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0. Introduction
How do you turn lots of this...
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(field seismogram from the Gulf of Mexico - thanks:
Exxon Production Co.)



0. Introduction
into this - an image of subsurface structure
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TRIP - K. Araya - 1995



0. Introduction
resembling actual subsurface structure

WWS - 2013



0. Introduction

Also: what does imaging have to do with

inversion

= construction of a physical model that explains
data

?



0. Introduction
Main goal of these lectures: coherent mathematical
view of reflection seismic imaging, as practiced in
petroleum industry, and its relation to seismic
inversion

I imaging = approximate solution of inverse
problem for wave equation

I most practical imaging methods based on
linearization (“perturbation theory”)

I high frequency asymptotics (“microlocal
analysis”) key to understanding

I beyond linearization, asymptotics - many open
problems



0. Introduction

Lots of mathematics - much yet to be
created - with practical implications!
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Reflection seismology

aka active source seismology, seismic
sounding/profiling

uses seismic (elastic) waves to probe the Earth’s
sedimentary crust

main exploration tool of oil & gas industry, also
used in environmental and civil engineering (hazard
detection, bedrock profiling) and academic
geophysics (structure of crust and mantle)



Reflection seismology

highest resolution imaging technology for deep
Earth exploration, in comparison with static
(gravimetry, resistivity) or diffusive (passive, active
source EM) techniques - works because

waves transfer space-time resolved information from
one place to another with (relatively) little loss

wavelengths at easily accessible frequencies ∼ scale
of important structural features



Reflection seismology

Three components:

I energy/sound source - creates wave traveling
into subsurface

I receivers - record waves (echoes) reflected from
subsurace

I recording and signal processing instrumentation



Reflection seismology

http://www.glossary.oilfield.slb.com/en/Terms/s/streamer.aspx, 12.07.2013



Reflection seismology

Marine reflection seismology:

I typical energy source: airgun array - releases
(array of) supersonically expanding bubbles of
compressed air, generates sound pulse in water

I typical receivers: hydrophones (waterproof
microphones) in one or more 5-10 km flexible
streamer(s) - wired together 500 - 30000
groups (each group produces a single channel /
time series)

I survey ships - lots of recording, processing
capacity



Reflection seismology

Survey consists of many experiments = shots =
source positions xs

Simultaneous recording of reflections at many
localized receivers, positions xr , time interval =
0− O(10)s after initiation of source.

Data acquired on land and at sea (“marine”) - vast
bulk (90%+) of data acquired each year is marine.



Reflection seismology

Marine seismic data parameters:

I time t - 0 ≤ t ≤ tmax, tmax = 5− 30s

I source location xs - 100 - 100000 distinct
values

I receiver location xr

I typically the same range of offsets = xr − xs

for each shot - half offset h = xr−xs
2 , h = |h|:

100 - 500000 values (typical: 5000) - few m to
30 km (typical: 200 m - 8 km)

I data values: microphone output (volts), filtered
version of local pressure (force/area)



Reflection seismology

www.ogp.org.uk/pubs/448.pdf, 20.02.13



Reflection seismology

Acquisition “manifold”:

Idealized marine “streamer” geometry: xs and xr lie
roughly on constant depth plane, source-receiver
lines are parallel → 3 spatial degrees of freedom
(eg. xs , h): codimension 1.

[Other geometries are interesting, eg. ocean bottom
cables, but streamer surveys still prevalent.]



Reflection seismology

How much data? Contemporary surveys may
feature

I Simultaneous recording by multiple streamers
(up to 12!)

I Many (roughly) parallel ship tracks (“lines”)

I Recent development: Wide Angle Towed
Streamer (WATS) survey - uses multiple survey
ships for areal sampling of source and receiver
positions

I single line (“2D”) ∼ Gbytes; multiple lines
(“3D”) ∼ Tbytes; WATS ∼ Pbytes



Reflection seismology

www.youtube.com/watch?v=vrOLWRVGosQ, 20.02.13



Distinguished data subsets

I traces = data for one source, one receiver:
t 7→ d(xr , t; xs) - function of t, time series,
single channel

I gathers or bins = subsets of traces, extracted
from data after acquisition. Characterized by
common value of an acquisition parameter



Distinguished data subsets

Examples:

I shot (or common source) gather: traces w/
same shot location xs (previous expls)

I offset (or common offset) gather: traces w/
same half offset h

I ...



Shot gather, Mississippi Canyon
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Shot gather, Mississippi Canyon
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Lightly processed - bandpass filter 4-10-25-40 Hz,
mute. Most striking visual characteristic: waves =
coherent space-time structures (“reflections”)



Shot gather, Mississippi Canyon
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What features in the subsurface structure cause
reflections? How to model?



Well logs
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Blocked logs from well in North Sea (thanks: Mobil
R & D). Solid: p-wave velocity (m/s), dashed:
s-wave velocity (m/s), dash-dot: density (kg/m3).



Well logs
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“Blocked” means “averaged” (over 30 m windows).
Original sample rate of log tool < 1 m. Variance at
all scales!



Well logs
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P-wave velocity log from
West Texas

Thanks: Total E&P USA



Well logs
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I Trends = slow increase in velocities, density -
scale of km

I Reflectors = jumps in velocities, density -
scale of m or 10s of m
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The Modeling Task

A useful model of the reflection seismology
experiment must

I predict wave motion

I produce reflections from reflectors

I accomodate significant variation of wave
velocity, material density,...



The Modeling Task

A really good model will also accomodate

I multiple wave modes, speeds

I material anisotropy

I attenuation, frequency dispersion of waves

I complex source, receiver characteristics



The Acoustic Model

Not really good, but good enough for this week and
basis of most contemporary seismic
imaging/inversion

I ρ(x) = material density, κ(x) = bulk modulus

I p(x, t)= pressure, v(x, t) = particle velocity,

I f(x, t)= force density, g(x, t) = constitutive
law defect (external energy source model)



The Acoustic Model

Newton’s law:

ρ
∂v

∂t
= −∇p + f,

Constitutive (Hooke) law (stress-strain relation):

∂p

∂t
= −κ∇ · v + g

+ i. c.’s & b. c.’s.

wave speed c =
√

κ
ρ



The Acoustic Model

acoustic field potential u(x, t) =
∫ t

−∞ ds p(x, s):

p =
∂u

∂t
, v =

1

ρ
∇u

Equivalent form: second order wave equation for
potential

1

ρc2

∂2u

∂t2
−∇· 1

ρ
∇u =

{
g +

∫ t

−∞
dt∇ ·

(
f

ρ

)}
≡ f

ρ

plus initial, boundary conditions.



The Acoustic Model

Further idealizations:

I density ρ is constant,

I source force density is isotropic point radiator
with known time dependence (“source pulse”
w(t), typically of compact support)

f (x, t; xs) = w(t)δ(x− xs)

⇒ acoustic potential, pressure depends on source
location xs also.



Homogeneous acoustics
Suppose also that

I velocity c is constant

(“homogeneous” acoustic medium - same
stress-strain relation everywhere)

Explicit causal ( = vanishing for t << 0) solution
for 3D [Proof: exercise!]:

u(x, t) =
w(t − r/c)

4πr
, r = |x− xs |

Nomenclature: outgoing spherical wave



Homogeneous acoustics

Also explicit solution (up to quadrature) in 2D - a
bit more complicated (Poisson’s formula - exercise:
find it! eg. in Courant and Hilbert)

Looks like expanding circular wavefront for typical
w(t)

[MOVIE 1]

Observe: no reflections!!!



Homogeneous acoustics

Upshot: if acoustic model is at all appropriate, must
use non-constant c to explain observations.

Natural mathematical question: how nonconstant
can c be and still permit “reasonable” solutions of
wave equation?



Heterogeneous acoustics

Weak solution of Dirichlet problem in Ω ⊂ R3

(similar treatment for other b. c.’s):

u ∈ C 1([0,T ]; L2(Ω)) ∩ C 0([0,T ];H1
0 (Ω))

satisfying for any φ ∈ C∞0 ((0,T )× Ω),∫ T

0

∫
Ω

dt dx

{
1

ρc2

∂u

∂t

∂φ

∂t
− 1

ρ
∇u · ∇φ +

1

ρ
f φ

}
= 0



Heterogeneous acoustics

Theorem (Lions, 1972) log ρ, log c ∈ L∞(Ω),
f ∈ L2(Ω× R) ⇒ weak solutions of Dirichlet
problem exist; initial data

u(·, 0) ∈ H1
0 (Ω),

∂u

∂t
(·, 0) ∈ L2(Ω)

uniquely determine them.



Key Ideas in Proof

1. Conservation of energy: first assume that f ≡ 0,
set

E [u](t) =
1

2

∫
Ω

(
1

ρc2
p(·, t)2 + ρ|v(·, t)|2

)
= elastic strain energy (potential + kinetic)

=
1

2

∫
Ω

(
1

ρc2

(
∂u

∂t
(·, t)

)2

+
1

ρ
|∇u(·, t)|2

)



Key Ideas in Proof

u smooth enough ⇒ integrations by parts &
differentiations under integral sign make sense ⇒

dE [u]

dt
= 0



Key Ideas in Proof
General case (f 6= 0): with help of Cauchy-Schwarz
≤,

dE [u]

dt
(t) ≤ const.

(
E [u](t) +

∫ t

0

ds

∫
Ω

dx f 2(x, s)

)
whence for 0 ≤ t ≤ T ,

E [u](t) ≤ const.

(
E [u](0) +

∫ t

0

ds

∫
Ω

dx f 2(x, s)

)
(Gronwall’s ≤)

const on RHS bounded by T ,
‖ log ρ‖L∞(Ω), ‖ log c‖L∞(Ω)



Key Ideas in Proof

Poincaré’s ≤ ⇒ “a priori estimate”∥∥∥∥∂u∂t (·, t)

∥∥∥∥
L2(Ω)2

+ ‖u(·, t)‖2
H1(Ω)

≤ const.

(∥∥∥∥∂u∂t (·, 0)

∥∥∥∥
L2(Ω)2

+ ‖u(·, 0)‖2
H1(Ω)

+

∫ t

−∞
ds

∫
Ω

dx f 2(x, s)

)



Key Ideas in Proof

Derivation presumed more smoothness than weak
solutions have, ex def. First serious result:

Weak solutions obey same a priori estimate

Proof via approximation argument.

Corollary: Weak solutions uniquely determined by
t = 0 data



Key Ideas in Proof

2. Galerkin approximation: Pick increasing sequence
of subspaces

W 0 ⊂ W 1 ⊂ W 2 ⊂ ... ⊂ H1
0 (Ω)

so that
∪∞n=0W

n dense in L2(Ω)

Typical example: piecewise linear Finite Element
subspaces on sequence of meshes, each refinement
of preceding.



Key Ideas in Proof

Galerkin principle: find un ∈ C 2([0,T ],W n) so that
for any φn ∈ C 1([0,T ],W n),∫ T

0

∫
Ω

dt dx

{
1

ρc2

∂un

∂t

∂φn

∂t
− 1

ρ
∇un · ∇φn +

1

ρ
f φn
}

= 0



Key Ideas in Proof
In terms of basis {φnm : m = 0, ...,Nn} of W n, write

un(t, x) =
Nn∑
m=0

Un
m(t)φnm(x)

Then integration by parts in t ⇒ coefficient vector
Un(t) = (Un

0 (t), ...,Un
Nn)T satisfies ODE

Mnd
2Un

dt2
+ K nUn = F n

where

Mn
i ,j =

∫
Ω

1

ρc2
φni φ

n
j , K

n
i ,j =

∫
Ω

1

ρ
∇φni · ∇φnj

and sim for F n



Key Ideas in Proof

Assume temporarily that
f ∈ C 0([0,T ], L2(Ω)) ⊂ L2([0,T ]× Ω) - then
F n ∈ C 0([0,T ],W n), so...

basic theorem on ODEs ⇒ existence of Galerkin
approximation un.

Energy estimate for Galerkin approximation -

E [un](t) ≤ const.

(
E [un](0) +

∫ t

0

‖f (·, t)‖2
L2(Ω)

)
constant independent of n.



Key Ideas in Proof

Alaoglu Thm ⇒ {un} weakly precompact in
L2([0,T ],H1

0 (Ω)), {∂un/∂t} weakly precompact in
L2([0,T ], L2(Ω)), so can select weakly convergent
sequence, limit u ∈ L2([0,T ],H1

0 (Ω)),
{∂u/∂t} ∈ L2([0,T ], L2(Ω)).



Key Ideas in Proof
Final cleanup of Galerkin existence argument:

I u is weak solution (necessarily the weak
solution!)

I remove regularity assumption on f via density
of C 0([0,T ], L2(Ω)) in L2([0,T ]× Ω), energy
estimate

More time regularity of f ⇒ more time regularity of
u. If you want more space regularity, then
coefficients must be more regular! (examples later)

See Stolk 2000 for details, Blazek et al. 2008 for
similar results re symmetric hyperbolic systems
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Reflection seismic inverse problem

Forward map F = time history of pressure for
each source location xs at receiver locations xr , as
function of c

Reality: xs samples finitely many points near surface
of Earth (z = 0), active receiver locations xr may
depend on source locations and are also discrete

but: sampling is reasonably fine (see plots!) so...

Idealization: (xs , xr) range over 4-diml closed
submfd with boundary Σ, source and receiver
depths constant.



Reflection seismic inverse problem

(predicted seismic data), depends on velocity field
c(x):

F [c] = p|Σ×[0,T ]

Inverse problem: given observed seismic data
d ∈ L2(Σ× [0,T ]), find c so that

F [c] ' d

(NB: generalizations to elasticity etc., vector
data...)



Reflection seismic inverse problem

This inverse problem is

I large scale - Tbytes of data, Pflops to simulate
forward map

I nonlinear

I yields to no known direct attack (no “solution
formula”)

I indirect approach: formulate as optimization
problem (find “best fit” model)



Reflection seismic inverse problem

Optimization - typically least squares (Tarantola,
Lailly,... 1980’s → present):

Given d , find c to minimize

‖F [c]− d‖2 [+regularization]

over suitable class of c

Contemporary alias: full waveform inversion
(“FWI”)



Reflection seismic inverse problem

Changing attitudes to FWI:

I 2002: called “academic approach” by
prominent exploration geophysicist

I 2013: every major oil and service company has
significant R & D effort, some deployment

I SEG 2002: 2 technical sessions (out of > 50)
inversion and other topics

I SEG 2012: 9 technical sessions on seismic FWI

I 3 major workshops in 2012-13



Reflection seismic inverse problem



Reflection seismic inverse problem

Size, cost ⇒ Newton relative ⇒ compute gradient
(perhaps Hessian) - adjoint state method (Ch. 3)

⇒ linearization must make sense, i.e. F must be
differentiable in some sense
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