of the presence of prestack imaging arti-
facts. Since flattening image gathers is the underlying
mechanism of practical velocity analysis, our examples
cast doubt on the possibility of successful determination
of velocity models with strong lateral heterogeneity via
velocity analysis based on Kirchhoff migration.

Very recently, some evidence has emerged that wave equa-
tion common angle migration (Prucha et al., 1999; Sava
et al., 2001) does not generate prestack image artifacts
at correct migration velocity (Stolk and De Hoop, 2001).
One could perhaps understand this effect heuristically by
noting that the wave equation imaging condition is en-
tirely local, and thus avoids the global confusion of en-
ergy paths suffered by Kirchhoff migration - see (Bevc,
1997) for discussion of a similar concept. In any case, the
implications of the results in (Stolk and De Hoop, 2001)
for velocity analysis remain to be explored.
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Fig. 2: Background medium, reflector and rays
2.4

receiver position

Fig. 5: Image from offset 1 km. Rays corresponding to the
reflection produced by a reflecting element at = = (0.303,2)
are shown. All three of these ray pairs satisfy the imaging
condition. Only one of them images at the correct location.
The other two contribute to artifact formation.
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Fig. 3: Shot record at s = —0.5 km.
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Fig. 6: Offset domain CIG, z1 = 0.3 km, kinematic prediction
and Kirchhoff migration.

angle (rad)
0.0 0.4 0.8 1.2
16

2.4

Fig. 4: Stacked image

Fig. 7: Angle domain CIG, z1 = 0.3 km, kinematic prediction
and Kirchhoff migration.



