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Summary 
 
Residual-curvature analysis of prestack depth migrated 
common image gathers (CIGs) is widely used for updating 
the whole velocity model in areas of complex geology. The 
velocity is estimated by maximizing the flatness of these 
events in either the time domain or the depth domain. In 
order to perform conventional reflection tomography, the 
reflector positions are needed and are either guessed or 
estimated. Therefore, the backprojection operator is often 
incorrectly calculated because of the incorrectly estimated 
reflector positions. This process may slow down the 
convergence of inversion. Van Trier (1990) points out that, 
instead of using reflectors in the depth domain as the 
reference events, we may use the reference events in the 
time domain. Based on the principle that ray tracing 
(modeling) undoes migration, these reference events in the 
time domain are the true events and don’t change with 
velocity variations. Hence if we can convert the depth 
deviations into adequate time deviations, there is no need to 
use reflector positions in the inversion. With this in mind, 
we use specular ray tracing to obtain all the necessary 
information. The true reflector positions need not be 
guessed or estimated: they follow naturally from the 
migration results. Instead, the backprojection operator 
incorporates reflector movement and ray-bending effects. A 
simple synthetic example shows that the algorithm 
discussed holds promise. 
 
Introduction 
 
In the past several years, many papers on seismic 
tomography have been published. In general, velocity 
updating by tomography includes several key elements.  
These are: a model description (cell, grid, tesselation, 
spline, etc.); data perturbations and the relationship 
between the data perturbations and the velocity 
perturbations (which builds the so-called backprojection 
operator); and the algebraic solver that is used to obtain the 
approximate solution. Thus described, the entire process 
seems pretty simple. Unlike seismic migration, however, 
tomographic methods are not yet mature. Many factors, 
such as non-uniqueness and uncertainty, conspire to 
degrade our results. Model description and inversion 
routines also play important roles in the final tomographic 
solution. In this abstract, we limit our discussion to the 
problems of migration velocity analysis (Stork, 1992) and 
the generation of backprojection operators. 
 
Migration velocity analysis basically uses the flatness of 
the CIG as a criterion for velocity quality. If the migration 
velocity model is not correct, the same reflector will appear 

at different depth positions for different constant-offset 
sections. In principle, one needs to determine the 
differences between the true and migrated depths of the 
reflector at each offset and surface location, and convert 
these depth perturbations into velocity perturbations in the 
inversion method. 
 
To obtain the depth deviation, most tomographic methods 
need reflector positions for finding the depth perturbation. 
Unfortunately, the true position of a reflector is not known, 
so depth perturbations from it can not be accurately 
determined. To solve this problem, one may try to invert 
for an additional unknown apart from velocity, namely the 
depths of interfaces in the velocity model (Stork 1992). But 
the velocity-depth ambiguity can lead to instabilities and 
poor convergence in the optimization. Van Trier (1990) 
chose not to parameterize both velocity and depth in the 
optimization. Instead, he obtained the reflector depths from 
the migrated data, and used them only in computing the 
backprojection operator. 
 
According to the kinematic condition of zero-time imaging, 
as long as the same velocity is used in both modeling and 
migration, ray trace modeling (demigration) will undo the 
migration result. In the near-offset sections, migrated 
reflectors can be demigrated and used as a reference for 
modeled events in the farther-offset sections. The reflector 
perturbations are thus better determined in the time domain 
than they are in the depth domains. Since the reference 
events are the true seismic events and do not move  as 
velocity changes, calculating the backprojection operator 
will focus only on the offset behavior of the events, which 
provides the most detailed velocity variations.  
 
This cascaded process (migration and demigration) is 
similar to Deregowski loop (Deregowski, 1990) but it is 
more accurate because it is not limited to lateral velocity 
homogeneity, small offset, and horizontal reflectors. 
 
The velocity analysis is formulated as an iterative 
optimization process, in which the objective is to minimize 
discrepancies between migrated events in the different 
constant-offset sections. The true reflector positions need 
not be guessed or estimated: they follow naturally from the 
migration results. Instead, the backprojection operator 
incorporates reflector movement and ray-bending effects. 
 
Algorithm 
 
The lack of flatness of an event across different offsets on a 
depth migrated CIG indicates that the velocity is in error. 
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           ( ) mDCBmAt ∆+=∆=∆ o ,                             (4) At each fixed surface location r , the depth perturbation 
can be represented as where DCBA o+=  is the operator, which will be used 

to backproject the time deviation into velocity perturbation. 
Operator  describes, for a fixed reflection point, how the 
modeled traveltime changes with velocity variations. The 
operator  is a composite operator, which denotes a 
cascaded process that, if the velocity changes, it will 
influence the reflector movement and the reflector 
movement will influence the modeled traveltimes. The 
operator  is the directional 

derivative of a two-way traveltime t  along direction l . It 
describes how the modeled traveltime changes as the 
reflection point position changes. Using the zero-time 
imaging condition (Wang et al., 1995), we can show that 
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where  is the depth of the true reflection point below 

the surface location r, and is the corresponding migrated 
depth for the reflector with the given surface location, 
offset (and azimuth in 3D) and migration velocity. If the 
true depth of the reflector is known, we can use it in the 
inversion. But in practice, except near well locations, we 
don’t know the true location of the reflector. This makes 
depth perturbations can not be accurately determined. Some 
have suggested the use of a floating datum (Woodward et 
al., 1998; Bednar, 1999) as a partial solution to this 
problem. The idea behind floating datum is that since we 
don’t know the true reflector position, we can remove the 
effect of reflector by subtracting the near-offset deviation 
from the far-offset deviation.  
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Similarly, is a directional derivative of 
a two-way traveltime with respect to direction l .  Operator 

 determines how far a reflector will move along the 
direction l  in response to a velocity change. 
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Here we follow Van Trier (1990) to give an alternative 
solution. In his thesis, Van Trier suggests using a true zero-
offset reflection event as a reference, and modeling zero-
offset events for the migrated reflectors in each constant-
offset section. Since the modeled events in the zero-offset 
section correspond to true zero-offset events, this approach 
would seem to provide an ideal first step to a full solution 
of the inverse problem. Unfortunately, however, we don’t 
have true zero-offset data.  To make Van Trier’s method 
feasible, we need to use another, usually near-offset as the 
reference event.   

 
Traveltimes in the reference event section correspond to the 
true near-offset times in the data, and are not affected by 
changes in the model, which means that for a reference 
event, operator A  should be zero, i.e., the effect of 
operator  will be cancelled by the effect of  composite 
operator .  This can be easily seen by substituting 
operators  , , and  into equation (4). 
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The deviation between the true two-way traveltime t  

( ) for the reference near offset and the modeled 

two-way traveltime  ( = ) for an arbitrary offset 
can be described as  
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Given a direction , each term in the above equations can 
be obtained from specular ray tracing. Two popular options 
for the direction  are obtained by assuming either that the 
reflector moves along surface normal direction , or that 
the reflector moves vertically.  These alternatives generate 
the following equations: 
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 Because the velocity is in error, the RHS of equation (2) 
will be not zero. Therefore, an optimization is applied to 
minimize the traveltime residual curvatures along offset. To 
find the correct backprojection operator, the gradient 
calculation must honor the velocity dependence at the 
image point. By assuming that the reflection point is 
moving in direction , with the first-order Taylor 
expansion, we can obtain the following equation from 
equation (2): 
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where  and  represent the angles of  incidence rays 
from the source and from the receiver with the 

h
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rθ
z  axis at 

the image point, respectively.   is the half-opening angle 
between the incidence rays from the source and the receiver 
at the image point. v is velocity at the image point. 
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We re-write equation (3) symbolically as: 
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To summarize, the main procedure involves: 
 
• First, a common-offset depth migration is performed, 

and the locally coherent events should be picked, either 
automatically or manually, for reflection points and dips. 

 
• Second, choose a near-offset reflection point as a 

reference point, and shoot the specular rays using offset 
and azimuth of this reference section. This will give t . 0

 
• Third, for all other individual reflection points related to 

the above reference point, we again perform specular ray 
tracing, using the offset and azimuth of the reference 
point, to mimic near-offset modeling. This will generate 
the traveltime t , hence the traveltime deviation in 
equation (2). We can also obtain the corresponding 
derivatives, which are the operators  and . 
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• Fourth, for the same reflection points, we perform a 

specular ray tracing again, this time using the current 
offset and azimuth of this reflection point instead of 
those of the reference point. This process is used to 
obtain the operator . D

 
• Fifth, compose the backprojection operator A  

according to equation (4). 
 
• Sixth, solve the linear system of equations. 
 
Example 
 
In this section, we compare our results with two kinds of 
floating-datum methods in the depth domain. For 
simplicity, we choose a two-layer model with a horizontal 
reflector. . The reflection points are in the middle interval 
of the grids at a depth of 2050m. The length of the model is 
128*100m, and its depth is 30*100m The correct velocity 
is 1000m/s, and the migration velocity is chosen as 
1200m/s. The depth residuals are computed with the 
analytical formula. Figure 1 shows the results of these three  
kinds of inversion. In Figure 1, the left column shows how 
to find the backprojection operators for given reference 
point B and individual reflection point A in  a far-offset 
section.  The right column shows the relative errors of 
velocity corresponding to different algorithms shown at the 
left.  The top plot is our result. Note that the reference near-
offset ray and the arbitrary ray start from the same 
reflection point. The middle plot is the result from one kind 
of the floating-datum inversion. Here the rays come from 
different reflection points.  In these two methods, the 

specular rays are found by shooting from their own 
individual reflection points and are both mathematically 
correct. The bottom plot shows the result of a kind of 
technique, in which the specular rays are found by shooting 
not from the individual far-offset reflection point but from 
the reference point. This will introduce errors as shown in 
the right figure of the bottom plot. The synthetic test shows 
that, for  this example, our time domain method has more 
useful velocity coverage and is more stable than floating-
datum methods.  The total number of iterations is 10, 000 
using a sparse matrix LSQR solver without any 
regularization. 
                                                              
Conclusions 
 
Residual tomographic inversion is an effective tool for 
estimation of velocity structure Proper formulation of the 
method produces an accurate and rapidly converging 
algorithm. 
 
Reference 
 
Bednar, J.B., L. Vinson, and Jeff Thorson, 1999,  Residual 
tomographic updating: 69th  Ann. Internat. Mtg., Soc. Expl. 
Geophys., Expanded Abstracts, 1251—1254. 
 
Deregowski, S. M., 1990, Common offset migrations and 
velocity analysis: First break,  8, 224-234. 
 
Stork, C., 1992, Reflection tomography in the postmigrated 
domain: Geophysics, 57, 680-692. 
 
Van Trer, J., 1990, Tomographic determination of 
structural velocities from depth-migrated seismic data: 
Ph.D thesis, Stanford University. 
 
Wang, B. K. Pann, and R.A. Meek, 1995, Macro velocity 
model estimation through model-based globally-optimized 
residual-curvature analysis: 65th Ann. Internat. Mtg., Soc. 
Expl. Geophys., Expanded Abstracts, 1084—1087. 
 
Woodward, M., Farmer, P., Nichols, D., and Charles, S., 
1999, Automated 3D tomographic velocity analysis of 
residual moveout in prestack depth migrated common 
image point gathers: 69th  Ann. Internat. Mtg., Soc. Expl. 
Geophys., Expanded Abstracts. 
 
Acknowledgment 
 
We would like to thank Dr. Sam Gray for his kind review 
of the paper. 



Residual-curvature velocity update 

                            

 
 

B

A
              

 
   

B

A
               

 
 

B

A
                     

 

 

Figure 1: Different patterns of ray modeling for calculating the backprojection operator (left column) and their corresponding absolute 
values of relative errors of velocity from the inversion (right column).  In the left column, letter A  represents the migrated point from an 
arbitrary given far-offset section;  B is a reference point in a zero-offset section. The dotted lines correspond to constant-offset rays and the 
dashed-lines are the reference rays (here is zero-offset rays).  In the velocity error figures,  the whiter the gray scale, the smaller  the 
relative error. The top plot is the result of our algorithm.  


