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ABSTRACT

The Timestepping Simulation for Optimization (”TSOpt”) library provides an in-
terface for time-stepping simulation. It packages a simulator together with its deriva-
tives (”sensitivities”) and adjoint derivatives with respect to simulation parameters,
and uses the aggregate to define a Standard Vector Library Operator subclass.

INTRODUCTION

Control, design, and inverse problems seek to optimize a functional of the solution
of a system of differential equations with respect to parameters of the system. The
parameters may enter through coefficients, initial conditions, boundary conditions, or a
combination of these. The functional may depend on the solution throuthout its domain
of definition,or just on a subset. For all of these possibilities, the key feature of such
problems is the implicit dependence of the objective on the parameters: computing its
value requires solution of a system of equations, i.e. a simulation. Therefore we will refer to
all such problems as simulation driven optimization. In control theory, the solution of the
differential equation system models the state of the physical system, so that the solution
is known as the state, the differential equations as the state equation(s). The parameter
vector in such problems is the control, which is to be adjusted so that cost functional of the
state achieves an extreme value. I will use this control-derived terminology throughout,
for all classes of problems under discussion.

Simulation driven optimization is a constrained optimization problem, in which the
state equation constrains the control and state vectors on which the objective or cost
depends. Both feasible point (”black box”, ”nested analysis and design (NAND)”) and
infeasible point (”all at once”, ”simultaneous analysis and design (SAND)”) approaches
have attractions and have been applied to various problems. The relative advantages of
the two approaches are poorly understood at present.
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For time-dependent problems, the (discretized) system of differential equations is block
triangular (explicit schemes) or can be regarded as formally block triangular (implicit
schemes supplied with a step solver), with the blocks corresponding to time levels. Solu-
tion of these block triangular systems is called time stepping. Time stepping introduces a
commonality amongst time dependent simulators: they share a certain abstract structure,
which is available for exploitation in constructing software libraries for time dependent
simulation driven optimization.

Depending on the nature of the (continuum) problem, it may be reasonable to approach
the solution of a simulation-driven optimization problem by means of Newton’s method
or one of its many approximations. These descent methods require computation of the
gradient of the cost function, and possibly its Hessian, in addition to the cost function
value. These computations may share intermediate results, and efficiency demands that
this sharing be realized in the implementation. Moreover the code for these computations
must be packaged so that coupling to an optimization algorithm is possible.

The software package Timestepping Simulation for Optimization (”TSOpt”) described
in this report provides an object-oriented approach to the construction of efficient simulation-
driven optimization applications. The advantages of object orientation for coupling simu-
lation and optimization are well-established and have been discussed at length elsewhere
(?; ?; ?; ?). TSOpt packages the simulator and its various derivatives in a single ob-
ject, and provides a natural interface to optimization algorithms via the Standard Vector
Library.

The Standard Vector Library

This library (”SVL” in the sequel) is the software framework for TSOpt . SVL is a col-
lection of C++ base classes which realize in code the principal mathematical components
of calculus in Hilbert space, the natural conceptual realm of Newton-based optimization.
The base classes of SVL are

• calculus classes: Space (vector spaces), Vector (vector), Functional (scalar valued
function), Operator (vector valued function), LinearOp (linear operator), and

• data management classes: DataContainer (abstract data container), LocalDataContainer
(concrete data container), FunctionObject (encapsulated function, evaluated by
DataContainer objects).

For detailed descriptions of these classes and the design of SVL, see (?).

SVL is written in ISO C++. All base classes are templated on a scalar type (the
field over which related vector spaces are defined), which we shall mostly suppress in the
following discussion.

Design goals for TSOpt

• Define a generic SVL::Operator interface for use in the NAND approach to time
domain simulation driven optimization.
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The cost functions of these problems depend on the the solution of the state equations or
on a part or sampling of the solution. The dependence can be realized in various ways, and
TSOpt does not encompass this aspect of the problem formulation. SVL provides a num-
ber of tools for creating functions of vectors. These tools produce the required derivatives
as well, and the resulting SVL::Functional objects interface directly with optimization
algorithms implemented in SVL. The ability to couple disparate codes through the sharing
of abstract types is the chief justification for an object-oriented approach to simulation-
driven optimization. TSOpt merely produces the vector output of the simulator from
which the cost function can be computed via the construction of an SVL::Functional.
That is, TSOpt presents the simulator as a vector valued function of the control (vector).
SVL realizes such vector valued functions in its Operator interface. SVL::Operators
combine functions and their derivatives in one object with persistent state, which permits
the sharing of intermediate data necessary for efficiency in many computations.

The sheer size of time-dependent simulations - for a 3D problem, the full time his-
tory of the state may have dimension 1014 or more - argues for the NAND approach, in
which only a few time levels of the state need be stored. As computer memory capacity
increases, more problems will come in range of the SAND approach, of course. TSOpt is
aimed primarily at NAND, but many of its components are useful in constructing SAND
applications as well.

• factor the simulation problem so that the inputs to the TSOpt Operator construc-
tion come as close as possible to representing independent concepts, which can be
implementeded independently.

In the current version of TSOpt, the ingredients of a simulation are (i) the static or single
time step description of the state and control data structures, (ii) the dynamic specifica-
tion, i.e. the ”right hand side” of the (continuum) state equation, (iii) the time stepping
rule, which creates the discrete time step out of the RHS of the state equation, and (iv)
a time keeping device, storing and providing access to start time, end time, steps, etc.
Through the use of abstract SVL types to represent the data structures shared amongst
these ingredients, the code that implements them is kept as independent, and therefore
as reusable, as possible. For example, time stepping rules (Euler, Runge-Kutta,...) are
formulated in a manner independent of other problem details, so that they may be used
across a wide variety of projects.

• provide tools to test the validity of the inputs, and a contract that the Operator

code is valid if its inputs are.

The inputs to the Operator constructor are relatively simple, and validating their con-
structions is much simpler than validating the entire timestepping code ab initio. There-
fore the capability envisioned in this goal should be a considerable help in rapid construc-
tion of applications.
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The subtlety here is in the meaning of ”valid”. The essential task of TSOpt is to pro-
vide an accurate simulator, together with accurate approximations to associated objects
(derivatives, adjoint derivatives, etc.). The accuracy of the simulator is not an aspect of
validity of the TSOpt code per se, but the consistency of the various components certainly
is. Tests for consistency are straightforward in some cases, not in others. For example, as
we point out below, adaptive gridding sometimes prevents a straightforward relationship
between the discrete simulator and its derivative simulator - that is, the latter does not
produce the derivative of the former, to floating point accuracy. When the derivative
relationship does hold on the discrete level, it is possible to test code validity directly, as
we shall show in the final section of this report. Otherwise, the tests must of necessity be
less direct.

• achieve efficiency equivalent to that of the best procedural implementations on
”large” problems.

This criterion actually confers considerable freedom on the design. It means that a judi-
cious amount of virtual function call overhead can be absorbed in other arithmetic costs,
so long as the number of virtual function calls is roughly independent of the size of the
state and control at a single time level. A previous incarnation of TSOpt (REF to FDTD
paper) has already shown that this goal is eminently achievable.

• accommodate adaptive time steps and adaptive spatial gridding for PDEs.

This is essential: adaptivity is enabling technology in many applications, making sim-
ulations feasible which would otherwise be entirely out of reach, in some cases for the
foreseeable future.

One perhaps surprising consequence is that the natural precise relations between the
simulation operator and its derivatives are necessarily lost on the discrete level! That is,
the ”derivative” (with respect to control parameters) provided by TSOpt is generally only
an approximation to the derivative of the operator provided by TSOpt - provided that the
latter has a derivative! The only contract implicit in a correct TSOpt implementation is
that the various discrete objects are convergent approximations to the underlying contin-
uum objects. [This approach goes under the unfortunate name ”optimize then discretize”
in the recent control literature.] The unavoidable nature of this imprecision does not seem
to be widely appreciated, so we present some very simple examples in an appendix which
illustrates this point.

In some instances it is possible to preserve the continuum relations amongst the dis-
crete attributes of a TSOpt Operator object. I strongly recommend taking advantage of
any such opportunity, perhaps by means of automatic differentiation (REFS). The task of
code verification is much easier if the derivative is actually the derivative on the discrete
level, similarly for the adjoint, etc.

• permit internal representation of state, control to differ from external representation
appearing in Operator interface, and to be computed as part of evaluation.
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Adaptive gridding makes this feature essential.

• incorporate an optimal solution to the checkpointing problem of the adjoint state
method.

If the evolution of the system is time reversible (on both discrete and continuum levels),
the most efficient implementation of the adjoint state method (the natural computation
of the adjoint derivative) simply steps the reference state backward in time. For time irre-
versible dynamics (the vast majority of problems), TSOpt uses an optimal checkpointing
algorithm (REFS TO GRIEWANK). This is also enabling technology, as it renders feasible
many adjoint computations whose complexity would otherwise make them inaccessible.

• accommodate one step and multistep methods in the same framework, also both im-
plicit methods and implicit formulations of differential equations, as are for instance
natural in finite element discretizations of time-dependent PDEs. .

There is no reason not to do so. We conjecture that a modest extension of TSOpt could
treat differential-algebraic equations as well.

• allow for multicomponent vector representation of control

In order to do the least damage to natural external representations of control data struc-
tures, TSOpt accommodates SVL::ProductSpace realizations of control vector spaces.
These are natural in those (common) instances in which the control is made up of a
number of a priori independent components. For example, control problems based on
linear elasticity may use as controls the (up to 21) Hooke tensor components, or useful
combinations of these (eg. Poisson’s ratio), and these may be treated as independent data
structures combined in a Cartesian product via the SVL::ProductSpace interface.

• accommodate multisimulations, in which output of simulator is multicomponent
vector, each component of which is itself the output of a simulation.

Many inverse problems (for instance those occurring in seismology, meteorology, and
oceanography) seek to adjust parameters to fit simultaneously the results of many separate
experiments. Each experiment can be simulated; the data is to be fit by the aggregate of
many simulation outputs. Such multisimulations could be modeled by creating suitable
block-structured operator types. Instead, the current version of TSOpt permits the output
(data, state) vector have product structure, each factor of which represents a separate
experiment. This implicit block structure is consistent with the implementation of the
TSOpt Operator by means of SVL::FunctionObjects, which is the next and final design
goal.

• implement using FunctionObject interface
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SVL::FunctionObject is the interface for virtually all interaction with data in SVL appli-
cations. SVL::Vector objects for example do not expose their data - indeed they cannot,
as it is likely to be stored out of core or distributed around a network. However they
can evaluate SVL::FunctionObjects. To interact with the data of an SVL::Vector in
virtually any way, it is necessary to write a SVL::FunctionObject to do the actual inter-
acting. The innards of the TSOpt Operator class are like any other SVL application in
this respect.

SVL::Vectors own SVL::DataContainers and delegate evaluation of SVL::FunctionObjects
to them. A vector representing a product data structure owns a SVL::ProductDataContainer.
The evaluation methods of SVL::ProductDataContainer loop over the factor SVL::DataContainers,
evaluating the input SVL::FunctionObject on each factor in turn. This built-in looping
over factors automatically achieves the last two mentioned design goals, so long as TSOpt
Operators are implemented using SVL::FunctionObjects.

However there is a deeper reason for this design decision. SVL was designed with
component oriented programming in mind: that is, construction of applications out of
components, separate processes likely running on distinct platforms. In particular, com-
ponents involving only part of the core SVL interface set may include arbitrary software
features which are accessible to the rest of SVL through a component framework without
needing to pervade SVL. FunctionObject and DataContainer are the only two class
subtrees in SVL intended to interact directly with the communications layer in a compo-
nent framework (REF HALA’S THESIS, TONY’S REPORT). It is possible to design a
parallel SVL::DataContainer using MPI (REF), for example, and include it in a com-
ponent process. Then SVL applications can take advantage of SPMD parallelism, for
example, without requiring any MPI ”awareness” on the part of the ”naturally serial”
SVL calculus classes (Vector, Space, Functional,...), or in any algorithms formulated in
terms of the calculus classes, via a component framework and appropriately structured
FunctionObjects. Since parallelism will be critically important to many TSOpt appli-
cations, implementing TSOpt objects in terms of FunctionObjects seems completely
natural.

Relation to the FDTD Package

TSOpt is a direct descendent of the FDTD package described in (REF), which relied
on a predecessor library of SVL, the Hilbert Class Library (”HCL”), for its basic con-
structs. FDTD shared a number of features with TSOpt. It used object orientation to
organize the interface between simulator and optimization algorithms. Experiments com-
paring FDTD to raw Fortran implementations showed that object orientation exacted a
negligible performance penalty. Also FDTD illustrated the structured use of automatic
differentiation (”AD”) to produce applications beyond the reach of contemporary AD
tools, by focussing the use of AD on those code components unique to each application,
”hardwiring” the common computations. TSOpt also permits this structured use of AD,
as illustrated in the final section of this report.

FDTD differs from TSOpt in making no provision for adaptation, or for any distinction
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between internal and internal representation of state and control. Thus FDTD applica-
tions require the user to work directly with (indeed, to supply) the internal details of the
simulation. Also FDTD was implemented using the HCL calculus classes throughout.
Therefore access to paralellism through component (client-server) design (or in any other
way, for that matter) required that virtually all HCL classes be modified to optionally
interact with a communications layer (REF SHANNONS THESIS). In contrast, as noted
above this interaction is confined to a few classes in SVL (REF HALA’S THESIS).

Contents of this report

The next section establishes some necessary notation by recounting the mathematical
structure of simulation-driven optimization problems. The following section describes
basic implementation concepts of TSOpt. Some of these involve types that do not figure
in the user interface, and which the user may not actually see except by accident. However
understanding these internal implementation decisions clarifies the rationale behind the
public structure of the operator interface.

Section 4 describes the types appearing in the public operator interface. These are the
types which users will extend to generate new TSOpt applications, and their description
is given at appropriate length. Section 5 presents the operator interface: once the user
understands the constituent types, this interface should be transparent. One of the two
examples presented in Section 6 is a simple ODE control problem, which has been used
throughout the preceding sectionsto illustrate various features of the TSOpt design. The
other example discussed in Section 6 is more substantial: a 2D model seismic inverse
problem, exercising most of TSOpt’s design. Timings using this example justify our
assertion that the performance penalty paid for TSOpt’s object orientation is negligible,
provided the problem is of even modest size.

MATHEMATICAL FRAMEWORK

Many control, inverse, and optimal design problems for time-dependent physics take
the form

mind,c J [d, c] (1)

where the control c(t) and the observations or data d(t) are constrained by the state
equation

du

dt
(t) = H(u(t), c(t), t), 0 ≤ t ≤ T ; H, u ≡ 0, t < 0 (2)

and the sampling rule
d(t) = S(t)u(t), 0 ≤ t ≤ T. (3)

in which S(t) is a linear operator valued function of t.

Note that this formulation includes nonzero initial conditions, either dependent on or
independent of the control c: to achieve u(0) = u0 (or u0[c]), define

H[u(t), c(t), t] = u0δ(t) + H̄[u(t), c(t), t]
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with H̄ continuous on 0 ≤ t ≤ T . In this way the formalism (2) accomodates the case in
which the control is the initial state u(0) of the system, for example.

We regard J as a function on a product D×C of Hilbert spaces, with D = L2([0, T ], D, dµ)
for another Hilbert space D and a positive measure µ, and set

〈d1, d2〉D =
∫ T

0
dµ(t) 〈d1(t), d2(t)〉D

We don’t specify the details of the C inner product 〈c1, c2〉C; it will be necessary to
compute adjoints of mappings between C and D, and we assume that the user can arrange
to do so.

Thie problem posed by equations (1), (2), and (3) is not the most general possible
form of the type considered. For example, implicit state equations of the form

F

(
du

dt
, u, c, t

)
= 0

are natural in some applications, either as expressions of physical principle or as a result
of (semi-) discretization. However it covers many examples, including those presented
in detail in this paper. The generalizations necessary to accomodate broader classes of
problems are quite straightforward, and will be mentioned in due course.

We assume that all components of this description are sufficiently regular in that the
various constructions described here make sense, without giving precise hypotheses. The
computations to follow are therefore formal.

The control c may or may not actually be time-dependent. The formalism accommo-
dates the case (Mayer form control problems, for example) in which the data is a function
of the state at only one sample time, say the final time t = T , by setting dµ(t) = δ(t−T )dt
(of course, the implementation of S in that case would need only produce output at or
near t = T ). In many problems of this type, the cost or objective function J is an integral
over the time range of the simulation, the integrand at time t depending on d(t) and c(t).

The state and sampling equations (2) and (3), regarded as hard constraints, express
d as a function F [c] of c. Following terminology common in the literature on inverse
problems, we call this function the forward map. Expressing d as a function of c within
J [d, c] gives the reduced, or NAND, form of the problem:

minc J red[c], J red[c] = J [F [c], c] (4)

Newton’s method and its relatives for NAND require that the gradient of J red, and
possibly its Hessian, be made available to an optimization algorithm. These are easily
expressed in terms of the derivatives of J and F and their adjoints.

〈∇cJ
red[c], δc〉 = DdJ [F [c], c]DcF [c]δc + DcJ [F [c], c]δc

= 〈∇dJ [F [c], c], DcF [c]δc〉D + 〈∇cJ [F [c], c], δc〉C (5)
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whence
∇cJ

red[c] = DcF [c]∗∇dJ [F [c], c] +∇cJ [F [c], c] (6)

The derivative of F is (at least formally)

DcF [c]δc = Sδu (7)

where δu is the solution of another evolution problem, sometimes called the sensitivity
equations:

dδu

dt
(t) = DuH[u(t), c(t), t]δu(t) + DcH[u(t), c(t), t]δc(t), δu(0) ≡ 0, t < 0 (8)

To proceed we must choose a Hilbert structure for the state: we will assume that
u ∈ C1([0, T ], U) in which U is another Hilbert space representing some assumed regularity
of the state. Given d ∈ D, define the adjoint state field w ∈ C1([0, T ], U) as the solution
of the backwards - in - time evolution problem

dw

dt
(t) = −DuH[u(t), c(t), t]∗w(t)− S(t)∗d(t), w ≡ 0 for t > T (9)

in which S is regarded as a map from U to D and its adjoint defined accordingly. Then

〈d,DF [c]δc〉D =
∫ T

0
dµ(t) 〈d(t), S(t)δu〉D

= −
∫ T

0
dt 〈

(
dw

dt
(t) + DuH[u(t), c(t), t]∗w(t)

)
, δu(t)〉U

=
∫ T

0
dt 〈w(t),

dδu

dt
−DuH[u(t), c(t), t]δu〉U

=
∫ T

0
dt 〈w(t), DcH[u(t), c(t), t]δc(t)〉U

From this last equation we can identify

DF [c]∗d = DcH[u, c, ·]∗w (10)

in which DcH[...]∗ is the adjoint of DcH[...].

A more explicit prescription for compuing ∇J red requires a more explicit description
of C. For examples of such explicit descriptions, see the final section. The gist of the
above computations is that ∇J red can be computed for the price of a single additional
solution of an evolution problem, the adjoint state equation (9), of the same type as the
state equation (2), plus a few more straightforward computations.

Discretization in time (and space, for PDE problems) replaces the state equation (2)
and its relatives with time stepping equations:

un+1 = un + ∆tnHn(un, cn), un = 0, n < 0 (11)
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Here un ' u(tn), etc. The function H characterizes the time stepping rule: for example,
Hn(u, c) = H(u, c, tn) for the forward Euler method. The method (11) is (formally) one
step, but of course multistep methods can be disguised in this form, so (11) is a perfectly
general basis for the design of TSOpt.

The sampling operator S is also discretized to depend on n. The discrete sampling
rule becomes

d← d + Sn(un) (12)

i.e. there is no requirement that tn be a time represented in the output data. Instead, Sn

injects the current value of the state into the output data in whatever way is appropriate.

There is no presumption that ∆tn = tn+1 − tn should be independent of n, and
indeed the time step may depend on un, i.e. be adaptive. The same goes for the spatial
discretization, i.e. the structure of un may vary with n. In that case the time stepping
rule (11) must be augmented with a discretization-changing operator.

The sensitivity equations (8) have a similar discrete representation

δun+1 = δun + ∆tn[Hn
u(un, cn)δun +Hn

c (un, cn)δcn], δun = 0, n < 0 (13)

A very important point: the functions Hu,Hc should define a consistent time stepping
method for the sensitivity equations (8), of the same order of accuracy as the reference
method (11), but are not necessarily in general the partial derivatives of H. Similarly,
TSOpt permits the time steps {tn} appearing in the derivative method (13) to differ from
those which appear in the reference method (11). This freedom is absolutely essential for
adaptive time stepping, as the examples in Appendix A demonstrate. As mentioned in
the introduction, a side effect is that the computed discrete derivative δun may differ by a
discretization error from the actual derivative of un with respect to the control parameters.

On the other hand, it is also true that when Hu,Hc are actually partial derivative of
H, and when the time steps used for (11) and (13) are the same, then δu is actually the
derivative of u on the discrete level as well. Precision in this relationship makes it rather
easier to verify the implementation than in the general case. Automatic differentiation
tools can make the construction of such precise discrete derivatives relatively straightfor-
ward and reliable. The examples presented in the last section satisfy this constraint, and
will illustrate its value.

Finally, the discrete approximation to the adjoint map DF [c]∗, and eventually the
discretized objective gradient, is computed via a discrete version of the adjoint state
equation

wn = wn+1 + ∆tnHa,n
u (un, cn)wn+1 + (Sn)∗d, wn = 0, n > N (14)

(N being the time index corresponding to t = T ).

Then the discrete approximation to DF [c]∗d is∑
n

Ha,n
c wn (15)

which can be accumulated during the backwards-in-time stepping of (14).
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Again, if the approximate adjoint derivatives Ha
u,Ha

c are actually the adjoints of the
partial derivatives of H, and the two discrete evolutions share time steps, then the com-
puted adjoint (approximation to DF [c]∗) will actually be the adjoint of the computed
DF [c], and this is relatively straightforward to check. Automatic differentiation tools can
also be a great help in constructing machine precision adjoints.

SIMULATOR STRUCTURE

The design criteria set out in the introduction imply a number of constraints on the
implementation of TSOpt. Most of these implementation details are invisible to the user of
TSOpt: a later section describes the Operator interface, which is the only public interface
with which the user need be concerned. However this interface involves several additional
abstract types, the principal simulator components described in the next section, and
the rationale for their structures follows from various internal design decisions. This
section therefore overviews a number of objects with which the user will ordinarily not
be directly concerned, as they are completely implemented in the TSOpt package and
hidden behind the Operator interface. A general understanding of these internals will
inform the discussion of principal simulator components in the next section.

Unary Interface: The SVL FunctionObject classes are divided by number of inputs:
unary, binary,... Unary FunctionObjects have an evaluation method with one argu-
ment, for example. However both the input (control) and output (data) of a TSOpt
application may have arbitrary numbers of components. Each component is realized
as a DataContainer object. The components may themselves divide into components,
and this hierarchy may in principle have arbitrary depth. The atomic or indivisible
DataContainer in SVL is the LocalDataContainer, which provides a simple interface
to the actual data (access methods for the length and pointer of a scalar array). The
inputs of a FunctionObject are LocalDataContainers. So the TSOpt FunctionObject
interface must accommodate arbitrary numbers of input LocalDataContainers, with the
actual number determined at run time.

No modification of the evaluation method signature conveniently accommodates ar-
bitrary, run-time determined numbers of arguments. The only available alternative in
C++ is to evaluate the FunctionObject many times, and use the persistent state prop-
erty of FunctionObjects to retain input information between evaluations. Therefore
the top-level internal interface of TSOpt consists of unary FunctionObjects TSApplyFO,
TSApplyDerFO, TSApplyAdjFO,... which implement the simulation, its derivative, its ad-
joint derivative,...

The Operator interface for TSOpt is concrete (fully implemented). Its critical methods
evaluate appropriate FunctionObjects on its input and output vectors:

void apply(Vector & x, Vector & y) {

...

TSApplyFO f(...);
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x.eval(f);

y.eval(f);

}

void applyDer(Vector & x, Vector & dx, Vector & dy) {

...

TSApplyDerFO df(...);

x.eval(df);

dx.eval(df);

dy.eval(df);

}

...

[I have left out boilerplate sanity checking details and comments, as will be the case with
all code fragments presented in this report.]

Each invocation of DataContainer::eval is an implicit loop over components. Even-
tually the call tree descends to the LocalDataContainer level, at which point control
passes to the TSApply...::operator() method body. Sanity checking of inputs must be
handled largely at runtime in this method.

The arguments of the TSApply... constructors are the described in the next section,
and are common to all applications.

Adaptation TSOpt permits adaptation of internal details of the simulation - both the
number and times of time steps and structure of the state vector itself (i.e. mesh or grid,
for PDEs) may be computed on construction of the constituent FunctionObjects, or
even updated during the simulation run. Moreover, internal structure may differ between
simulation, derivative simulation, adjoint derivative simulation,..., though in most cases
it will be necessary to enable communication between these structures, as is clear from
inspecting the sensitivity equations (8) for example.

One immediate consequence of this design decision is that the external representation
of the control and state data - the data structures holding this information in the ambient
computational environment in which the Operator interface of TSOpt will be accessed - is
very unlikely to be the same as the internal representation, with which the time stepping
computation works. An intrinsic part of the static description of the state and control
data structures will therefore be some means to translate between internal and external
representations.

Decisions about keeping or updating time steps are part of the role of a time stepping
method. The user-defined principal simulator components, to be described in the next
section, will encapsulate the logic of these decisions, and record the selected time steps
when necessary. The same is true of adaptive spatial grids, i.e. mutable structure of the
internal state representation.
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Multisimulation The version of TSOpt discussed in this report carries out multiple
simulations with the same control input (and a sequence of other simulation parame-
ters) within the scope of each TSApply... method. As is evident in the code fragments
presented above, each component of the input (control) and output (state, data) is vis-
ited precisely once, and this visit (the eval method) is the only communication with the
TSApply... objects. That is, each simulation must have its additional parameters con-
veyed by visiting the output data components corresponding to that simulation. Also, since
each component is visited exactly once, the first output component of every simulation
must carry all auxiliary information necessary to initialize that simulation.

The inclusion of auxiliary simulation information in output data structures may be
novel in some applications. Certainly many simulation codes have been written which
produce only an array of scalars, or a flat file containing such an array, as output. How-
ever, such ”raw” output does not contain within it enough information to interpret it
properly, so represents inadequate data encapsulation. Seismic reflection is an example
of a technology in which it has been normal for decades to structure data so that all
information necessary for interpretation and processing is integral to the data structure.
TSOpt assumes that output data structures are well encapsulated in this sense.

SIMULATOR INPUTS

The essential ingredients of a time stepping simulator are:

• the static definition of state and control, allowing for the possibility that the internal
representation of these objects may be different from their external representation;

• the simulation dynamics, i.e. the evolution law of the system, embodied in the
right-hand side of the state equation (2);

• a time discretization rule or step;

• some means of monitoring the time during the simulation, determining its start and
end, storing the record of time steps if that is necessary, etc.

The four classes discussed in the paragraphs to follow encompass these four functions.

Statics

The static aspect of the simulation needs to define the external representation of
state and control, their internal representations, and mechanisms for translation between
these representations. To offer a compatibility guarantee, TSOpt presents these items as
attributes of a single Statics object. The Statics interface is the most complicated of
the four TSOpt components, and will typically require the most time and effort.

The static or time-independent description of the system defines the state and control
data. Various components of TSOpt use these definitions, which implicitly also determine
the types of state and control perturbations which appear in the derivative and adjoint
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derivative computations, and possibly workspace for step computations and checkpoints
for adjoint state loops. The static description also entails the relation between the internal
objects just mentioned and their external or archival representation - for simulators of
more than minimal complexity, the form in which the data of the control is supplied to
the simulation will not be the same as that required by the time stepping computations.
For example, PDE problems require spatial discretization, and the meshes used in the
computation may be computed as a function of the data, or even adapted during the
course of the simulation, and therefore cannot be externally specified.

Similarly, control and inverse problem formulations seldom require the entire time
history of the state, sampled precisely at the times used in the simulation. Instead,
such applications usually require samples at times determined by the process using the
simulator (the final time, or uniformly sampled times when the internal time step is
adaptively chosen and nonuniform, or...). Moreover commonly only a function of the
state is required - for example, one coordinate of a multicomponent state, or sampling of
the state along a spatial surface for a PDE, or...

The uses of internal and external representations are quite different. The external rep-
resentation naturally interacts with the Operator interface which the simulator presents
to its user applications. Spaces are therefore the natural specification of the external
state and control types. [Consistent with their appearance in inverse problems, I will use
data as an alias for the externalized aspect of the state.]

Since the user application will not allocate internal state and control objects, the
Statics object must provide a means to do so. Since these internal details of the sim-
ulation will not be needed, or even visible, outside the simulator, the Statics object
exposes factory objects which return dynamically allocated state and control objects on
demand. In the current version of TSOpt, these ModelBuilder objects have build...

methods which return control of LocalDataContainer instances. These methods are used
throughout TSOpt wherever state or control workspace is required.

Translation between internal and external representation takes the form of sampling in
many cases. Since the internal data takes LocalDataContainer form, a FunctionObject

interface is natural for the state and control sampling operators.

The mandate to accommodate multisimulations brings up a subtle point: the sampler
FunctionObjects themselves are not the natural attributes of a Statics object - instead,
the ability to produce a sampler FunctionObject on demand, initialized by information
passed as part of the external control and/or data state, is the natural attribute. Ac-
cordingly, the Statics interface provides access to SamplerFactory objects; these have
appropriate initialization interfaces.

The public part of the Statics interface therefore looks like this:

/** return reference to control space (external representation of control data) */

virtual Space<Scalar> & getControlSpace() = 0;

/** return reference to state space (external representation of state data) */

virtual Space<Scalar> & getDataSpace() = 0;

14



/** return reference to factory, which builds control and state instances

(i.e. internal representations) */

virtual ModelBuilder<Scalar> & getModelBuilder() = 0;

/** return reference to factory, which builds translators between internal

and external control representations */

virtual SamplerFactory<Scalar> & getControlSamplerFactory() = 0;

/** return reference to factory, which builds translators between internal

and external state representations */

virtual SamplerFactory<Scalar> & getDataSamplerFactory() = 0;

The Space interface is part of core SVL and is described elsewhere [REF!].

ModelBuilder is a factory with two products:

/** dynamically allocate control LDC */

virtual LocalDataContainer<Scalar> * buildControl() = 0;

/** dynamically allocate state LDC */

virtual LocalDataContainer<Scalar> * buildState() = 0;

The allocation is dynamic, and storage returned by the build... methods must be man-
aged by the calling objects. Note that the return type may be any sort of LocalDataContainer,
including whatever auxiliary information is useful.

For ODEs, i.e. simulators whose state and control data structures are simple arrays
with no auxiliary data beyond length, we have implemented a simple RnModelBuilder

class whose build... methods return RnArrays (the SVL simple array class). The base
class header file model.H includes the RnModelBuilder definition. The object data con-
sists of the lengths of the control and state vectors respectively: the principal constructor
signature is

RnModelBuilder(int dimu, int dimc);

in which dimu represents the dimension of the state space, dimc the dimension of the
control space.

SamplerFactory is also a factory with two products, and its public interface is almost
as simple:

/** use auxliary data of LDC to initialize internal data..*/

virtual void initialize(LocalDataContainer<Scalar> & d) = 0;

/** dynamically allocate forward sampler FO */

virtual FwdSampler<Scalar> * buildFwd() = 0;

/** dynamically allocate adjoint sampler FO */

virtual AdjSampler<Scalar> * buildAdj() = 0;
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SamplerFactory::initialize is an opportunity to pass any data not proper to the
SamplerFactory itself, i.e. to all component simulations of a multisimulation. It is of
course moot (and can be implemented as a no-op) when only one simulation is to be
performed.

Since the simulation function object (see below) visits the data of each simulation only
once, it is essential that any auxiliary information needed to (re)initialize a SamplerFactory
be present in the first component of the data of each simulation. Note that this is not an
issue if the data for each simulation has only one component, as is often the case.

FwdSampler and AdjSampler are subclasses of UnaryFunctionObject, so inherit its
evaluation interface. The ”direction” implicit in the names is internal → external: thus,
FwdSampler objects map internal data to external data, and AdjSampler objects do the
opposite, as in equations (12) and (14). The names also imply that these function objects
implement a linear operator adjoint pair: indeed it is part of the current framework, as
mentioned in the preceding section, that sampling in TSOpt is linear. Note that core
SVL provides a LinearOpFO class which constructs a LinearOp from a pair of function
objects such as the sampler function objects discussed here. This construction makes for
example testing of the adjoint relationship (built into LinearOp) immediately available.

The complete public interface of the base FwdSampler class is

/** Provides access to sample time */

virtual void setTime(Scalar t) = 0;

/** number of LDCs onto which sample data is to be written */

virtual int getNumberOfData() = 0;

/** write method - output of data onto (archival) LDCs,

index 0 <= i < getNumberOfData() */

virtual void save(LocalDataContainer<Scalar> & d, int i) = 0;

/** (inherited from UnaryFunctionObject) */

virtual void operator()(LocalDataContainer<Scalar> & x) = 0;

The interface for AdjSampler differs only in having a load method in place of save, with
otherwise the same signature.

Sampling is typically time-dependent - for example, Mayer form control problems, in
which only the final value of the state figures into the cost, will use a sampler which is a
no-op unless the time is equal to the final simulation time (up to a tolerance which would
need to be a data member of the FwdSampler subclass). The setTime method permits a
calling unit to pass the time to the FwdSampler, typically by copying the argument into
a Scalar buffer.

The external representation of the state may be a product vector, whose data container
decomposes (eventually) into some number of local data containers. This information
about structure needs to be available for proper functioning of the sampler users (other
components of TSOpt). Providing this count is the role of getNumberOfData. For sim-
ple simulations, in which both control and data are packaged as LocalDataContainers
externally (i.e. as LocalVectors), the return value of getNumberOfData is 1.
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[In principle this information is implicit in the Space manifestation of the external
representations, so should be extracted from there, rather than inserted in the sampler
classes by hand. A modification for the future...].

A typical implementation of these classes will create a buffer in which to store either
the internal representation, or the external representation, or something intermediate, as
is convenient. For example, time series sampling would naturally be accomplished by
storing the time samples as they are created, at the sample rate chosen internally by the
simulator, then when the simulation is done interpolating onto the externally specified
time grid. The save method is the locus of this final step: its argument i is the index
of a LocalDataContainer component, referenced by the argument x, in the external
representation. A call to save causes the proper data from the buffer to be written to x.
This step may involve simple copying, interpolating, or more complex (linear) operations.

The load method of an AdjSampler works analogously.

Finally, the operator() evaluation method performs the dual operation: for FwdSamplers,
it samples its argument LocalDataContainer, which represents the internal state, into
the buffer. For a time snapshot, this might well simply copy the internal state into a
replica of itself. The design of the buffer, and the partition of work between operator()

and save(...), will depend on efficiency considerations for each sampler design.

A simple example of this setup is the RnSnapSampler family, which assumes that the
data structures of internal and external representations are simple arrays (represented by
RnArray objects), and are the same. The factory class takes a dimension specification, a
sample time, and a tolerance for fitting the sample time. The sampler objects own a buffer
of the specified size. When the time (set from some external source by setTime) coincides
with the sample time to within the specified tolerance, RnSnapFwdSampler::operator()
copies its argument onto the buffer, i.e. takes a ”snapshot” of the input field, hence the
name. The RnSnapFwdSampler::save method copies the buffer onto its argument. The
RnSnapAdjSampler methods do exactly the opposite copies. The getNumberOfData()

method returns 1.

The class definitions of the RnSnapSampler family are included in the base class header
file sample.H.

A Simple Statics Class: For test purposes, and because it may be genuinely useful
for some ODE control problems, we have combined the simple Rn... examples described
in the preceding paragraphs.

The RnStatics class combines RnSpaces for domain and range, an RnModelBuilder,
and RnSnapSamplerFactorys for control and data. Typical use will be to set the sample
time of the control sampling to the beginning of the simulation; since the control sampler
is invoked as part of initialization, this has the effect of storing the control parameters in
their internal representation at the beginning of the simulation. Note that the use of the
RnSnapSampler classes to input control data implies that the control is input at exactly
one time, i.e. is autonomous. Similarly, the use of the same sampler classes for data
implies that the state is sampled at only one time, typically the end of the simulation.
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The main constructor signature is

RnStatics(int dimu, int dimc, Scalar tc, Scalar tu, Scalar dt);

The state and control dimensions dimu and dimc pass to the constructors of the
RnSpaces, the RnModelBuilder, and the RnSnapSamplerFactorys, to which the RnStatics
objects provide access, ensuring that these are compatible. The times tc and tu pass to
the sampler for the control and state respectively, and dt (which would typically be the
step in a fixed-step simulation, as the name implies) to both as sample time tolerance.

Dynamics

Dynamics objects represent the RHS of the dynamical system (2), i.e. the function H,
together with derivatives and adjoints. Although the discrete RHS H is not identical to
the continuum RHS H (except for the forward Euler method), H is always built up out
of evaluations of H (or of a discretization of H, for PDEs).

The methods implementing these functions need to be called once per time step, so
efficiency is a big issue. While the author may include as much sanity checking as seems
reasonable, the cost can be steep for small problems. I expect that in most examples
method bodies will be written in near-procedural fashion (in fact, Dynamics objects will
contain the interface to Fortran or C procedures in many implementations). On the other
hand the arguments are LocalDataContainers, so that checking compatibility between
arguments is certainly possible, which would not be the case if the method interfaces
were written in procedural style. More compatibility checking makes sense whenever the
arithmetic of the RHS computation overwhelms the cost of the checks, i.e. for ”large”
applications.

The public interface of the Dynamics type is

virtual void rhs(LocalDataContainer<Scalar> & u,

LocalDataContainer<Scalar> & c,

LocalDataContainer<Scalar> & up,

Scalar a, Scalar t) = 0;

virtual void drhs(LocalDataContainer<Scalar> & du,

LocalDataContainer<Scalar> & dc,

LocalDataContainer<Scalar> & dup,

LocalDataContainer<Scalar> & u,

LocalDataContainer<Scalar> & c,

LocalDataContainer<Scalar> & up,

Scalar a, Scalar t) = 0;

virtual void arhs(LocalDataContainer<Scalar> & du,

LocalDataContainer<Scalar> & dc,

LocalDataContainer<Scalar> & dup,
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LocalDataContainer<Scalar> & u,

LocalDataContainer<Scalar> & c,

Scalar a, Scalar t) = 0;

virtual void reset(LocalDataContainer<Scalar> & u,

LocalDataContainer<Scalar> & c) = 0;

The first method implements
up = u + aH(u, c, t)

The inclusion of the (arbitrary) scale factor a permits some economies of storage and data
access in implementations of many common time steps, as will be discussed below.

As explained in the section on mathematical formulation, the RHS function H includes
the initial data for the problem as well. The initial data may depend on, or even be, the
control. In this computational interface for computing the RHS, initialization requires
recognition that the time is the initial time to within a tolerance. Both intiial time and
tolerance must also be supplied as obect data for the Dynamics subclass. In view of the
many different possible approaches to coding the initialization, the code is left to the user.

The second method implements

up = u + aH(u, c, t) (16)

δup = δu + a[DuH(u, c, t)δu + DcH(u, c, t)δc] (17)

i.e. the dynamics for the state and sensitivity equations are combined. This structure
permits a useful amount of loop fusion, and corresponds to the natural mode of several
Automatic Differentiation packages (REF).

The third method implements the ”pure” adjoint computation (no reference state
update)

δu = δup + aDuH(u, c, t)∗δup (18)

δc = δc + aDcH(u, c, t)∗δup (19)

Note that the ”+=” form of the rule for δc automatically accomodates both time-dependent
and time-independent control perturbations δc.

The reference state u also needs to be stepped backwards in time during the adjoint
state computation, but TSOpt provides methods to do this independently of the Dynamics
type. These checkpointing methods, of which we implement one due to Griewank (REF),
require that the initial data be available. Since there is no guarantee that u and up in the
arguments of Dynamics::rhs necessarily refer to different objects, it may not be possible
to access the initial state outside of Dynamics with the aid of rhs alone. Therefore we
provide a reset method which does this initialization. We have also provided (abstract)
subclasses DynamicsISEC and DynamicsISEZ which give simple implementations of reset
when initial state equals control and zero respectively.
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A Simple Dynamics Example Simple test examples provided with the TSOpt package
make use of the testdyn1 dynamics class, which corresponds to a system of uncoupled
logistic equations. Its rhs method is displayed here in all its glory:

virtual void rhs(LocalDataContainer<double> & u,

LocalDataContainer<double> & c,

LocalDataContainer<double> & up,

double a, double t) {

int n = u.getSize();

double * uc = u.getData();

if (abs(tinit-t) < tol) {

for (int i=0;i<n;i++) {

uc[i] = c.getData()[i];

up.getData()[i] = uc[i] + a*(1.0 - uc[i]*uc[i]);

}

}

else {

for (int i=0;i<n;i++) {

up.getData()[i] = uc[i] + a*(1.0 - uc[i]*uc[i]);

}

}

}

It is clear from this example that the target applications for TSOpt are necessarily large
systems: for small systems, the virtual function call overhead will be significant. Also
note the absence of sanity checking: as would be the case with raw Fortran or C arrays,
we simply presume that the loop indices always make sense. If this makes you nervous,
you could add

if (n != up.getSize()) {

// throw exception

...

}

after the first line of the method body, and if n is large the additional cost would be
negligible.

Of course the overhead could be reduced further by passing low-level arrays, i.e. point-
ers, instead of LocalDataContainers, and in this example nothing would be lost - except
that the loop limits would have to be passed as well, cluttering up the interface and
making it less general. The simpler C-style interface would not, however, cleanly ac-
comodate grid or finite element mesh information, for example. This inability to pass
auxiliary information needed in dynamics calculations in a type-safe, generic manner in
Fortran or C was one of the main motivators towards OO design, at least for the first
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author. Of course, such auxliary information can easily be encapsulated in appropriate
LocalDataContainers.

The derivative and adjoint derivative methods (drhs and arhs) are coded similarly.
Since the class has no private data, construction is by default, with trivial copy construc-
tor.

The reset is defined in the DynamicsISEC, which stands for ”Dynamics with Initial
State Equals Control”. This definition of initialization - that the control is simply the
initial state of the system - is useful enough that we have encapsulated it in an abstract
subclass, which implements the initialization methods. To derive a concrete Dynamics

subclass from DynamicsISEC, the user need only implement the right hand side method
and its derivative and adjoint derivative. We have also supplied a class DynamicsISEZ, for
problems in which the initial state is the zero vector. Both of these specialized Dynamics

classes are defined in the header file step.H.

Multistep Methods, Implicit Equations: the Extended Interface Multistep
methods require more extensive combinations of prior and current state data than is
conveniently available through the Dynamics interface described above. While implemen-
tation of multistep methods using Dynamics::rhse and derivatives is possible, it requires
temporary storage and multiple passes through data. This is not an obstacle for small
systems, and indeed all procedural packages for ODE solution are implemented in essen-
tially this way (REFS: DIFSUB, DVODE,...). However for large systems the penalty is
unacceptable.

The extended interface Dynamics::rhse implements the combination

up = b0u0 + bu + aH(u, c, t) (20)

Here u0 is another state vector. The signature of this method is

virtual void rhse(LocalDataContainer<Scalar> & u0,

LocalDataContainer<Scalar> & u,

LocalDataContainer<Scalar> & c,

LocalDataContainer<Scalar> & up,

Scalar a, Scalar b0, Scalar b, Scalar t)

For linear multistep methods, u0 will be a linear combination of steps and possibly
RHS evaluations. Simple examples of two-step methods are leapfrog (b0 = 1, b = 0,
a = 2∆t) and leapfrog for second order systems (b0 = −1, b = 2, and a = ∆t2), in
both cases u0 being the state at the previous time step. Higher order multistep methods
require a preliminary calculation to store a combination of state and RHS data in u0,
and therefore slightly more data access than a low-level procedural implementation. A
properly constructed ”helper” function object can store the appropriate combination of
data into u0 in a single pass.
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The formulation of a multistep method also presumes a multistep state construction.
This is provided by the MultiStepModel class, which is a collects together MultiStepLDCs,
local data containers with a dynamic indexing operators permitting cyclic index permu-
tation, hence storage of new steps over old, no-longer-needed steps with no data motion.
These are in turn built out of ProductLocalDataContainer, a core SVL class which pro-
vides a local data container with a Cartesian product structure. The MultiStepModelBuilder
object which the user must develop (or borrow) to implement a multistep method in
TSOpt returns dynamically allocated ProductLocalDataContainers. One additional
complication in devising an appropriate Statics class to enable multistep treatment of
a problem is the necessity of devising an appropriate ProductLocalDataContainer type.
The example section describes one such construction.

The interfaces Dynamics::drhse and Dynamics::arhse give the derivative and adjoint
derivative of the output [up, u] in terms of the input [u, u0, c]. Note that for proper linking
to AD software it is necessary to treat u as both input and output, even though it is left
unchanged by the computation (20). The signatures are appropriate generalizations of
those for Dynamics::rhse.

The extended interface, with one further additional method, also enables the formu-
lation of implicit methods for both implicit and explicit DEs. Consider for example the
general implicit differential equation

F

(
du

dt
, u, c, t

)
= 0

One version of the Crank-Nicholson scheme (which boils down to the trapezoidal rule for
explicit equations) for this system is

F (

(
un+1 − un

∆t

)
, un+1, tn+1) + F (

(
un+1 − un

∆t

)
, un, tn) = 0

Applying Newton’s method to this system, along with another approximation of the same
order as already made, gives an iteration for a sequence {un+1

ν = un+1
ν−1 + ∆tδun

ν}:[
Du′F

(
un+1

ν−1 − un

∆t
, un+1

ν−1, t
n+1

)
+ Du′F
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∆t
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)

+∆tDuF

(
un+1

ν−1 − un

∆t
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ν−1, t
n+1

)]
δun

ν

= −
[
F

(
un+1

ν−1 − un

∆t
, un+1

ν−1, t
n+1

)
+ F

(
un+1

ν−1 − un

∆t
, un, tn

)]
(21)

The RHS of this system is already available for explicit systems, in the extended interface:
indeed, in that case the residual, of which the RHS of (21) is a combination of two values,
is

F (u′, u, c, t) = u′ − f(u, c, t) = up
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where up is the left-hand side of (20) with b0 = a = 1, b = 0. This observation suggests the
appropriate generalization of the computation (20): for implicit (and explicit!) systems,
it computes the residual, or more properly the scaled quantity

up = aF

(
b0

a
u0, u, c, t

)
+ bu (22)

Note that the interface Dynamics::rhse requires no change whatsoever to accommodate
this reinterpretation, which is compatible with its previously assigned meaning for explicit
systems.

The additional interface required by the Newton-Crank-Nicholson scheme is a linear
solver. It is conventional to use a frozen Newton approach to the LHS of (21) in which
the second argument of the partial derivatives is held fixed at the previous state value un,
and tn+1 is replaced by tn. With these replacements, the operator on the left hand side
of (21) becomes

2Du′F

(
un+1

ν−1 − un

∆t
, un, tn

)
+ ∆tDuF

(
un+1

ν−1 − un

∆t
, un, tn

)
(23)

which is of the form
Du′F (u′, u, t) + αDuF (u′, u, t)

This computation is represented by the Dynamics::drhssol interface:

virtual void drhssol(LocalDataContainer u0,

LocalDataContainer u,

LocalDataContainer up,

Scalar alpha, Scalar t)

{ ... }

This method is implemented in the base class to throw an exception (as are all essential
methods of the Dynamics class). A concrete child class which is to be used in an implicit
solver will need to provide an implementation.

An important example of this construction, which arises for example in finite element
semi-discretization of parabolic evolution equations, is

F (u′, u, c, t) = Mu′ −K(u, c, t)

in which the mass matrix M is independent of t. The usual Crank-Nicholson scheme for
this system is

M
un+1 − un

∆t
=

1

2
(K(un+1, c, tn+1) + K(un, c, tn))

The ”frozen Newton” system for this implicit scheme is[
M − ∆t

2
DuK(un, c, tn)

]
δun

ν = −M(un+1
ν−1 − un) +

∆t

2

[
K(un+1

ν−1, c, t
n+1) + K(un, c, t)

]
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which is exactly the scheme (21) with the frozen operator replacement (23) for this case.
An implementation of Dynamics::drhssol should solve systems with matrix

M + αDuK(u, c, t)

and the right hand side is assembled via two calls to Dynamics::rhse.

Computation of derivatives and adjoints follows the same pattern as for explicit
schemes and explicit ODEs, and we omit the derivations and results. Note that in general
it is not practical, or necessary, to enforce a strict derivative relationship between the
computations implemented by Dynamics::rhse and Dynamics::drhse. For example, it
is much simpler, and perfectly adequate, to apply the Crank-Nicholson method directly
to the sensitivity equations (8), even though the resulting linear map differs from the
derivative of map implemented under Dynamics::rhse by a discretization error.

Step

TSOpt encapsulates time step¡ping methods in the Step type. The base class is
abstract; its public interface is

virtual void fwdStep(Model<Scalar> & mdl,

Dynamics<Scalar> & dyn,

Clock<Scalar> & clk) = 0;

virtual void derStep(Model<Scalar> & mdl,

Dynamics<Scalar> & dyn,

Clock<Scalar> & clk) = 0;

virtual void adjStep(Model<Scalar> & mdl,

Dynamics<Scalar> & dyn,

Clock<Scalar> & clk) = 0;

The first type in these argument lists is Model, which has not yet been discussed. Model
is a concrete type, which uses a ModelBuilder to allocate storage for state and control as
needed. [That is, the user does not need to implement Model - it is already implemented
in the TSOpt package! The user only needs to supply a ModelBuilder, accessed through
a Statics interface as described above.] Model is another internal handle class, similar
to SVL::Vector and others in SVL applications, which manages the storage which it
allocates on an as-needed basis, providing access by reference. The part of its public
interface which concerns the user is

virtual LocalDataContainer<Scalar> & getState();

virtual LocalDataContainer<Scalar> & getControl();

virtual LocalDataContainer<Scalar> & getStatePert();

virtual LocalDataContainer<Scalar> & getControlPert();
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Note that these methods are all implemented; the purpose of each is well-described by its
name.

Time steps should be written independently of the internal details of the state, and of
the method of computation of the RHS. This class permits you to do so.

Euler: We have supplied an implementation of the Euler forward method in the class
EulerStep. The header file step.H also defines EulerStepOnePass, which assumes that
you can immediately overwrite the state component-by-component. Here for example is
the guts of the Euler implementation (EulerStep):

template<class Scalar>

class EulerStep: public Step<Scalar> {

...

virtual void fwdStep(Model<Scalar> & mdl,

Dynamics<Scalar> & dyn,

Clock<Scalar> & clk) {

dyn.rhs(mdl.getState(),mdl.getControl(),

mdl.getWorkState(upind),

clk.getTime(),

clk.getTimeStep());

cp(mdl.getState(), mdl.getWorkState(upind));

...

}

...

}

upind is a fixed index into the workspace array for states, maintained by the Model object
mdl; cp is an instance of the SVLCopy function object. Both are private data managed by
the EulerStep object.

Code for the derivative and adjoint derivative steps is similar.

The one-pass version of EulerStep avoids the copy at the end and the extra workspace
by using mdl.getState() in place of mdl.getWorkState(upind) in the call to dyn.rhs.
This is correct if the dynamics computation is arrange so as to use each component of the
input state vector only once, and only in the statement in which it is updated.

Runge-Kutta methods: The header file step.H also contains an implementation of
several Runge-Kutta methods. For example, the fwdStep method body for the ”improved
Euler” second order R-K method (based on the midpoint rule) is

dyn.rhs(mdl.getState(),mdl.getControl(),mdl.getWorkState(kind),

0.5*clk.getTimeStep(),clk.getTime());

dyn.rhs(mdl.getWorkState(kind),mdl.getControl(),mdl.getWorkState(upind),
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clk.getTimeStep(),clk.getTime()+0.5*clk.getTimeStep());

cp(mdl.getState(), mdl.getWorkState(upind));

As for Euler, there is a ”one pass” version that avoids the final copy, for use when the
dependencies within the dynamics permit.

Note that one fewer work vector is needed than would be the case if this R-K method
were written in standard fashion. The ”scaled update” form of the Dynamics methods
enables this storage economy.

Multistep Methods: The subclasses MSModelBuilder and MSModel provide access
to implicit product structures superimposed on the LocalDataContainer classes. The
subvectors defined by the MSModel classes come with compatibility contracts, so obviate
the need for compatibility checking in the multistep constructions which use them.

Multistep methods are commonly implemented via a cyclic storage approach. That
is, an m-step method stores successive time levels {un−m+1, ..., un} along with a set of
pointers to the time levels. The step overwrites un+1 on the storage for un−m+1, and
cyclically permutes the pointer set. A Newton divided difference organization of multistep
methods is also possible. In this approach the time levels of the solution are expressed
implicitly via divided differences. This approach avoids having to keep track of a set of
pointers into the data; the current time level always resides in the same storage. The
price is a small amount of additional arithmetic and some loads and stores.

For example, a leapfrog method for (2) would normally be formulated by storing time
steps ua, ub with a = 0 or 1 and b = 1 − a; ua represents the previous time step, ub the
current step. The method (assuming constant time step ∆t and time-independent control
c for simplicity) then reads

ua ← ua + 2∆tH(ub, c, t)

a ↔ b

t ← t + ∆t

If we store instead u = u1 and v = (u1 − u0)/∆t, with u1 always representing the current
time step and u0 the previous one, then leapfrog amounts to

v ← 2H(u, c, t)− v

u ← u + ∆tv

t ← t + ∆t

and no index switching is required. Moreover the method becomes formally Euler’s
method with an appropriate definition of the discrete dynamics H.

Clock

The final ingredient in composing a TSOpt application is an object which keeps track
of time. In a blinding flash of inspiration, it came to us that such a thing should be called
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a Clock. The methods useful in formulating Step classes are Clock::getTime() and
Clock::getTimeStep, which have already appeared in the discussion of Step examples.
Adaptive stepping methods will require in addition Clock::setTimeStep. The Clock

interface provides a large number of other functions which are of use in various parts of
TSOpt, but the three just listed are likely to be the only ones needed in user code.

Constant time step clocks all work the same way, and are realized in the concrete class
ConstClock. Its main constructor has the signature

ConstClock(Scalar tbeg, Scalar tend,Scalar dt);

the three arguments to which are the start time, end time, and time step. The time step
is adjusted internally so that the time interval tend - tbeg is an integral multiple of dt.

The definition of ConstClock is included in the clock.H header file.

OPERATOR INTERFACE

The only specialized part of the public interface is the main constructor:

TSOp(Statics<Scalar> & stat,

Dynamics<Scalar> & dyn,

Step<Scalar> & step,

Clock<Scalar> & clock,

int _itmax=10000, int _verbose=0);

The types of the first four arguments were discussed in detail in the last section. The
last two arguments bound the maximum number of time steps permitted and regulate the
terminal output: at the moment, any nonzero value of verbose causes a one-line message
to be printed identifying each time step, plus other messages at major events during the
simulation. Eventually other more refined levels of verbosity may be introduced.

In other ways the TSOOp type is used exactly as is any other SVL::Operator class,
i.e. primarily through formation of OperatorEvaluation objects. These objects pair an
Operator with a Vector, and provide access to the value of the operator at the vector,
the value of its derivative, etc., i.e. its jet at a point in its domain. SVL provides no
access to these values through the Operator class itself. They are accessible only an
OperatorEvaluation object, which guarantees the consistency of the various derivatives
(i.e. they are all evaluated at the same point) and provides shared workspace for interme-
diate results. See HCLREF and SVLREF for further discussion of the evaluation object
concept, which was pioneered by HCL.

EXAMPLES

A simple ODE example: The first example combines the simple Rn... classes of
simulator components explained in the preceding paragraphs to solve a system of logistics
equations. The construction of the TSOpt Operator object is straightforward:
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RnStatics<double> stat(nu,nc,tbeg,tend,dt); // Statics

testdyn1 dyn; // Dynamics

EulerStepOnePass<double> step; // Step

ConstClock<double> clock(tbeg,tend,dt); // Clock

TSOp<double> op(stat,dyn,step,clock); // Operator

This code is preceded by code defining the number of state variables nu, the number of
control variables nc ( = nu in this example), the start and end times of the simulation
tbeg and tend, and the time step dt.

A simple application of this construction is a check of the correctness of the derivative
code. Since no adaptivity is involved in this example, the discrete derivative should
actually be the derivative of the discrete simulation. This check is implemented in the
base class, in the Operator::checkDeriv method. A point in the domain and a tangent
vector are required. In the example source testop.C (in the testsrc directory), these are
conveniently constructed using standard SVL devices for setting and randomizing vector
components:

Vector<double> c(op.getDomain()); // point in domain ( = entire vector space)

Vector<double> dc(op.getDomain()); // tangent vector

SVLAssignConst<double> ac(0.5) // set components = 0.5

SVLRandomize<double> rnd; // random initialization

c.eval.(ac);

dc.eval(rnd);

op.checkDeriv(c,dc,cout);

The function of checkDeriv is to predict the directional derivative of op at c in the
direction dc using the derivative (linear) operator produced by the evaluation at c, then
compare with centered divided differences for a variety of steps. The number and value
of steps is optionally controlled by overriding defaults in the call to checkDeriv; see the
documentation of Operator for details. We have used the defaults in this example.

The output of checkDeriv (in this case on the standard output stream cout) includes
an estimate for the rate of convergence of the centered divided differences to the predicted
directional derivative, displayed as the last column of output. If all is well, the rate should
approach 2. For the example constructed here, a typical run yields

Operator::checkDeriv

h norm of diff. rel. error convg. rate

1 0.005644841897628637 0.04080948932243057 ---------------

0.9 0.004534169622781486 0.03277986348647303 2.079528803190778

0.8 0.003556026416183277 0.02570835901045809 2.063100301946764

0.7 0.00270492266847007 0.01955528866154824 2.04873488807581
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0.6 0.001976187466984309 0.01428688398994783 2.036344290497774

0.5 0.001365898694310513 0.009874789974968731 2.025854085324662

0.4 0.0008708259677460666 0.006295652504874876 2.017202482258696

0.3 0.0004883847729693176 0.003530786785383984 2.010339331108153

0.2 0.0002166005087637713 0.001565917400333482 2.005225270160088

0.1 5.408146312150648e-05 0.0003909829419183031 2.001830543660448

which suggests that the derivative was constructed correctly.

The validity contract goal mentioned in the introductory section should guarantee that
this test will succeed, provided that the inputs to the TSOp constructor pass their own
validity tests. The tests implemented in TSOp are:

• check that the forward and adjoint samplers provided by the Statics object are in
fact an adjoint pair;

• check that the Dynamics object defines a consistent 1-jet, i.e. a function together
with accurate approximations to its derivatives (this test will be extended to the
2-jet when we get around to adding Hessians);

• check that Step::fwdStep, Step::derStep, and Step::adjStep stand in the ap-
propriate relations.

Since we expect Step child classes such as EulerStep to be reused over many applica-
tions, the third test will typically not be necessary in constructing a particular application.
The first test pertains to the data structures used in the internal and external represen-
tations of state and control, which will typically also amortize over many applications.
So we expect quality assurance for most TSOpt applications will focus on validity of the
Dynamics object code. In effect, if the right hand side, hence a single step, is coded
properly, then the entire construction will work. This test is quite simple in the absence
of adaptivity: an auxiliary class defined in TSOpt wraps the Dynamics object in an ap-
propriate Operator interface, for which the SVL base classes provide an appropriate set
of tests (like Operator::checkDeriv).

Adaptive methods can only be checked in fixed discretization mode, which complicates
the writing of wrapper classes for testing purposes.
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