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The theory developed by Beylkin and others cannot
be the end of the story:

B. White, “The Stochastic Caustic” (1982): For
“random but smooth” v(x) with variance σ, points
at distance O(σ−2/3) from source have more than
one ray connecting to source, with probability 1 -
multipathing associated with formation of caustics
= ray envelopes.



Example: Marmousi, lightly smoothed
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Multipathing, formation of caustics invalidates
asymptotic analysis on which GRT representation is
based:

multiple rays ⇒ traveltime no longer function of
position



Why it matters

Strong refraction: salt
(4-5 km/s) structures
embedded in sedimentary
rock (2-3 km/s) (eg. Gulf
of Mexico), also chalk in
North Sea, gas seeps -
some of the most
promising petroleum
provinces!
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Escape from simplicity - the Canonical
Relation

How do we get away from “simple geometric
optics”, SSR, DSR,... - all violated in sufficiently
complex (and realistic) models?

Rakesh Comm. PDE 1988, Nolan Comm. PDE
1997: global description of Fδ[v ] as mapping
reflectors 7→ reflections.



Escape from simplicity - the Canonical
Relation

Y = {xs , t, xr} (time × set of source-receiver pairs)
submfd of R7 of dim. ≤ 5, Π : T ∗(R7)→ T ∗Y the
natural projection

supp r ⊂ X ⊂ R3



Escape from simplicity - the Canonical
Relation

Canonical relation
CFδ[v ] ⊂ T ∗(X ) \ {0} × T ∗(Y ) \ {0} describes
singularity mapping properties of F :

(x, ξ, y, η) ∈ CFδ[v ] ⇔ for some u ∈ E ′(X ),

(x, ξ) ∈ WF (u)and (y, η) ∈ WF (Fu)



Rakesh’s Construction

recall defn of rays: solutions of Hamiltonian system

dX

dt
= ∇ΞH(X,Ξ),

dΞ

dt
= −∇XH(X,Ξ)

with

H(X,Ξ) =
1

2
(1− v 2(X)|Ξ|2) = 0



Rakesh’s Construction

Characterization of CF :

((x, ξ), (xs , t, xr , ξs, τ, ξr)) ∈ CFδ[v ]

⊂ T ∗(X )− {0} × T ∗(Y )− {0}
⇔ there are rays (Xs ,Ξs), (Xr ,Ξr), times ts , tr so
that

Π(Xs(0), t,Xr(t),Ξs(0), τ,Ξr(t)) = (xs , t, xr , ξs , τ, ξr),

Xs(ts) = Xr(t−tr) = x, ts+tr = t, Ξs(ts)−Ξr(t−tr)||ξ



Rakesh’s Construction

|Ξs(ts)| = |Ξr(t − tr)| ⇒

sum = bisector ⇒

velocity vectors of incident ray from source and
reflected ray from receiver (traced backwards in
time) make equal angles with reflector at x with
normal ξ.



Rakesh’s Construction
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Rakesh’s Construction

Upshot: canonical relation of Fδ[v ] simply enforces
the equal-angles law of reflection.

Further, rays carry high-frequency energy, in exactly
the fashion that seismologists imagine.

Finally, Rakesh’s characterization of CF is global: no
assumptions about ray geometry, other than no
forward scattering and no grazing incidence on the
acquisition surface Y , are needed.



Rakesh’s Construction

Inversion aperture Γ:

(x, ξ) ∈ Γ ⇔

there is (xs , t, xr) ∈ Y and rays connecting xs and
xr with x so that ξ bisects ray velocity vectors, and
total time along the two rays is = t



Rakesh’s Construction

(t−t )

X

s
Ξ (t )

s

X s

x

x x ξ rs, r,sξ,

Ξ s

ξ,

rΞr,

,

ΠΠ

−Ξr r 



Rakesh’s Construction
Exercise based on HorizontalReflector2D.py

Explain why inverted layers do not extend to
boundary - explain where they end



Proof: Plan of attack

Recall that

F [v ]r(xr , t; xs) =
∂δu

∂t
(xr , t; xs)

where
1

v 2
∂2δu

∂t2
−∇2δu =

1

v 2
∂2u

∂t2
r

1

v 2
∂2u

∂t2
−∇2u = δ(t)δ(x− xs)

and u, δu ≡ 0, t < 0.



Proof: Plan of attack

Need to understand (1) WF (u), (2) relation
WF (r)↔ WF (ru), (3) WF of soln of WE in terms
of WF of RHS (this also gives (1)!).



Singularities of the Acoustic Potential
Field

Main tool: Propagation of Singularities theorem
of Hörmander (1970).

Given symbol p(x, ξ) w. asymptotic expansion,
order m, define null bicharateristics (= rays) as
solutions (x(t), ξ(t)) of Hamiltonian system

dx

dt
=
∂pm
∂ξ

(x, ξ),
dξ

dt
= −∂pm

∂x
(x, ξ)

with pm(x(t), ξ(t)) ≡ 0.



Singularities of the Acoustic Potential
Field

Theorem: Suppose p(x,D)u = f , t 7→ (x(t), ξ(t))
is a null bicharacteristic, and for t0 ≤ t ≤ t1,
(x(t), ξ(t)) /∈ WF (f ). Then either

I {(x(t), ξ(t)) : t0 ≤ t ≤ t1} ⊂ WF (u)

or

I {(x(t), ξ(t)) : t0 ≤ t ≤ t1} ⊂ T ∗(Rn)−WF (u)



Source to Field

RHS of wave equation for u = δ function in x, t.
WF set = {(x, t, ξ, τ) : x = xs , t = 0} - i.e. no
restriction on covector part.

⇒ (x, t, ξ, τ) ∈ WF (u) iff it lies on a null bichar
passing over (xs , 0)

⇒ (x, t) lies on the “light cone” with vertex at
(xs , 0).

[Principal symbol for wave op is
p2(x, t, ξ, τ) = 1

2(τ 2 − v 2(x)|ξ|2)]



Source to Field

Hamilton’s equations for null bicharacteristics (using
t for parameter) are

dt

dt
= 1 = τ,

dτ

dt
= 0

dX

dt
= −v 2(X)Ξ,

dΞ

dt
= ∇ log v(X)

Thus ξ is proportional to velocity vector of ray.

[Exercise: show (ξ, τ) normal to light cone]



Singularities of Products
To compute WF (ru) from WF (r) and WF (u), use
Gabor calculus (Duistermaat, Ch. 1)

r is really (r ◦ π), where π(x, t) = x. Choose bump
function φ localized near (x, t)

[φ(r◦π)u]∧(ξ, τ) =

∫
dξ′ dτ ′φ̂r(ξ′)δ(τ ′)û(ξ−ξ′, τ−τ ′)

=

∫
dξ′φ̂r(ξ′)û(ξ − ξ′, τ)



decays rapidly as |(ξ, τ)| → ∞ unless (i) exist
(x′, ξ′) ∈ WF (r) so that x, x′ ∈ π(suppφ),
(ξ − ξ′, ·) ∈ WF (u), i.e.
(ξ, ·) ∈ WF (r ◦ π) + WF (u), or (ii) ξ ∈ WF (r) or
(ξ, ·) ∈ WF (u).

Possibility (ii) will not contribute, so effectively

WF ((r ◦ π)u) = {(x, ts , ξ + Ξs(ts), ·) :

(x, ξ) ∈ WF (r), x = Xs(ts)}

for a ray (Xs ,Ξs) with Xs(0) = xs , some τ .



Wavefront set of Scattered Field
Propagation of singularities:
(xr , t, ξr , τr) ∈ WF (δu)⇔ on ray (Xr ,Ξr) passing
through WF (ru). Can argue that time of
intersection is t − tr < t (Exercise: do it!)

That is,

Xr(t) = xr ,Xr(t − tr) = Xs(ts) = x ,

t = tr + ts , and

Ξr(ts) = ξ + Ξs(ts)

for some ξ ∈ WF (r). Q. E. D.
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Rakesh’s Thesis

Rakesh (1986):

I F [v ] is Fourier Integral Operator = class of
oscillatory integral operators, introduced by
Hörmander and others in the ’70s to describe
the solutions of nonelliptic PDEs (ΨDOs are
special FIOs.)

I Adjoint of FIO = FIO with inverse canonical
relation

I Composition of FIOs 6= FIO in general - not an
algebra (unlike ΨDOs)



Rakesh’s Thesis

I Beylkin: F [v ]∗F [v ] is FIO (ΨDO, actually),
given simple ray geometry hypothesis - but this
is only sufficient

I Rakesh: follows from general results of
Hörmander: simple ray geometry ⇔ canonical
relation is graph of ext. deriv. of phase
function.



The Shell Guys and TIC

Inversion aperture 6= T ∗X ⇒ F [v ]∗F [v ] cannot be
boundedly invertible

[Exercise: Why? Hint: revisit relation between
symbol and operator, recall that inversion aperture
is not all of T ∗X ]



The Shell Guys and TIC

A microlocal parametrix for a ΨDO P in a conic set
Γ is an operator Q for which

u − QPu ∈ C∞

if WF (u) ⊂ Γ



The Shell Guys and TIC

Smit, tenKroode and Verdel (1998): provided that

I source, receiver positions (xs , xr) form an open
4D manifold (“complete coverage” - all source,
receiver positions at least locally), and

I the Traveltime Injectivity Condition (“TIC”)
holds: C−1F [v ] ⊂ T ∗Y \ {0} × T ∗X \ {0} is a

function - that is, initial data for source and
receiver rays projected into T ∗Y and total
travel time together determine ray pair
uniquely....



The Shell Guys and TIC

then F [v ]∗F [v ] is ΨDO

⇒ application of F [v ]∗ produces image

and F [v ]∗F [v ] has microlocal parametrix
(“asymptotic inverse”) in inversion aperture



TIC is a nontrivial constraint!

x x

x xs r

Symmetric waveguide: time (xs → x̄→ xr) same as
time (xs → x→ xr), so TIC fails.



Stolk’s Thesis

Stolk (2000): for dim=2, under “complete
coverage” hypothesis, v for which F [v ]∗F [v ] =
[ΨDO + rel. smoothing op] open, dense set in
C∞(R2) (without assuming TIC!). Conjecture:
same for dim=3.

Also, for any dim, v for which F [v ]∗F [v ] is FIO
open, dense in C∞(R2).



Operto’s Thesis

Application of F [v ]∗ involves accounting for all rays
connecting source and receiver with reflectors.

Standard practice at time attempted to simplify
integral kernel with single choice of ray pair
(shortest time, max energy,...).

Operto et al (2000): nice illustration that all rays
must be included in general to obtain good image.



Nolan’s Thesis

Limitation of Smit-tenKroode-Verdel: most
idealized data acquisition geometries violate
“complete coverage”: for example, idealized marine
streamer geometry (src-recvr submfd is 3D)

Nolan (1997): result remains true without
“complete coverage” condition: requires only TIC
plus addl condition so that projection CF [v ] → T ∗Y
is embedding - but examples violating TIC are much
easier to construct when source-receiver submfd has
positive codim.



Nolan’s Thesis

Sinister Implication: When data is just a single
gather - common shot, common offset - image may
contain artifacts, i.e. spurious reflectors not present
in model.
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Horrible Example

Synthetic 2D Example (see Stolk and WWS,
Geophysics 2004 for this and other horrible expls)

Strongly refracting acoustic lens (v) over horizontal
reflector (r), Sobs = F [v ]r .

(i) for open source-receiver set, F [v ]∗Sobs = good
image of reflector - within limits of finite frequency
implied by numerical method, F [v ]∗F [v ] acts like
ΨDO;

(ii) for common offset submfd (codim 1), TIC is
violated and WF (F [v ]∗Sobs) is larger than WF (r).
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What it all means

Note that a gather scheme makes the scattering
operator block-diagonal: for example with data
sorted into common offset gathers h = (xr − xs)/2,

F [v ] = [Fh1[v ], ...,FhN [v ]]T , d = [dh1, ..., dhN ]T

Thus F [v ]∗d =
∑

i Fhi [v ]∗dhi . Otherwise put: to
form image, migrate ith gather (apply migration
operator Fhi [v ]∗, then stack individual migrated
images.



What it all means

Horrible Examples show that individual offset gather
images may contain nonphysical apparent reflectors
(artifacts).

Smit-tenKroode-Verdel, Nolan, Stolk: if TIC holds,
then these artifacts are not stationary with respect
to the gather parameter, hence stack out (interfere
destructively) in final image.
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