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Velocity Analysis vs. Waveform Inversion
(Migration) velocity analysis (“MVA”): update velocity parameters
to satisfy semblance condition in migrated image volume (usually:
flat gathers)

I visual/interactive techniques, from 60’s on

I often converted to traveltime inversion (reflection tomography
in data, migrated domains) via automated picking ⇒
optimization of traveltime misfit

I backproject traveltime residuals

Waveform inversion (“WI”): update model parameters to match
predicted to observed data (parameters include p-wave velocity,
but maybe much more)

I optimization of waveform misfit directly, without intermediate
reduction to traveltime

I backproject waveform residuals



Velocity Analysis vs. Waveform Inversion

Bottom line: today,

I MVA integrated into industrial processing

I WI still academic - intrinsic obstacles

Agenda for this course:

I how to formulate MVA as a waveform-based optimization
(update velocity by backpropagating waveform residuals)

I MVA = WI based on Born approximation

I proposal: reformulation of WI based on MVA ideas
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Measuring Semblance

Foundation (“semblance”) principle of velocity analysis: adjust
velocity to obtain internally consistent image volumes

Example: simplest imaging algorithm = NMO/stack.

Image volume = NMO-corrected CMPs

Internal consistency = flat events



Measuring Semblance
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Example:

I CMP from North Sea 2D survey

(NAM, courtesy Shell Intl.

Research).

I Predictive decon, low pass filter,

mute

I Flat lying sediments to 3s+ ⇒
convolutional model plausible.



Measuring Semblance
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NMO corrected: velocity slightly low, about right, slightly high.



Measuring Semblance

Idea of differential semblance: if velocity is wrong,

I far traces are uncorrelated, but

I correlation of near traces indicates velocity error

Earliest known references: J. Castagna 1986 (inaccessible - cited in
Sarkar et al. 2001), S. 1986. Related ideas (“plane wave PEFs”) -
Claerbout, 80’s and 90’s (IEI, Fomel 2002).



A Differential Semblance Method

Kinematic quantities:

Interval velocity v(t0, x , y) - depends on midpoint (x , y) and
zero-offset two-way time t0 (proxy for depth z).

Suppress x , y from notation, for simplicity - consider one midpoint.

Square RMS slowness u(t0) = t0R t0
0 v2

.

Hyperbolic 2-way traveltime approximation

T (t0, h) =
√

t2
0 + 4u(t0)h2. (h=half-offset).

Inverse TT function T0(t, h) - satisfies T0(T (t0, h), h) = t0. ”t0

for which 2-way time at offset h is t.”



A Differential Semblance Method

Data CMP at midpoint with coords x , y , offset h = d(t, h).

NMO-corrected data

I (t0, h) = d(T (t0, h), h),

Offset divided difference operator

DhI (t0, h) =
I (t0, h + ∆h)− I (t0, h)

∆h
.



A Differential Semblance Method

Differential semblance function:

J[v , d ] =
1

2

∑
h

∫ tmax

0
dt|DhI (T0(t, h), h)|2,

Algorithm:

I NMO-correct each midpoint gather: I (t0, h) = d(T (t0, h), h);

I form offset derivative (divided difference) DhI (t0, h);

I inverse NMO-correct: I (T0(t, h), h);

I square and sum over t0 and h (and over midpoints x , y).



A Differential Semblance Method
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Two interval velocities: reference/initial (green) and estimate
(blue).



A Differential Semblance Method
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I (t0, h) = NMO corrected sections. Left = 20% ref, 80% est;
Center = 100% est; Right: -20% ref, 120% est.



A Differential Semblance Method
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DhI (t0, h) = offset divided differences = scaled differences of
neighboring traces.



A Differential Semblance Method
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DhI (T0(t, h), h) = inverse NMO applied to offset divided
differences. Mean square = DS objective function.



A Differential Semblance Method
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DS = mean square of DhI , as function of relative velocity pert r :
velocity = (1− r)∗ref + r∗est.



A Differential Semblance Method

Automated via NMO-based differential semblance: given CMP
data d and initial guess v0, find v to minimize J[v , d ] using
numerical optimization.

DS is smooth and (apparently) unimodal ⇒ gradient-based
methods will work, find global min!

Gradient-based optimization algorithm: described in Li & S. 2007.
Central issue: computation of gradient ∇v J[v , d ].

Combine gradient with quasi-Newton optimization algorithm
(”LBFGS”).

[demos using NAM data - 1, 2, 3]



A Differential Semblance Method

Some questions, within the realm of weak lateral heterogeneity:

I What about other possible objective functions?

I What theoretical support exists?

I What about multiples and other coherent noise?



Total Stack Power

An alternative: total stack power

JTSP(d , v) =

∫ tmax

0
dt0 (

∑
h

I (t0, h))2

Reaches MAX when v is kinematically correct - then summation of
NMO-corrected data along offset axis interferes constructively.

See Toldi 1989, Fowler 1986, Shen et al. 2005, Soubaras and
Gratacos 2007.



Total Stack Power

Relation with semblance:

Recall semblance: simplest (unscaled) definition is

S [t0, vRMS] = (
∑
h

I (t0, h))2

(i.e. a ”square of sum” rather than ”sum of squares”).

NMO correction d → I performed with constant RMS velocity
vRMS - since I (t0, h) depends only on vRMS(t0), can be done
economically.

Set VRMS[v ] = RMS velocity from interval velocity v . Then

JTSP[v , d ] =

∫ tmax

0
dt0 S [t0,VRMS[v ](t0)].



Total Stack Power
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JTSP[v , d ] = sum of semblance S along t0,VRMS[v ](t0) trajectory.



Total Stack Power
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Comparison: Total Stack Power (left), Differential Semblance
(right), sampled along line segment in interval velocity space.



Total Stack Power
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Total Stack Power

Summary of accumulated evidence re TSP:

I TSP objective strongly peaked at optimum velocity choice,
relatively flat elsewhere.

I TSP prone to local minima at grossly incorrect velocities: see
Chauris and Noble 2001 for “proof” that this is intrinsic
property of TSP objective.

I Chief consequence: gradient methods to optimize TSP require
good initial guess of velocity - and it’s hard to say a priori
exactly how good, or whether any particular velocity is good
enough!

I However: peak shape and location insensitive to coherent
noise for near-correct velocities, so robust in that sense.



Theory for DS-NMO

Theorem: J is smooth as function of velocity parameters. For data
with sufficiently high S/N, all stationary points of J are
approximate global minima (S., 1999, 2001).

I Loose translation: no local mins.

I S/N refers to fidelity to the convolutional model - best RMS
approximation by forward convolutional modeling (relation to
least squares data fitting!).

I Stationary points approximate global minima in sense of
high-frequency asymptotics - direct link between bandwidth
and velocity resolution.

I Numerical experience as predicted by Theorem.



Theory for DS-NMO

A step in the proof, of independent interest: assuming sufficient
offset sampling,

DhI (t0, h) = Dhd(T (t0, h), h)

' ∂d

∂t
(T (t0, h), h)

∂T

∂h
(t0, h) +

∂d

∂h
(T (t0, h), h)

so

DhI (T0(t, h), h) =

(
P
∂d

∂t
+
∂d

∂h

)
(t, h),

in which P(t, h) = ∂T
∂h (T0(t, h), h) is the offset ray parameter.



Theory for DS-NMO

Assume d is convolutional model data for an target velocity v∗, for
convenience with δ(t) wavelet. That is,

d(t, h) = r(T ∗
0 (t, h)).

Easy calculus exercise:

∂T ∗
0

∂h
= −P∗,

the offset ray parameter for the target velocity. Thus

DhI (T0(t, h), h) '
(

(P − P∗)
∂d

∂t

)
(t, h).



Theory for DS-NMO

Upshot

J[v , d ] =
1

2

∑
h

∫ tmax

0
dt|DhI (T0(t, h), h)|2,

' 1

2

∑
h

∫ tmax

0
dt

(
(P − P∗)

∂d

∂t
(t, h)

)2

,

which leads to a tomographic interpretation of DS: objective is
data-weighted error in offset ray parameter.

⇒ connection to stereotomography - Chauris & Noble 2001.



Coherent Noise

DS is tomographic ⇔ detects moveout ⇒ moveout ambiguity
(coherent noise, eg. multiples) must degrade velocity estimate.

Example: NAM data shown previously consists mostly of multiples
- they are nicely flattened, but lead to absurdly slow velocity below
2 s.

Li & S. 2007: Study based on Mobil “AVO” (Viking Graben) data,
Keys & Foster 1998.

Upshot:

I DS finds weighted average of apparent moveout velocities
(least squares!);

I if moveout dichotomy exists, can use in conjunction with dip
filter to remove noise, enhance velocity estimation.



Coherent Noise
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Four CMPs from middle part of Mobil AVO line: hyperbolic Radon
demultiple, low-pass filter, mute.



Coherent Noise
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Result of four DS estimations (bold lines) with four initial guesses
(thin lines).



Coherent Noise
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2D velocity model constructed by interpolating estimations from
midpoints 800, 1100, 1400, and 1700.



Coherent Noise
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Poststack migrated stack of entire line, stacked with 2D velocity
model - fails to image clearly graben and fault block below
Jurassic-Cretaceous unconform. at about 2-2.4 s.



Coherent Noise
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The culprit: DS has averaged apparent velocities - deeper slow
events undercorrected, fast events overcorrected.



Coherent Noise

For structure with mild lateral heterogeneity, multiply reflected
events are likely slower than primary events.

Diagnosis: slow events in Mobil AVO are predominantly residual
multiple energy.

Mulder & ten Kroode, 2002: apply dip filter to NMO corrected
gathers to remove downward sloping (slow) events. Then remodel
data (using convolutional model = inverse NMO), reapply DS. [DS
based on Kirchhoff common offset prestack migration]

Li & S.: make this into an iteration, apply in NMO setting.



Coherent Noise
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Result of 2 DS-NMO-dip filter-INMO cycles: filtered and NMO
corrected. Note that 2.4 s event remains, but most other energy
initially flattened by DS has been removed!



Coherent Noise
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Unfiltered data, NMO-corrected using velocities produced at
iterations 1, 2, and 3. Note that most visible energy is now
undercorrected!



Coherent Noise
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Poststack-migrated far-offset stack, original 2D velocity model
from one application of DS.



Coherent Noise
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Poststack-migrated far-offset stack, 2D velocity from 3 iterations
of DS - dip filter - INMO..



Summary: Differential Semblance VA based on NMO

I VA formulated as optimization problem via DS

I for low-noise data, DSVA converges rapidly to kinematically
accurate velocity estimate

I this observation supported by theory: all stationary points are
global mins

I result sensitive to coherent noise

I ad hoc coherent noise suppression based on
moveout-averaging property of DS successful in some cases

Suggests need for more fundamental and robust approach to
coherent noise
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Surface-oriented vs. Depth-oriented Image Volumes

MVA based on prestack depth migration - two major variants.
Both produce image volume I (x, ·) depending on image point x
and another (redundant) parameter.

(I) Surface oriented - ISO(x,h): h = 0.5(receiver - source), usually
computed by diffraction sum (“Kirchhoff common offset
migration”); binwise: offset bin I (·,h) depends only on data traces
with offset h.

(II) Depth oriented - IDO(x, h̄): 2h̄ = difference between
subsurface scattering points, x = their midpoint. Every point in
image volume depends on all data traces. Has diffraction sum rep,
but usually computed by one-way (shot profile or DSR) or two-way
(RTM) wave extrapolation.



Surface-oriented vs. Depth-oriented Image Volumes

Definitions using Green’s functions G (x, y, t):

ISO(x,h) =

∫
dm

∫
dt

∫
dτ(...)

G (m + h, x, τ)G (m− h, x, t − τ)d(m,h, t);

IDO(x, h̄) =

∫
dm

∫
dh

∫
dt

∫
dτ(...)

G (m + h, x + h̄, τ)G (m− h, x− h̄, t − τ)d(m,h, t);

where (...) = amplitude terms.



Surface-oriented vs. Depth-oriented Image Volumes

Subsitute asymptotic approximation

G (x, y, t) ' A(x, y)δ(t − T (x, y))

(or sum of such, if multiple arrival times x→ y exist) to get
diffraction sum (“Kirchhoff”, “Generalized Radon Transform”)
representations.

True amplitude image volumes for appropriate choice of amplitude
terms (Beylkin 1985 etc. etc.)



Surface-oriented vs. Depth-oriented Image Volumes

Mathematical justification: related to Born scattering
approximation (Cohen & Bleistein 1977, Beylkin 1985, Rakesh
1988,...):

d ' perturbation of acoustic field caused by oscillatory model
(velocity, density,...) perturbation about smooth background
model.

NB: nonsmooth model ⇒ much more complicated diffraction and
multiple reflection effects, many open theoretical and practical
questions.



Kinematic Artifacts

Kinematic artifact = coherent event in image volume not
corresponding to physical reflector (i.e. to event in model
perturbation).

Nolan & S. 1997: SO image volume for common shot migration
typically contains kinematic artifacts when multiple ray paths
connect sources, receivers with scatterers (points on reflectors).
Used RTM to illustrate ⇒ phenomenon has nothing a priori to do
with Kirchhoff/GRT representation.

Brandsberg-Dahl & de Hoop 2003, Stolk & S. 2004: same
phenomenon afflicts Kirchhoff common offset and common
scattering angle migration.



Geometry of Reflection

Analysis relies on geometric optics reflection rule (Rakesh 1988 -
canonical relation of scattering operator):

Event at (m,h, t) (equiv. to (xs , xr , t)) with (3D) slowness vectors
(pm,pr ) (equiv. to (ps ,pr )) related to reflector at x with dip
p = k/ω if an only if there exist

I incident ray Xs ,Ps with
Xs(0) = xs = m− h,Ps(0) = ps = pm − ph,

I reflected ray Xr ,Pr with
Xr (t) = xr = m + h,Pr(t) = pr = pm + ph,

so that for some 0 ≤ ts ≤ t,

I Xs(ts) = x = Xr (ts), and

I Ps(ts)− Pr (ts) = p.



Geometry of Reflection
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Kinematic Artifacts in Common Offset Image Volume

Data input for ISO(x,h) = offset bin {traces with offset h}

⇒ offset component ph of event slowness not determined by data

⇒ several ray pairs may satisfy imaging conditions for event in
offset bin (same h, different ph)

⇒ event in offset bin may correspond to several scatterers.



Kinematic Artifacts in Common Offset Image Volume

Example:
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Acoustic lens - Gaussian low-velocity anomaly - over half-space.



Kinematic Artifacts in Common Offset Image Volume
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Kinematic Artifacts in Common Offset Image Volume
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Shot record - source point slightly to right of center. Fixed receiver
spread. (2,4) finite difference, zerophase bandpass filter wavelet.
Note multiple events at each receiver - ONE reflector!



Kinematic Artifacts in Common Offset Image Volume
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offset = 0.3 km



Kinematic Artifacts in Common Offset Image Volume
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Artifact suppression in Depth-Oriented Image Volumes

Stolk & de Hoop 2001 (tech report), 2005, 2006: IDO is free of
kinematic artifacts, provided that

I all rays carrying significant energy have monotone depth
components (no turning rays, “DSR condition”);

I depth offsets h̄ are restricted to horizontal: h̄z = 0;

I data sufficient to determine all components of event
slownesses.

“DSR” condition also permits use of depth extrapolation
algorithms, eg. DSR imaging algorithm.

Generalization beyond DSR imaging, conditions 1, 2: Stolk, de
Hoop & S 2005.



Artifact suppression in Depth-Oriented Image Volumes

3rd condition - relation between acquisition geometry, ray
geometry. Satisfied for

I 2D synthetics;

I pure dip shooting;

I true 3D coverage (all azimuths).

Generally IDO derived from narrow azimuth survey will contain
artifact energy when subsurface geometry is complex.



Artifact suppression in Depth-Oriented Image Volumes

Ray geometry analysis of IDO :

Event in d at (m,h, t) (equiv. to (xs , xr , t)) with (3D) slowness
vectors (pm,pr ) (equiv. to (ps ,pr )) related to event in IDO at x, h̄
with dip p = k/ω,ph̄if an only if there exist

I incident ray Xs ,Ps with
Xs(0) = xs = m− h,Ps(0) = ps = pm − ph,

I reflected ray Xr ,Pr with
Xr (t) = xr = m + h,Pr(t) = pr = pm + ph,

so that for some 0 ≤ ts ≤ t,

I Xs(ts) = x− h̄; Xr (ts) = x + h̄, and

I Ps(ts) = p− ph̄;−Pr (ts) = p + ph̄.



Artifact suppression in Depth-Oriented Image Volumes
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Artifact suppression in Depth-Oriented Image Volumes

No constraint on ts ! Clearly image volume is too big: contains
path of image events for each data event

x =
Xr (ts) + Xs(ts)

2
, h̄ =

Xr (ts)− Xs(ts)

2
.

In 3D, image volume is 6D - but data is 5D. Need addtional
constraint.

Original idea of Claerbout (1971, 1985): (x, h̄) represent midpoint,
offset of sunken survey.

Natural restriction: offset vector should be horizontal, i.e. h̄z = 0.



Artifact suppression in Depth-Oriented Image Volumes
“DSR” condition: rays carrying significant energy do not turn -
depth is monotone increasing along ray. Then h̄z = 0⇒ unique
solution of data-image relation.
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Artifact suppression in Depth-Oriented Image Volumes

Lens example: Image slice IDO(x, h̄) at depth offset h̄x = 0.3 km,
computed using DSR algorithm (generalized screen propagator) -
Stolk, de Hoop and S. 2005.
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Artifacts and (stacked) Images

Get image of subsurface from image volume by

I stacking surface oriented volume:

I (x) =

∫
dh ISO(x,h),

I extracting zero-offset section from depth oriented volume:

I (x) = IDO(x, 0).

NB: these are exactly the same!



Artifacts and (stacked) Images

Smit et al. 1998, Nolan & S. 1997: image I (x) contains reflectors
only at correct (physical) locations, orientations if velocity satisfies

Traveltime Injectivity Condition (“TIC”): total time uniquely
determines intersection point of any (incident, reflected) ray pair.

Clearly implied by “DSR” condition. Not always satisfied:
counterexamples involve strong refraction, approximate waveguide
geometry.

Essence of proof, for SO volumes: artifacts stack out.



Summary: Kirchhoff vs. Wave Equation Image Volumes

I two widely-used methods of image volume formation -
differentiated by kinematics, not by method of computation!
(are there others?)

I surface-oriented imaging (expl: common offset Kirchhoff)
tends to produce kinematic artifacts = spurious coherent
events, when multiple raypaths carry significant energy

I depth-oriented imaging (expl: DSR prestack migration) avoids
kinematic artifacts in many circumstances
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Semblance

Semblance condition: expresses consistency between data, velocity
model in terms of image volume.

I Surface oriented: ISO(x,h) independent of h (at least in terms
of phase);

I Depth oriented: IDO(x, h̄) concentrated (focused) near h̄ = 0.

Main principle of waveform MVA: adjust velocity until image
volume satisfies semblance condition.



Semblance

Visual assessment of semblance via image gathers:

I ISO(x,h) for fixed x , y(x = (x , y , z)) ⇒ function of z ,h -
should be flat, i.e. independent of z (at least in phase);

I IDO(x, h̄) for fixed x , y ⇒ function of z , h̄- should be focused
at h̄ = 0, so far as bandwidth permits.

Note:

I NMO correction is crude approximation to ISO , and standard
semblance criterion (flat NMO-corrected CMPs) is special
case;

I IDO can be converted to function of offset ray parameter or
(equivalently) angle (Sava & Fomel 2002) - then gathers
should be flat, like ISO .



Semblance

Kinematic artifacts violate semblance condition!
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Semblance

Depth-oriented image volume avoids artifacts: DSR migration of
lens data (thanks: B. Biondi). Left: image (IDO(x, 0)); Center:
image gather - note focus at zero offset; Right: angle-transformed
image gather - flat!.



Semblance
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Semblance property has nothing to do with reflector geometry!
Depth oriented image gathers (ID(x, h̄)) via RTM, data
synthesized from randomly distributed point diffractors. Left to
Right: migration velocity = 90%, 100%, 110% of true velocity.



Implications for MVA

I Kinematic artifacts violate semblance condition;

I Surface oriented image volumes prone to kinematic artifacts in
presence of multiple raypaths to scattering points;

I Depth oriented image volumes free of kinematic artifacts,
under some circumstances.

Suggests: depth-oriented volume possibly better domain for MVA
in complex, refracting subsurface.



MVA via Optimization

Goal: use all events in data, weighted by strength.

I form objective function of velocity, measuring deviation of
image volume from semblance condition - all energy not
conforming to semblance condition contributes.

I optimize numerically: gradient = backprojection of
semblance-inconsistent energy into velocity update.

Because of problem size, must use gradient-based (Newton-like)
method.

Use of gradient ⇒ objective function must be smooth in velocity -
stability of minimizer requires smoothness in data as well.



MVA via Optimization

Form of objective dictated by semblance condition for each type of
image volume:

I Surface oriented: minimize over v

J[v ] =

∫
dx

∫
dh |∇hI (x,h)|2

(generalization of DS objective for NMO-based VA);

I Depth-oriented, minimize over v

J[v ] =

∫
dx

∫
dH|h̄I (x, h̄)|2



MVA via Optimization

Stolk & S. 2003: Amongst all quadratic forms in image volume,
only differential semblance is smooth as function of both velocity
and data.

[proved for SO, conjectured for DO]

⇒ only DS suitable for large-scale numerical optimization. No
other choices possible!

Caveat: this is high frequency asymptotic result: other functionals
are smooth in velocity for finite frequency data (stack power, least
squares). However only DS has stable shape as frequency is
increased to obtain better resolution.



DSMVA via Depth Extrapolation

DSR migration:

1. downward continue data by solving

∂u

∂z
= F2[v ]u, u(xs , xr , 0, t) = d(xs , xr , t),

where xs , xr r are horizontal (x , y) coordinates of “sunken source
and receivers”, and

F2[v ] = −
√

v(xs , z)−2∂2
t −∇2

xs
−
√

v(xr , z)−2∂2
t −∇2

xr
.

2. Extract zero time section: I (x , z , h) = u(x − h, x + h, z , 0).



DSMVA via Depth Extrapolation

Shot profile migration:

1. For each xs , downward continue source and receiver fields us , ur :

∂us

∂z
= F1[v ]us , us(xs , x , 0, t) = δ(xs − x)δ(t);

∂ur

∂z
= F1[v ]ur , ur (xs , x , 0, t) = d(xs , x , t);

where

F1[v ] = −
√

v(x , z)−2∂2
t −∇2

x .

2. Cross-correlate us , ur at zero time lag, sum over sources:

I (x , z , h) =

∫
dxs

∫
dtus(xs , x − h, z , t)ur (xs , x + h, z , t)



DSMVA via Depth Extrapolation

Derivations from Green’s function definition: de Hoop and Stolk
2006, my short course on imaging (TRIP web site).

To compute fields, objective, gradient, must discretize. Huge
literature on approximation of square root operators.

Here: derivation of practical gradient computation (Shen et al.
SEG 2003, Khoury & S. SEG 2006) for DSR case.

Shot profile computations similar (Shen et al. SEG 2005).



DSMVA via Depth Extrapolation

Abstractly, un(xs , xr , t) ' u(xs , xr , n∆z , t) solves

un+1 = ∆zΦn[v ]un, n = 0, ...,Nz − 1

where Φ represents one of many DSR propagators (PSPI, FFD,
GSP,...).

Discrete objective:

J[c , d ] =
1

2

∑
n

∑
x ,h

|Pun|2

in which P is: transform (xs , xr ) 7→ (x , h), restrict to t = 0 and
multiply by h.



DSMVA via Depth Extrapolation

Perturbation field δun solves linearized depth evolution:

δun+1 = δun + ∆zΦn[v ]δun + δΦn[v ]un, n = 0, ...,Nz − 1

Adjoint field wn(s, r , t) = solution of adjoint state system

wn−1 = wn + ∆zΦ[v ]∗wn + P∗Pun, n = Nz , ...1; wNz = 0,

(upward continuation!) - Φ[v ]∗ = adjoint or transpose of Φ[v ].



DSMVA via Depth Extrapolation

δJ[v , d ] =
∑
n

∑
xs ,xr ,t

(wn−1 − wn −∆zΦ[v ]∗wn)δun

=
∑
n

∑
xs ,xr ,t

(wn)(δun+1 − δun −∆zΦ[v ]δun)

=
∑
n

∑
xs ,xr ,t

wnδΦn[v ]un



DSMVA via Depth Extrapolation

Note that δΦ[v ]u = ∂v (Φ[v ]u)δv ,

Define Ψ[v , u] = adjoint of δv 7→ ∂v (Φ[v ]u)δv . Then

δJ[c, d ] =
∑
x ,z

(
∑
n

Ψ[v , un]wn)δv

whence
∇v J[v , d ] =

∑
n

Ψ[v , un]wn



DSMVA via Depth Extrapolation

Summary:

1. downward continue data ⇒ un, n = 0, ...,Nz ;

2. upward continue adjoint field ⇒ wn, n = Nz , ..., 0;

3. cross-correlate wn with Ψ[v , un], zero lag:

∇v J[v , d ] =
∑
n

Ψ[v , un]wn

[version of adjoint state method - similar to RTM.]



DSMVA via Depth Extrapolation

Example (Shen et al. 2005) - uses shot profile migration,
computations very similar.

Data synthesis: smoothed Marmousi velocity model v , reflectivity
δv= difference (Marmousi - smoothed Marmousi), one-way
demigration by upward continuation (solution of the equation for
δun above).

Sources, receivers occupy all surface positions (not marine
geometry!).

Objective function, gradient computation fed to Limited Memory
BFGS algorithm (Nocedal & Wright 1999, available from Netlib).



DSMVA via Depth Extrapolation

Starting velocity model for DS-SP.



DSMVA via Depth Extrapolation

Image (IDO(x, h̄ = 0)) at initial velocity.



DSMVA via Depth Extrapolation

Final velocity (47 iterations of descent method). Note appearance
of high velocity fault blocks.



DSMVA via Depth Extrapolation

Image (IDO(x, h̄ = 0)) at final velocity.



Sensitivity to Propagator Error

Khoury et al. SEG 2006: DSR-based implementation.

This example: based on Marmousi, with smoothed velocity model
and a sequence of flat reflectors

Data generation: time-domain (2,4) FD scheme, bandpass filter
wavelet (point isotropic radiator).

Objective function and gradient computation precisely as above.
Propagator: GSP. Reference velocity taken to be lower bound for
all estimated velocities, velocity bounds implemented via sigmoid
representation. LBFGS used to optimize.



Sensitivity to Propagator Error
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Sensitivity to Propagator Error

0

1

2

D
ep

th
 (

km
)

4 6
Position (km)

0

1

2
D

ep
th

 (
km

)

4 6
Position (km)

0

1

2

D
ep

th
 (

km
)

4 6
Position (km)

Image (IDO(x , z , 0)): target (Left), initial (Center), and after 30
LBFGS iterations (Right).



Sensitivity to Propagator Error

0

500

1000

1500

2000

2500

-1000 -500 0 500 1000
0

500

1000

1500

2000

2500

-1000 -500 0 500 1000
0

500

1000

1500

2000

2500

-1000 -500 0 500 1000

Image gathers ((I (x , z , h) for fixed x : with target vel (Left), initial
(Center), and after 30 LBFGS iterations (Right).



Sensitivity to Propagator Error
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Sensitivity to Propagator Error

Conclusion: DS is sensitive to high-angle propagation error, which
acts as coherent noise.

Solutions:

1. produce better image volume (more kinematically consistent) -
RTM?

2. modify objective to be less sensitive to this type of noise.



Modified DS

Shen noticed same problem in shot profile case - high-angle errors
in FFD propagators led to shifted DS optima. Especially true for
nonsmooth background (violates theory!).

His solution: modify DS functional.

Shen’s modification - add multiple of image power, robust against
imaging noise for near-correct velocity:

JMDS [v ] =
∑
x ,z,h

|hI (x , z , h)|2 − β2
∑
x ,z

|I (x , z , 0)|2

See Shen & S. 2008.



Modified DS

Gas chimney example from Shen & S. 2008 (see also Kabir et al.
2007 for similar):

Marine 2D line - preliminary imaging with regional velocity model
shows gas-induced sag.

Reflection tomography partially removes sag effect, but interpreters
not happy.

MDS to rescue - 20 iterations of Newton-like optimization
algorithm produces more interpretable model, image.

[Iterative algorithm follows Shen’s PhD thesis - adjoint state
method for gradient computation.]



Modified DS

Initial Velocity Model for MDS



Modified DS

Image at Initial Model



Modified DS

Model produced by Reflection Tomography



Modified DS

Reflection Tomography Image



Modified DS

Model produced by 20 MDS Iterations



Modified DS

MDS Image



Modified DS

Angle image gathers (Sava & Fomel 03) - Radon transform in
depth/offset, should be flat at correct velocity.

Initial velocity - dramatic failure to flatten.

RT velocity - much better, but RMO at larger depths.

MDS velocity - flat throughout depth range.



Modified DS

ADCIGs, Initial Model



Modified DS

ADCIGs, RT Model



Modified DS

ADCIGs, MDS Model



Summary: Differential Semblance MVA

I amongst all possible ways to turn MVA into an optimization
problem, only DS results in smoothly varying function of
velocity, independently of data frequency content

I semblance principle for depth-oriented imaging: focused image
gathers (in depth-offset - flat in depth-angle)

I depth-oriented imaging preferred over surface oriented
imaging for MVA: kinematic artifacts of latter violate
semblance principle

I DSMVA based on “multiply by h̄” method of measuring
semblance discrepancy: demonstrated for synthetic, field data
with significant multipathing

I DSMVA result sensitive to depth extrapolator errors,
sensitivity can be reduced by Shen’s modification (stack power
as penalty term)
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MVA + WI

Waveform MVA - all very well, but...

I MVA based on linearized modeling, generally acoustic,
neglects multiple reflections, mode conversions, out-of-plane
events (2D), anisotropy, attentuation,...

I DS based on WE migration sensitive to extrapolator error
(high angle velocity error & numerical anisotropy - Khoury
2006).

I DS strongly influenced by coherent noise (multiples, mode
conversions,...) - Gockenbach & S 1999, Mulder & ten
Kroode 2001, Verm & S 2006, Li & S 2007.

I Repeated modeling, migration - s l o w.

A blue-sky approach to overcoming these obstacles: combine DS &
full waveform 3D modeling, incorporate necessary physics,
accelerate convergence.



Waveform Inversion

The usual set-up:

I M = a set of models;

I D = a Hilbert space of (potential) data;

I F :M→D: modeling operator or “forward map”.

Waveform inversion problem: given d ∈ D, find v ∈M so that

F [v ] ' d

.

F can incorporate any physics - acoustics, elasticity, anisotropy,
attenuation,.... (and v may be more than velocity...).



Waveform Inversion

Least squares formulation: given d ∈ D, find v ∈M to minimize

JLS(v , d) =
1

2
‖d −F [v ]‖2

≡ 1

2
(d −F [v ])T (d −F [v ])

Has long and productive history in geophysics (eg. reflection
tomography)- but not in reflection waveform inversion.

Problem size ⇒ Newton and relatives ⇒ find local minima.
BUT....



Waveform Inversion

Albert Tarantola, many others: JLS has lots of useless local
minima, for typical length, time, and frequency scales of
exploration seismology

⇒ least squares waveform inversion with Newton-like iteration
“doesn’t work” - can’t assure convergence from reasonable initial
estimates.

See: Gauthier et al. 1986, Kolb et al. 1986, Santosa & S. 1989,
Bunks et al. 1995, Shin et al. 2001, 2006, Chung et al 2007.



Waveform Inversion

Postmortem on JLS : missing low frequency data is culprit -
obstructs estimation of large-scale velocity structure, hence
everything else.

Rule of thumb derived from layered Born modeling:

to estimate velocity structure on length scale L, with mean velocity
v , data must have significant energy at

fmin '
v

2L

v ∼ 3 km/s, L = 3 km ⇒ need good s/n at 0.5Hz - not commonly
available.



Waveform Inversion

Caveats: least squares WI computational feasible

I with synthetic data containing very low frequencies (<< 1
Hz): Bunks et al. 1995, Shin et al. 2006.

I for basin inversion from earthquake data: target of several
major efforts. QuakeShow (Ghattas), SpecFEM3D (Tromp,
Komatisch), SPICE (Käser, Dumbser). Typical L ∼ 20 km,
fmin = 0.1Hz , v ∼ 4 km/s - just OK! Will be done, in 3D, in
near future.

I for transmission waveform inversion (cf Gauthier et al. 1986)
with good initial v from traveltime tomography (plus other
tweaks) - Pratt 1999, Pratt and Shipp 2004 Brenders and
Pratt, 2007.



Waveform Inversion

When you can make it work, does it really work?

That is, can you learn something from WI that you can’t learn
otherwise?

Affirmative example: Minkoff & S 1997: inverted small part of very
clean G-of-M 2D line.

Inverted for all important physics - kinematic accuracy via DSO,
layered viscoelastic primaries-only modeling of P-P reflections,
source radiation pattern - and 90% fit of data energy in
pre-multiple window ⇒ identified gas sand (p, but not s, anomaly)
- with less complete physics in any way, neither fit to data nor
correct gas signature.

Lesson: to gain from inversion, must model all important physics
and fit data accurately.



Waveform Inversion

Recap: roughly speaking, with appropriate “fine print”,

I MVA can be successfully cast as an optimization problem - all
stationary points are approximate global mins, so can use
Newton;

I WI (in usual OLS form) afflicted with spurious local mins -
descent methods often fail to fit data, unless you start with a
very good initial guess - and it’s impossible to know a priori
how good an initial guess is!

Can WI technology borrow from MVA - conversely, can MVA be
recast as an approach to data-fitting?



The crucial WI - MVA link: extended modeling

Extended model F̄ : M̄ → D, where M̄ is a bigger model space=
models depending on x and h̄, i.e. v̄(x, h̄). [h̄ may be offset, or
maybe something else (shot coordinates, ray parameter,...) -
redundant degrees of model freedom.]

Extension map Ē :M→ M̄: identifies physical (normal) model
with extended model.

Extension property: F [v ] = F̄ [Ē [v ]].

Annihilator: Ā : M̄ → ... - characterizes physical models:
Ā[v̄ ] = 0⇔ v̄ = Ē [v ], for some v ∈M.



The crucial WI - MVA link: extended modeling

Example: surface oriented (common offset,...) extended modeling

M̄ = offset dependent velocities v̄(x,h)

Extension op: Ē :M→ M̄ by Ē [v ](x,h) = v(x) - that is,
extended models don’t depend on h (sound familiar?)

Extended modeling op: F̄ [v̄ ](h, t, xs) = p̄(xs + 2h, t; xs), where

1

v̄ 2(x,h)

∂2p̄

∂t2
(x, t; xs)−∇2p̄(x, t; xs) = w(t)δ(x− xs)

that is, solve wave equation with (possibly) different velocity for
each offset.

Annihilator: Ā = ∇h - differential semblance.



The crucial WI - MVA link: extended modeling

The link:

I Waveform inversion: find v ∈M so that F [v ] ' d ⇔

find v̄ ∈ M̄ so that F̄ [v̄ ] ' d subject to Ā[v̄ ] = 0

I Nonlinear version of migration velocity analysis:

find v̄ ∈ M̄ so that Ā[v̄ ] ' 0 subject to F̄ [v̄ ] = d

Same, except that objective and constraint are switched - a form
of duality. Continuum of problems in between these (penalty
function in Claerbout notation):

find v̄ ∈ M̄ so that F̄ [v̄ ] ' d , εĀ[v̄ ] ' 0



Born extended modeling and MVA

Lailly, Tarantola, Claerbout (80’s): migration operator (producing
image) is adjoint or transpose DF [v ]T . True amplitude migration
is (pseudo)inverse DF [v ]−1.

Same for extended modeling F̄ [v̄ ]:

DF̄ [Ē [v ]]T d(x, h̄) = I (x, h̄)

DF̄ [Ē [v ]]−1d(x, h̄) = δv̄(x, h̄).



Born extended modeling and MVA

As for full nonlinear modeling have dual points of view: replace v̄
by Ē [v ] + δv̄ , use perturbation theory

I “Partly linearized” waveform inversion: find v ∈M, δv̄ ∈ M̄
so that F̄ [Ē [v ]]δv̄ ' d ⇔

find v ∈M, δv̄ ∈ M̄ so that DF̄ [Ē [v ]]δv̄ ' d subject to Ā[δv̄ ] = 0

I Annihilator form of migration velocity analysis:

find v ∈M, v̄ ∈ M̄ so that Ā[δv̄ ] ' 0 subject to DF̄ [Ē [v ]]δv̄ = d

Continuum of intermediate problems (Gockenbach et al. 1995):

find v ∈M, δv̄ ∈ M̄ so that DF̄ [Ē [v ]]δv̄ ' d , εĀ[δv̄ ] ' 0



Born extended modeling and MVA

Example, continued: surface-oriented extended Born modeling at
physical model v for common offset -
DF̄ [Ē [v ]]δ̄v(h, t, xs) = δp̄(xs + 2h, t; xs), where

1

v 2

∂2δp̄

∂t2
−∇2δp̄ =

2δv̄

v̄ 3

∂2p̄

∂t2

Express solution via Green’s function G :

DF̄ [Ē [v ]]δ̄v(h, t, xs) =∫
dx

∫
dτG (x, t − τ, xs + 2h)G (x, τ, xs)

2δv̄(x,h)

v 3(x)

= common offset Born modeling, offset dep. reflectivity = 2δv̄
v3 .

[For simplicity, drop convolution with source pulse, i.e. assume
w ' δ]



Born extended modeling and MVA

Example, continued: read common offset prestack migration from
modeling formula:

DF̄ [Ē [v ]]T d(x,h) = I (x,h) =∫
dxsdt

∫
dτG (x, t − τ, xs + 2h)G (x, τ, xs)d(xs + 2h, t, xs)

(becomes Kirchhoff CO prestack with geometric optics approx to
G ). From Beylkin 1985, Rakesh 1988, Bleisten 1987, Nolan & S.
1997, Smit et al. 1998, deHoop & Bleistein 1998: can turn this
into inversion (DF̄ [Ē [v ]]−1) via amplitude factor under integral
sign)



Born extended modeling and MVA

Example, continued: surface-oriented annihilator-based MVA
and/or penalty function version:

I Versteeg & S. 1993, Kern & S. 1994: h← xs (redundant
parameter is shot position), finite difference modeling and
reverse time migration

I Chauris & Noble 2001, Mulder & ten Kroode 2002, de Hoop
et al. 2003: Kirchhoff common offset or scattering angle
migration

I deHoop et al. 2005: VTI P-P and P-S Kirchhoff imaging,
angle domain

Only result on nonlinear MVA = annihilator based WI so far is
theoretical: S. 1991. Computational exploration in thesis project of
Dong Sun - stay tuned!



Summary: combining MVA and WI

I WI admits arbitrary physics, accounts directly for nonlinear
wave propagation effects (multiples)

I when WI works, very accurate reconstruction of subsurface
models, information not available otherwise (demonstrated at
least once using field data!)

I usual OLS formulation of WI susceptible to multiple
(spurious) local mins - often does not succeed in fitting data,
producing plausible model

I conceptual connection between MVA and WI through
extended model

I leads to nonlinear MVA = extended WI - familiar as DSMVA
in extended Born approximation
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Depth-oriented extended modeling

Recall: depth-oriented imaging avoided kinematic artifacts,
supports MVA in complex refractive environments

Observe: surface oriented imaging operator = DF̄ [Ē [v ]]T , where
F̄ is surface-oriented extended modeling operator.

Question: how to choose extended model, annihilator
(M̄, F̄ , Ē , Ā) corresponding to depth-oriented imaging?



Depth-oriented extended modeling

Answer: v becomes an operator:

v̄−2∂
2p

∂t2
(x, t) =

∫
d h̄v̄−2(x, h̄)

∂2p

∂t2
(x + 2h̄, t)

Wave equation still has sensible solutions, defines F̄ as before.

Physical interpretation of operator v̄−2: since v−2 = ρκ−1 and κ is
stress per unit strain, v−2(x, h̄) = density-weighted strain at x due
to point stress at x + 2h̄ -represents action at a distance [thanks:
Scott Morton]

M̄ = { (depth-)offset dependent velocity v̄(x, h̄) }

Ē [v ](x, h̄) = v(x)δ(h̄), Ā[v̄ ] = h̄v̄



Depth-oriented extended modeling

Born version of depth-oriented extended modeling: as before,
replace v̄ by Ē [v ] + δv̄ , use perturbation theory

v−2∂
2δp

∂t2
(x, t)−∇2δp = −

∫
d h̄δv̄−2(x, h̄)

∂2p

∂t2
(x + 2h̄, t)

Represent using ordinary Green’s functions, assume ramp source so
∂2p/∂t2 = G (xs , ·, ·),

DF̄ [Ē [v ]]δv̄(m,h, t) =∫
dx

∫
dhdτG (m + h, t − τ, x)G (m− h, τ, x− 2h̄)δv̄−2(x, h̄)



Depth-oriented extended modeling

Depth-oriented Born extended modeling/inversion, continued:

Rewrite integral using midpoint x← x− h̄, reflectivity
R(x, h̄) = δv̄−2(x + h̄, h̄):∫

dxdhdτG (m + h, x + h̄, t − τ)G (m− h, x− h̄, τ)R(x, h̄)

Adjoint (imaging) operator is exactly the depth oriented imaging
op of Claerbout - see p. 45

DF̄ [Ē [v ]]T d(x, h̄) = IDO(x, h̄)

=

∫
dm

∫
dh

∫
dt

∫
dτG (m+h, x+h̄, t−τ)G (m−h, x−h̄, τ)d(m,h, t)



Depth-oriented extended modeling

Upshot: annihilator form of depth-oriented MVA (Shen et. al
2003, 2005, Kabir 2007, Shen & S. 2008) derived from
depth-oriented extended model

Shen’s modified DSMVA (Shen 2005, Shen & S. 2008) essentially
same as penalty form:

find v ∈M, δv̄ ∈ M̄ so that DF̄ [Ē [v ]]δv̄ ' d , εĀ[δv̄ ] ' 0

through close relation of semblance maximization and linear least
squares minimization.

Conclusion: the Born version of this approach seems to work, so
what about...



Depth-oriented extended modeling

Nonlinear MVA, or extended WI

find v̄ ∈ M̄ so that F̄ [v̄ ] ' d , εĀ[v̄ ] ' 0

Apparent advantages:

I easy to formulate extended modeling op F̄ for virtually any
wave physics - acoustic, elastic, ...

I includes all physical effects, including multiples

I in Born approximation, adjoints and (linear) inverses closely
linked because of absence of kinematic artifacts

I MVA extended to elastic modeling in complex structures with
multiples, for instance...



Depth-oriented extended modeling

Obvious disadvantages:

I wave equations with operator coefficients -

v̄−2∂
2p

∂t2
(x, t) =

∫
d h̄v̄−2(x, h̄)

∂2p

∂t2
(x + 2h̄, t)

appear to require full matrix multiply at every timestep

I how do you solve the nonlinear extended inverse problem,
F̄ [v̄ ] ' d , and how do you keep it solved as you reduce the
annihilator output Ā[v̄ ]?

I what is the right way to measure the annihilator output Ā[v̄ ]?



Source Calibration
Another important issue: source calibration.

Patrick Lailly, Florence Delprat 2003, 2005: nonlinear inversion
(any kind!) demands good knowledge of source - but for extremely
complex media with intense internal multiples, very difficult to
invert for source!

Contrast: Minkoff & S 1997, Winslow 1999, Anno et al. 2003:
successful linearized inversion for source and reflectivity -
moderately complex media



Summary: Challenges

I DSMVA based on depth-oriented Born extended modeling
promising for primaries-only data

I Nonlinear MVA = WI based on depth-oriented nonlinear
extended modeling formulated, but several obstacles remain to
successful deployment

I For any form of WI, source calibration is a first-order issue
which must be addressed before any possible successful
application in the field.
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Conclusions

Takeaway messages of this talk:

I MVA = WI based on Born extended modeling

I WI via OLS often fails due to spurious local minima

I Differential semblance MVA - velocity updates via
optimization, backprojection of waveform residuals (DS
volume), all events constrain velocity updates, much less
tendency towards local minima than least squares WI.

I “Kirchhoff” and “Wave Equation” prestack migrations have
different intrinsic kinematic properties - latter better suited to
automated MVA

I Extended modeling: framework for consistent formulation of
MVA and WI

I Proposed nonlinear MVA = extended WI:
I including multiples in MVA
I removing multiple minima from WI
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