Mathematics of Seismic Imaging Part 4: Global Asymptotics

William W. Symes

Rice University

4. Global Asymptotics

Why Beylkin isn't enough Geometry of Reflection

Development of Global Asymptotics

Kinematic Artifacts in Migration

4. Global Asymptotics

Why Beylkin isn't enough

Geometry of Reflection

Development of Global Asymptotics

Kinematic Artifacts in Migration

The theory developed by Beylkin and others cannot be the end of the story:

B. White, "The Stochastic Caustic" (1982): For "random but smooth" $v(\mathbf{x})$ with variance σ , points at distance $O(\sigma^{-2/3})$ from source have more than one ray connecting to source, with probability 1 *multipathing* associated with formation of *caustics* = ray envelopes.

Example: Marmousi, lightly smoothed

Example: Marmousi, lightly smoothed

Multipathing, formation of caustics invalidates asymptotic analysis on which GRT representation is based:

multiple rays \Rightarrow traveltime no longer *function* of position

Why it matters

Strong refraction: salt (4-5 km/s) structures embedded in sedimentary rock (2-3 km/s) (eg. Gulf of Mexico), also chalk in North Sea, gas seeps some of the most promising petroleum provinces!

4. Global Asymptotics

Why Beylkin isn't enough

Geometry of Reflection

Development of Global Asymptotics

Kinematic Artifacts in Migration

Escape from simplicity - the Canonical Relation

How do we get away from "simple geometric optics", SSR, DSR,... - all violated in sufficiently complex (and realistic) models?

Rakesh *Comm. PDE* 1988, Nolan *Comm. PDE* 1997: global description of $F_{\delta}[v]$ as mapping reflectors \mapsto reflections.

Escape from simplicity - the Canonical Relation

 $Y = {\mathbf{x}_s, t, \mathbf{x}_r}$ (time × set of source-receiver pairs) submfd of \mathbf{R}^7 of dim. ≤ 5 , $\Pi : T^*(\mathbf{R}^7) \to T^*Y$ the natural projection

 $\operatorname{supp} r \subset X \subset \mathbf{R}^3$

Escape from simplicity - the Canonical Relation

Canonical relation $C_{F_{\delta}[v]} \subset T^*(X) \setminus \{\mathbf{0}\} \times T^*(Y) \setminus \{\mathbf{0}\}$ describes singularity mapping properties of F:

 $(\mathbf{x}, \xi, \mathbf{y}, \eta) \in C_{F_{\delta}[v]} \Leftrightarrow \text{for some } u \in \mathcal{E}'(X),$

 $(\mathbf{x},\xi) \in WF(u)$ and $(\mathbf{y},\eta) \in WF(Fu)$

recall defn of rays: solutions of Hamiltonian system

$$\frac{d\mathbf{X}}{dt} = \nabla_{\Xi} H(\mathbf{X}, \Xi), \ \frac{d\Xi}{dt} = -\nabla_{\mathbf{X}} H(\mathbf{X}, \Xi)$$

with

$$H(\mathbf{X}, \mathbf{\Xi}) = \frac{1}{2}(1 - v^2(\mathbf{X})|\mathbf{\Xi}|^2) = 0$$

Characterization of C_F:

 \Leftrightarrow

$$((\mathbf{x},\xi),(\mathbf{x}_{s},t,\mathbf{x}_{r},\xi_{s},\tau,\xi_{r})) \in C_{F_{\delta}[v]}$$

$$\subset T^{*}(X) - \{\mathbf{0}\} \times T^{*}(Y) - \{\mathbf{0}\}$$

$$\Leftrightarrow \text{ there are rays } (\mathbf{X}_{s},\mathbf{\Xi}_{s}), (\mathbf{X}_{r},\mathbf{\Xi}_{r}), \text{ times } t_{s}, t_{r} \text{ so that}$$

$$\Pi(\mathbf{X}_{s}(0), t, \mathbf{X}_{r}(t), \Xi_{s}(0), \tau, \Xi_{r}(t)) = (\mathbf{x}_{s}, t, \mathbf{x}_{r}, \xi_{s}, \tau, \xi_{r}),$$
$$\mathbf{X}_{s}(t_{s}) = \mathbf{X}_{r}(t-t_{r}) = \mathbf{x}, \ t_{s}+t_{r} = t, \ \Xi_{s}(t_{s})-\Xi_{r}(t-t_{r})||\xi$$

$$|\mathbf{\Xi}_{s}(t_{s})| = |\mathbf{\Xi}_{r}(t-t_{r})| \Rightarrow$$

 $\mathsf{sum} = \mathsf{bisector} \Rightarrow$

velocity vectors of incident ray from source and reflected ray from receiver (traced backwards in time) make equal angles with reflector at \mathbf{x} with normal ξ .

Upshot: canonical relation of $F_{\delta}[v]$ simply enforces the equal-angles law of reflection.

Further, *rays carry high-frequency energy*, in exactly the fashion that seismologists imagine.

Finally, Rakesh's characterization of C_F is global: no assumptions about ray geometry, other than no forward scattering and no grazing incidence on the acquisition surface Y, are needed.

Inversion aperture Γ:

 $(\mathbf{x}, \boldsymbol{\xi}) \in \Gamma \Leftrightarrow$

there is $(\mathbf{x}_s, t, \mathbf{x}_r) \in Y$ and rays connecting \mathbf{x}_s and \mathbf{x}_r with \mathbf{x} so that $\boldsymbol{\xi}$ bisects ray velocity vectors, and total time along the two rays is = t

Exercise based on HorizontalReflector2D.py

Explain why inverted layers do not extend to boundary - explain where they end

Proof: Plan of attack

Recall that

$$F[v]r(\mathbf{x}_r, t; \mathbf{x}_s) = \frac{\partial \delta u}{\partial t}(\mathbf{x}_r, t; \mathbf{x}_s)$$

where

$$\frac{1}{v^2} \frac{\partial^2 \delta u}{\partial t^2} - \nabla^2 \delta u = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} r$$

$$\frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} - \nabla^2 u = \delta(t) \delta(\mathbf{x} - \mathbf{x}_s)$$

and $u, \delta u \equiv 0, t < 0.$

Proof: Plan of attack

Need to understand (1) WF(u), (2) relation $WF(r) \leftrightarrow WF(ru)$, (3) WF of soln of WE in terms of WF of RHS (this also gives (1)!).

Singularities of the Acoustic Potential Field

Main tool: **Propagation of Singularities** theorem of Hörmander (1970).

Given symbol $p(\mathbf{x}, \boldsymbol{\xi})$ w. asymptotic expansion, order m, define *null bicharateristics* (= rays) as solutions $(\mathbf{x}(t), \boldsymbol{\xi}(t))$ of Hamiltonian system

$$\frac{d\mathbf{x}}{dt} = \frac{\partial p_m}{\partial \boldsymbol{\xi}}(\mathbf{x}, \boldsymbol{\xi}), \ \frac{d\boldsymbol{\xi}}{dt} = -\frac{\partial p_m}{\partial \mathbf{x}}(\mathbf{x}, \boldsymbol{\xi})$$

with $p_m(\mathbf{x}(t), \boldsymbol{\xi}(t)) \equiv 0.$

Singularities of the Acoustic Potential Field

Theorem: Suppose $p(\mathbf{x}, D)u = f$, $t \mapsto (\mathbf{x}(t), \boldsymbol{\xi}(t))$ is a null bicharacteristic, and for $t_0 \leq t \leq t_1$, $(\mathbf{x}(t), \boldsymbol{\xi}(t)) \notin WF(f)$. Then either

$$\blacktriangleright \ \{(\mathsf{x}(t), \boldsymbol{\xi}(t)) : t_0 \leq t \leq t_1\} \subset WF(u)$$

or

$$\quad \{(\mathsf{x}(t),\boldsymbol{\xi}(t)): t_0 \leq t \leq t_1\} \subset T^*(\mathsf{R}^n) - WF(u)$$

Source to Field

RHS of wave equation for $u = \delta$ function in \mathbf{x}, t . WF set = {($\mathbf{x}, t, \boldsymbol{\xi}, \tau$) : $\mathbf{x} = \mathbf{x}_s, t = 0$ } - i.e. no restriction on covector part.

 \Rightarrow (**x**, *t*, $\boldsymbol{\xi}$, τ) \in *WF*(*u*) iff it lies on a null bichar passing over (**x**_s, 0)

 \Rightarrow (**x**, *t*) lies on the "light cone" with vertex at (**x**_s, 0).

[Principal symbol for wave op is $p_2(\mathbf{x}, t, \boldsymbol{\xi}, \tau) = \frac{1}{2}(\tau^2 - v^2(\mathbf{x})|\boldsymbol{\xi}|^2)$]

Source to Field

Hamilton's equations for null bicharacteristics (using *t* for parameter) are

$$\frac{dt}{dt} = 1 = \tau, \ \frac{d\tau}{dt} = 0$$
$$\frac{d\mathbf{X}}{dt} = -v^2(\mathbf{X})\mathbf{\Xi}, \ \frac{d\mathbf{\Xi}}{dt} = \nabla \log v(\mathbf{X})$$
Thus $\boldsymbol{\xi}$ is proportional to velocity vector of ray.
[Exercise: show $(\boldsymbol{\xi}, \tau)$ normal to light cone]

Singularities of Products

To compute WF(ru) from WF(r) and WF(u), use *Gabor calculus* (Duistermaat, Ch. 1)

r is really $(r \circ \pi)$, where $\pi(\mathbf{x}, t) = \mathbf{x}$. Choose bump function ϕ localized near (\mathbf{x}, t)

$$[\phi(\mathbf{r}\circ\pi)\mathbf{u}]^{\wedge}(\boldsymbol{\xi},\tau) = \int d\boldsymbol{\xi}' d\tau' \widehat{\phi \mathbf{r}}(\boldsymbol{\xi}') \delta(\tau') \widehat{\mathbf{u}}(\boldsymbol{\xi}-\boldsymbol{\xi}',\tau-\tau')$$

$$=\int d\xi' \widehat{\phi r}(\xi') \widehat{u}(\xi-\xi',\tau)$$

decays rapidly as
$$|(\boldsymbol{\xi}, \tau)| \to \infty$$
 unless (i) exist
 $(\mathbf{x}', \boldsymbol{\xi}') \in WF(r)$ so that $\mathbf{x}, \mathbf{x}' \in \pi(\operatorname{supp}\phi)$,
 $(\boldsymbol{\xi} - \boldsymbol{\xi}', \cdot) \in WF(u)$, i.e.
 $(\boldsymbol{\xi}, \cdot) \in WF(r \circ \pi) + WF(u)$, or (ii) $\boldsymbol{\xi} \in WF(r)$ or
 $(\boldsymbol{\xi}, \cdot) \in WF(u)$.

Possibility (ii) will not contribute, so effectively

$$egin{aligned} & \mathcal{WF}((r\circ\pi)u) = \{(\mathbf{x},t_s,m{\xi}+m{\Xi}_s(t_s),\cdot):\ & (\mathbf{x},m{\xi})\in\mathcal{WF}(r),\,\mathbf{x}=m{X}_s(t_s)\} \end{aligned}$$

for a ray $(\mathbf{X}_s, \mathbf{\Xi}_s)$ with $\mathbf{X}_s(0) = x_s$, some τ .

Wavefront set of Scattered Field

Propagation of singularities: $(\mathbf{x}_r, t, \boldsymbol{\xi}_r, \tau_r) \in WF(\delta u) \Leftrightarrow$ on ray $(\mathbf{X}_r, \boldsymbol{\Xi}_r)$ passing through WF(ru). Can argue that time of intersection is $t - t_r < t$ (Exercise: do it!)

That is,

$$\mathbf{X}_r(t) = \mathbf{x}_r, \mathbf{X}_r(t-t_r) = \mathbf{X}_s(t_s) = x,$$

 $t = t_r + t_s$, and

$$\boldsymbol{\Xi}_r(t_s) = \boldsymbol{\xi} + \boldsymbol{\Xi}_s(t_s)$$

for some $\boldsymbol{\xi} \in WF(r)$. **Q. E. D.**

4. Global Asymptotics

Why Beylkin isn't enough

Geometry of Reflection

Development of Global Asymptotics

Kinematic Artifacts in Migration

Rakesh's Thesis

Rakesh (1986):

- ► F[v] is Fourier Integral Operator = class of oscillatory integral operators, introduced by Hörmander and others in the '70s to describe the solutions of nonelliptic PDEs (ΨDOs are special FIOs.)
- Adjoint of FIO = FIO with inverse canonical relation
- Composition of FIOs \neq FIO in general not an algebra (unlike Ψ DOs)

Rakesh's Thesis

- Beylkin: F[v]*F[v] is FIO (ΨDO, actually), given simple ray geometry hypothesis - but this is only sufficient
- ► Rakesh: follows from general results of Hörmander: simple ray geometry ⇔ canonical relation is graph of ext. deriv. of phase function.

Inversion aperture $\neq T^*X \Rightarrow F[v]^*F[v]$ cannot be boundedly invertible

[Exercise: Why? Hint: revisit relation between symbol and operator, recall that inversion aperture is not all of T^*X]

A microlocal parametrix for a Ψ DO P in a conic set Γ is an operator Q for which

$$u - QPu \in C^{\infty}$$

if $WF(u) \subset \Gamma$

Smit, tenKroode and Verdel (1998): provided that

- source, receiver positions (x_s, x_r) form an open 4D manifold ("complete coverage" - all source, receiver positions at least locally), and
- ► the Traveltime Injectivity Condition ("TIC") holds: C⁻¹_{F[v]} ⊂ T*Y \ {0} × T*X \ {0} is a function - that is, initial data for source and receiver rays projected into T*Y and total travel time together determine ray pair uniquely....

- then $F[v]^*F[v]$ is ΨDO
- \Rightarrow application of $F[v]^*$ produces image

and $F[v]^*F[v]$ has microlocal parametrix ("asymptotic inverse") in inversion aperture

TIC is a nontrivial constraint!

Symmetric waveguide: time $(\mathbf{x}_s \rightarrow \mathbf{\bar{x}} \rightarrow \mathbf{x}_r)$ same as time $(\mathbf{x}_s \rightarrow \mathbf{x} \rightarrow \mathbf{x}_r)$, so TIC fails.

Stolk (2000): for dim=2, under "complete coverage" hypothesis, v for which $F[v]^*F[v] = [\Psi DO + rel.$ smoothing op] open, dense set in $C^{\infty}(\mathbb{R}^2)$ (without assuming TIC!). Conjecture: same for dim=3.

Also, for any dim, v for which $F[v]^*F[v]$ is FIO open, dense in $C^{\infty}(\mathbf{R}^2)$.

Application of $F[v]^*$ involves accounting for *all* rays connecting source and receiver with reflectors.

Standard practice at time attempted to simplify integral kernel with single choice of ray pair (shortest time, max energy,...).

Operto et al (2000): nice illustration that all rays must be included in general to obtain good image.

Nolan's Thesis

Limitation of Smit-tenKroode-Verdel: most idealized data acquisition geometries violate "complete coverage": for example, idealized marine streamer geometry (src-recvr submfd is 3D)

Nolan (1997): result remains true without "complete coverage" condition: requires only TIC plus addl condition so that projection $C_{F[v]} \rightarrow T^*Y$ is embedding - but examples violating TIC are much easier to construct when source-receiver submfd has positive codim.

Sinister Implication: When data is just a single gather - common shot, common offset - image may contain *artifacts*, i.e. spurious reflectors not present in model.

4. Global Asymptotics

Why Beylkin isn't enough

Geometry of Reflection

Development of Global Asymptotics

Kinematic Artifacts in Migration

Horrible Example

Synthetic 2D Example (see Stolk and WWS, *Geophysics* 2004 for this and other horrible expls)

Strongly refracting acoustic lens (v) over horizontal reflector (r), $S^{obs} = F[v]r$.

(i) for open source-receiver set, $F[v]^*S^{obs} = \text{good}$ image of reflector - within limits of finite frequency implied by numerical method, $F[v]^*F[v]$ acts like Ψ DO;

(ii) for common offset submfd (codim 1), TIC is violated and $WF(F[v]^*S^{obs})$ is larger than WF(r).

Gaussian lens velocity model, flat reflector at depth 2 km, overlain with rays and wavefronts (Stolk & S. 2002 SEG).

Typical shot gather - lots of arrivals

Image from common offset gather, h = 0.3 - TIC fails (3 ray pairs with same data), image has "artifact" WF

Image from all offsets - TIC holds, "WF" recovered

What it all means

Note that a gather scheme makes the scattering operator block-diagonal: for example with data sorted into common offset gathers $h = (x_r - x_s)/2$,

$$F[v] = [F_{h_1}[v], ..., F_{h_N}[v]]^T, \ d = [d_{h_1}, ..., d_{h_N}]^T$$

Thus $F[v]^*d = \sum_i F_{h_i}[v]^*d_{h_i}$. Otherwise put: to form image, **migrate** *i*th gather (apply migration operator $F_{h_i}[v]^*$, then **stack** individual migrated images.

Horrible Examples show that individual offset gather images may contain nonphysical apparent reflectors (artifacts).

Smit-tenKroode-Verdel, Nolan, Stolk: if TIC holds, then these artifacts are not stationary with respect to the gather parameter, hence *stack out* (interfere destructively) in final image.

