
HPC Summer School, Day 1:
Finite Difference Modeling and Reverse Time

Migration

William W. Symes

Rice University

Agenda

Wave physics, wave equations, and waves

Finite difference methods for the wave equation: accuracy,
stability, dispersion

wave.c: a simple finite difference modeling application

Imaging with waves: reverse time migration

rtm.c: a simple reverse time migration application

An exercise: decreasing dispersion by increasing order

Basic physics of linear waves

Acoustics

I position x = (z , x , y), time t

I dynamic fields: pressure p(x, t), particle velocity v(x, t)

I material parameters: material density ρ(x), bulk modulus κ(x)

I energy source: fc(x, t) (constitutive law defect)

linked by

ρ(x)
∂v

∂t
(x, t) = −∇p(x, t)

(Newton’s law) and

1

κ(x)

∂p

∂t
(x, t) = −∇ · v(x, t) + fc(x, t)

(constitutive law)

Basic physics of linear waves

acoustics = special case of

I gas dynamics (sound waves in gases and fluids)

I linear elastodynamics:

ρ
∂v

∂t
= ∇ · s, ∂s

∂t
= C :: v

s = stress, C = Hooke tensor (+ energy source
representation)

I Elastodynamics more accurate rep’n of Earth dynamics

I but most industrial seismic processing based on acoustic
model

I recent interest in quasiacoustic anisotropic approximations to
elastic p-waves

Basic physics of linear waves

Second order form:

I differentiate const. law wrt t

I introduce c =
√
κ/ρ (compressional (p-)wavevelocity)

I f = ∂fc
∂t

I eliminate v

1

ρc2

∂2p

∂t2
−∇ · 1

ρ
∇p = f

Sedimentary rocks, reflection geometry

Acoustics properties - log, North Sea (thanks Mobil - Keys &
Foster 1998)

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
500

1000

1500

2000

2500

3000

3500

4000

4500

depth (m)

p-wave velocity (top curve, m/s) varies substantially, density
(middle curve, gm/cm3) not so much, dominant variation vertical

⇒ constant density approximation

Sedimentary rocks, reflection geometry

Constant density acoustics:

1

c2

∂2p

∂t2
−∇2p = ρf

I simplest to understand - spatial operator is spatially
homogeneous

I basis for most processing

I increasingly popular: anisotropic generalizations

Sedimentary rocks, reflection geometry

Geometry of seismic reflection experiment:

I sources highly localize wrt other scales - characterized by
source position xs

I receivers (typically antenae) highly localized, receiver position
xr

I source, receiver depths near-constant over survey - sample
depth plane

I source-receiver distance = offset = 2h

I marine surveys: source, receiver characteristics highly
reproducible (eg. Dragoset et al. 1987)

2h
hydrophone streamer

acoustic source
(airgun array)x xr s

Sedimentary rocks, reflection geometry

Modeling consequences:

I simplest source representation: point radiator
f (x, t) = w(t)δ(x− xs), w(t) = source wavelet

I receiver representation: dual to source - point sampling

I seismic trace at xr , xs , t = p(xr , t) with
f (x, t) = w(t)δ(x− xs)

I experiment is causal: p = 0, t < tsrc - homogeneous initial
condition

I Caveat emptor: in reality, both sources and receivers are
antennae with nontrivial radiation pattern

Sedimentary rocks, reflection geometry

Simple solutions, homogeneous infinite space (c = const.):

I 3D: outgoing spherical wave

p(x, t) =
f
(
t − r

c

)
4πr

, r = |x− xs |

I 2D: Poisson’s formula

p(x, t) =
1

πc4

∫ √t−r/c

0

f ′(t − τ2 − r/c)√
τ2 + 2r/c

dτ

(looks like outgoing circular wave)

Sedimentary rocks, reflection geometry

Boundary conditions:

I Physical boundary - sea surface is nearly pressure-free
(water/air impedance contrast very large), so acts like perfect
reflector: p = 0 [land surface - not so perfect, also elastic
effects may be nonnegligible...]

I on wavelength scale (30 Hz 1500 m/s = 50 m) sea surface
often roughly flat - z = 0

I typical simulation domain = box
0 ≤ z ≤ zmax, xmin ≤ x ≤ xmax, sim for y

I other boundaries are artificial, should (mostly) absorb waves -
large literature on modeling of absorbing boundary conditions

Sedimentary rocks, reflection geometry

Boundary conditions, cont’d: Simple equivalence of free surface:
method of images - if pfull(x, t) is full space solution, then solution
in half-space z ≥ 0 with p(z = 0) = 0 is

p(x, t) = pfull(x, t)− pimg(x, t)

image or free surface ghost solution
pimg(x , y , z , t) = pfull(x , y ,−z , t)

Leads to directional tuning of amplitudes even for point radiator

DEMO test1:wavehom.showmovie

Agenda

Wave physics, wave equations, and waves

Finite difference methods for the wave equation: accuracy,
stability, dispersion

wave.c: a simple finite difference modeling application

Imaging with waves: reverse time migration

rtm.c: a simple reverse time migration application

An exercise: decreasing dispersion by increasing order

Critical references for finite difference modeling:

I Moczo et al., Advances in Geophysics 48 (2006), pp. 421-516

I Geophysics, special issue on modeling, Sept-Oct 2007

I G. Cohen, Higher order numerical methods for transient wave
equations, Springer, 2002

I R. Leveque, Finite difference methods for ordinary and partial
differential equations, SIAM, 2007

Basic concept

I replace continuum fields (p(x, t),...) with sampled discrete
fields

p(x, t)→ pk
n,m,l ' p(n∆z ,m∆x , l∆y , k∆t)

I replace derivatives by divided differences:

∂p

∂z
→

pk
n+1,m,l − pk

n−1,m,l

2∆z
,
∂2p

∂z2
→

pk
n+1,m,l + pk

n−1,m,l − 2pk
n,m,l

∆z2
,

and so on.

I solve resulting system of algebraic equations for pk
n,m,l

Basic concept

Time to ’fess up: this course deals (explicitly) only with 2D
problems, so

p(x, t)→ pk
n,m ' p(n∆z ,m∆x , k∆t)

Everything carries over nearly without change to 3D - with a lot
more flops, bytes!

Truncation error

Refers to difference between derivative and divided difference
(“finite difference”, FD) formulae, and ranks FD operators by
asymptotic order of accuracy

Based on Taylor’s formula:

p(x + ∆x) = p(x) +
∂p

∂x
(x)∆x +

1

2

∂2p

∂x2
+ ...

so
∂p

∂x
(x) =

p(x + ∆x)− p(x)

∆x
+ e(x ,∆x),

e(x ,∆x) =
1

2

∂2p

∂x2
(x)∆x + O(∆x2)

where “...” represents terms from rest of Taylor series, all having
at least two factors of ∆x - first order accurate

Truncation error

Also true that

∂p

∂x
(x) = −p(x −∆x)− p(x)

∆x
+ e(x ,∆x),

e(x ,∆x) = −1

2

∂2p

∂x2
(x)∆x + O(∆x2)

average these to get

∂p

∂x
(x) =

1

2

(
p(x + ∆x)− p(x)

∆x
− p(x −∆x)− p(x)

∆x

)
+ e(x ,∆x)

=
p(x + ∆x)− p(x −∆x)

2∆x
+ e(x ,∆x)

= centered difference formula for first derivative - 2nd order
accurate, e = O(∆x2)

Truncation error

Similar story for 2nd derivative: subtract the two first order first
derivative formulas on the last two sides, divide by ∆x to get
standard centered 2nd order operator

∂2p

∂x2
(x) =

p(x + ∆x)− 2p(x) + p(x −∆x)

∆x2
+ e(x ,∆x)

e(x ,∆x) = O(∆x2)

e depends on four term Taylor series w/ remainder - leading term
proportional to ∂4p/∂x4.

Truncation error

More arithmetic, using six term Taylor series ⇒ standard centered
4nd order operator

∂2p

∂x2
(x) =

− 1
12 p(x + 2∆x) + 4

3 p(x + ∆x)− 5
2 p(x) + 4

3 p(x −∆x)− 1
12 p(x − 2∆x)

∆x2
+e(x ,∆x)

e(x ,∆x) = O(∆x4)

Leading term in e proportional to ∂6p/∂x6

Truncation error

Can concoct difference formulas of arbitrary order of accuracy -
standard formulas shown so far use minimal number of points for
given accuracy (see Moczo et al 06, Cohen 02)

What difference does order make?

error formulae depend on attributes (Taylor series) of function
being approximated (p(x, t))

⇒ 2nd order always beats 1st order for small enough ∆x - more
generally, higher order always beats lower order for small enough
∆x

Caveat: derivatives up to the appropriate order must exist... more
on this later

Standard 2nd order scheme

I compute only points on (∆z ,∆x ,∆t) grid - use notation
pk
n,m ' p(n∆z ,m∆x , k∆t)

I substitute standard 2nd order centered difference formula for
2nd derivatives in const density acoustic wave equation

pk+1
n,m − 2pk

n,m + pk−1
n,m

∆t2
=

(c2)n,m

(
pk
n+1,m − 2pk

n,m + pk
n−1,m

∆z2
+

pk
n,m−1 − 2pk

n,m + pk
n,m−1

∆x2
+ wkδn,m

)

Standard 2nd order scheme

Here δ is discrete approximation to Dirac delta function: if
zs = ns∆z , xs = ms∆x , then

δn,m =

{
1

∆z∆x , n = ns ,m = ms

0, else

wk = w(k∆t)

(c2)n,m = c2(n∆z ,m∆x)

Standard 2nd order scheme

Formula to be used to advance p in t - clear denominators,
rearrange:

pk+1
n,m = 2pk

n,m − pk−1
n,m +

(c2)n,m[rz(pk
n+1,m+pk

n−1,m)+rx(pk
n,m−1+pk

n,m−1)+spk
n,m+∆t2wkδn,m]

rz =
∆t2

∆z2
, rx =

∆t2

∆x2
, s = −2

(
∆t2

∆z2
+

∆t2

∆x2

)
RHS involves same sum of five neignboring p-values at every
(n,m) - standard five-point stencil. Provides explicit computation
of field update pk

n,m: explicit scheme.

Stability and Convergence

Truncation error e of scheme = difference between LHS, RHS
when pk

n,m = p(n∆z ,m∆x , k∆t)

Will use one-parameter family of grids: ∆z = az∆t,∆x = ax∆t
with fixed az , ax (reason for this to come)

Main Theorem: provided stability condition (to be discussed next)
holds, if e = O(∆tp), p > 0 then
p(n∆z ,m∆x , k∆t)− pk

n,m = O(∆tp)

Role of truncation error: to estimate how well FD solution
approximates wave equation solution, compute how well wave
equation solution satisfies FD equation!

Stability and Convergence

Scheme is stable if the size of the solution to an inhomogeneous
FD problem (with LHS = RHS + inhom. term) is proportional to
the size of the inhomogeneous term - const. of proportionality
indep. of choice of inhom. term for fixed simulation time in
physical units, i.e. 0 ≤ k∆t ≤ tmax.

Why this forces convergence: difference p(n∆z ,m∆x , k∆t)− pk
n,m

solves inhom. problem with LHS=RHS+e, i.e. inhom. term =
truncation error. If scheme is stable, then
p(n∆z ,m∆x , k∆t)− pk

n,m has to go to zero with ∆t at the same
rate as e.

Generally, explicit schemes are stable ⇔
∆t < const.max(∆z ,∆x). For nD 2nd order centered scheme,
const. = 1/(cmax

√
n) (“CFL condition”). Violation ⇒ rapid

overflow.

Dispersion

For v = const., both wave equation and FD scheme have plane
wave solutions

p(z , x , t) = e i(ζz+ξx+ωt)

(equations are real, so both real and imag parts of complex
solution are solutions!)

Dispersion relation = necessary relation between ζ, ξ, ω for above
to be solution

Phase velocity of plane wave vph = ω√
ζ2+ξ2

Exercise: for plane wave solution of wave equation, vph = c -
independent of ω, nondispersive

Dispersion

plane wave solutions of FD scheme:

pk
n,m = e i(nζ∆z+mξ∆x+kω∆t)

phase velocity vFD generally depends on ζ, ξ, ω and 6= c - dispersive

Dispersion worse for small gridpoints per wavelength
G = 1/max(2πζ∆z , 2πξ∆x), hence for larger ω.

Rules of thumb (incomplete!!!): to keep phase error ≤ 5% over
100 wavelengths, need G ≥ 10 for 2nd order scheme. Higher order
schemes typically exhibit less dispersion and higher accuracy for
given G .

See references for much more info. DEMO
test2:wavehom.showmovie

Agenda

Wave physics, wave equations, and waves

Finite difference methods for the wave equation: accuracy,
stability, dispersion

wave.c: a simple finite difference modeling application

Imaging with waves: reverse time migration

rtm.c: a simple reverse time migration application

An exercise: decreasing dispersion by increasing order

Implementing the 2nd order scheme

pk+1
n,m = 2pk

n,m − pk−1
n,m +

(c2)n,m[rz(pk
n+1,m+pk

n−1,m)+rx(pk
n,m−1+pk

n,m−1)+spk
n,m+∆t2wkδn,m]

Observations:

I full 3D space-time field pt
n,m not needed for either trace

recording (as in physical world!) or for making movies of
wavefield - only need single time level (k)

I to perform update formula, need three time levels
(k − 1, k , k + 1)

I index ranges: 0 ≤ n < nmax etc. If p = 0 at boundary points
n = 0, ... and only n = 1, ..., nmax − 2 are updated, then
pressure-free boundary condition automatically maintained
(we are not trying for absorbing boundary conditions here!)

Implementing the 2nd order scheme
First pass implementation: three arrays p0 (previous k), p1

(current k), p2 (next k)

For k = 0, ..., kmax − 1
For m = 1, ...,mmax − 2

For n = 1, ..., nmax − 2

p2
n,m = 2p1

n,m − p0
n,m+

(c2)n,m[rz(p1
n+1,m+p1

n−1,m)+rx(p1
n,m−1+p1

n,m−1)+sp1
n,m+∆t2wkδn,m]

[record p1 - either trace samples or movie frame]
[overwrite p1 → p0, p2 → p1]
For m = 1, ...,mmax − 2

For n = 1, ..., nmax − 2

p0
n,m = p1

n,m, p1
n,m = p2

n,m

[next k]

Implementing the 2nd order scheme

Critique:

I update loop: each value in p0 used once on RHS of scheme
(not assigned to, no dependence across loop)

I overwrite loop: lots of data motion not implicit in math

Waste of both storage and data motion. Classic fix - takes
advantage of assignment syntax, access to addresses

I use only two arrays p0, p1

I replace LHS with assignment to p0

I swap addresses of p0, p1 rather than copy values

Implementing the 2nd order scheme

wave.c coded in C - switch to C syntax:

I ∆z → dz, ∆x → dx, ∆t → dt

I n→ iz, m→ ix, k → it

I nmax → nz, mmax → nx, kmax → nt

I p0 → p0, p1 → p1, (c2)→ v (only square is used!)

Implementing the 2nd order scheme

hpcss/src/step.c:step forward - implements update operator

for (ix=1;ix<nx-1;ix++) {
for (iz=1;iz<nz-1;iz++) {

ioff=iz+ix*nz;
p0[ioff]=two*p1[ioff]-p0[ioff]

+v[ioff]*(rz*(p1[ioff+1]+p1[ioff-1]) +
rx*(p1[ioff+nz]+p1[ioff-nz]) -
s*p1[ioff]);

}
}

Then swap pointers (in hpcss/main/wave.c, after call to
step forward):

tmp=p0; p0=p1; p1=tmp;

Implementing the 2nd order scheme

Source: C notation ns → isz, ms → isx

wave.c offers only Ricker wavelet (2nd deriv of Gaussian) source
option, peak frequency = freq, via function call:

p0[isz+isx*nz]+=fgetrick(it*dt,freq);

Initialization: assignment functions

nxz = nx*nz;
fzeros(p0,nxz);
fzeros(p1,nxz);

wave.c: structure

Code sandwich:

I meat = step forward
I top bread = load survey geometry parameters from command

line, binary velocity data from disk file (optional), open files
for output, allocate memory, sanity checks, start loop over
sources, initialize fields, start time loop

I bottom bread = transfer data at each time step to trace
buffer and/or movie file, time loop bottom, flush trace data to
file, source loop bottom, clean up.

In this course you will mostly focus on the meat.

wave.c: capabilities and limitations

+:

I self-documenting after Seismic Unix - uses SU self-doc utility
(main/wave.x - doc’s all command line args for all
commands)

I arbitrary length of receiver line

I arbitrary number of (evenly spaced) point sources (“survey”)

I arbitrary peak frequency

I arbitrary velocity structure

wave.c: capabilities and limitations

-:

I receiver spacing = grid dx, receiver at every gridpoint in
“cable”

I fixed spread for all sources,

I source spacing = multiple of grid dx, shots on gridpoints

I source, receiver depths multiples of grid dz

I sample rate of traces = simulation dt

I output files are flat binary (no SEGY, SEGD, SEP/RSF,...)

I not every possible sanity check

I highly non-optimal FD scheme

I no absorbing boundary conditions

Upshot: not industrial strength, even as 2D const acoustic sim -
just a testbed!

Optimization

I elementary opts - reduction of storage, data motion already
explained

I many others - tomorrow (parallel), Wednesday (parallel &
serial)

Loop vectorization: available for the price of a compiler flag

I takes advantage of limited SIMD capabilities of recent Intel,
AMD hardware via SSE

I requirements: regular strides, aligned arrays (see
commented-out usermalloc code in src/utils/utils.c,
no recursion in loop - once address is written, should not be
read again (restrict assertion necessary)

I inner (iz) loop in src/step.c:step forward vectorizes -
roughly 40% speedup on recent Opteron

DEMO obelix test5:compare

Parallelization over Sources

Survey is a multisimulation, all sources indepdent

⇒ “embarassing” parallelization

Many waves to implement, using MPI, scripting languages

main/sqwave.c: MPI implementation of source parallel simulator

Tomorrow - much trickier parallelization of single-source simulation

DEMO mpiwave2:sqtrace.bin and trace.bin

Agenda

Wave physics, wave equations, and waves

Finite difference methods for the wave equation: accuracy,
stability, dispersion

wave.c: a simple finite difference modeling application

Imaging with waves: reverse time migration

rtm.c: a simple reverse time migration application

An exercise: decreasing dispersion by increasing order

Critical references for imaging and reverse time migration

I SEG reprint volume on Migration (“the classics”)

I Yilmaz, Seismic Data Processing (2nd ed.), SEG 2001

I WS, Optimal checkpointing for RTM, Geophysics 2008

Basic physics of imaging

Concept, first expressed clearly by Claerbout in early 70’s (but
implicit much earlier):

I incident wave (source wavefield, p) and reflected wave
(receiver wavefield, q) coincide in space and time at reflectors

I true for every source and receiver - sum over sources and
receivers interferes constructively at reflectors, destructively
elsewhere

I reflectors appear as strong components in image = zero-lag
time correlation of source (p) and receiver (q) wavefields:
RTM formula

I (z , x) =
∑
xs

∫
dtp(z , x , t; xs)q(z , x , t; xs)

Basic physics of imaging

Receiver wavefield q(z , x , t; xs) is solution of wave equation

1

c2

∂2q

∂t2
−∇2q =

∑
xr

d(xr , t; xs)δ(z − zr)δ(x − xr)

with anti-causal initial condition: q = 0, t >> 0. Solved backwards
in time.

“Receivers act as sources”: each data trace d(xr , t; xs) serves as a
radiating pulse

Basic physics of imaging

Mathematically coherent treatment: Cohen & Bleistein 1977,
Beylkin 1985, Rakesh 1988, many others

Upshot: migration is an approximate inverse to the Born
(linearized) modeling operator - models single scattering

Born modeling operator is “nearly” unitary - its adjoint differs from
its inverse by computable scaling transformations in space and
frequency

RTM = adjoint state method applied to Born modeling operator -
computes adjoint

Implementation issues in reverse time migration

“Source wavefield” = p(x, t; xs), approximate using FD scheme
explained previously

“Receiver wavefield” = q(x, t; xs), approximate using same FD
scheme running backwards, with input data traces d(xr , t)
providing source

Imaging condition:

I (n∆z ,m∆x) '
∑
xs

∆t
∑
k

pk
n,mqk

n,m

RHS for q eqn at timestep k =∑
m

dk
mδns ,m, dk

m = d(m∆x , k∆t)

Implementation issues in reverse time migration
p is computed in order of increasing k, q in order of decreasing k,
yet you need them at the same k! Remedies:

I Precompute pk for k = 0, ..., kmax, save to disk, read in as
required as qk updated. Lots of disk i/o.

I Same, but only save every ∆kth step, and only compute
imaging condition every ∆kth step during backwards qk loop
- ∆t far below Nyquist. Used in some production RTM.

I Time-reverse pk evolution - compute for k − 0, ..., kmax,
recompute same fields in synchrony with qk . Flop premium of
50% but either no i/o (free surfaces all around) or less per
time step (absorbing BC, save boundary data). Pretty good,
used in some production code.

I Optimal checkpointing - log kmax storage, log kmax additional
simulations, only forward time steps, works also for dissipative
models like viscoelasticity - see article by WS in 2007 special
issue of Geophysics

Agenda

Wave physics, wave equations, and waves

Finite difference methods for the wave equation: accuracy,
stability, dispersion

wave.c: a simple finite difference modeling application

Imaging with waves: reverse time migration

rtm.c: a simple reverse time migration application

An exercise: decreasing dispersion by increasing order

rtm.c: structure

Uses same infrastructure as wave.c, evolution loops all
step forward - only additional cmd line are image (required) and
receiver wavefield movie (optional) filenames.

Self-doc provided by wave.x

Major differences:

I data file (trace keyword) is input, not output - must exist
I source wavefield either

I written to disk if value assigned to source keyword, then read
back, or

I time-reversed otherwise (no i/o)

DEMO test1:rtm.view, rtmnm.view test3:rtmnm.view

Agenda

Wave physics, wave equations, and waves

Finite difference methods for the wave equation: accuracy,
stability, dispersion

wave.c: a simple finite difference modeling application

Imaging with waves: reverse time migration

rtm.c: a simple reverse time migration application

An exercise: decreasing dispersion by increasing order

The (2,4) scheme

2nd order in time, 4th order in space - with D2
z = 4th order

approx. to 2nd z-deriv, etc., as explained in first part of course,

pk+1
n,m = 2pk

n,m − pk−1
n,m +

(c2)n,m∆t2[D2
z pk

n,m + D2
x pk

n,m + wkδn,m]

Properties:

I substantially less dispersion than (2,2) scheme, for only a few
more flops

I 5% phase velocity error over 100 wavelengths with G ' 6

I used in many industry, academic codes - eg. E3D (Larson)

The (2,4) scheme

Exercise: upgrade wave.c to (2,4) scheme

Suggestions:

Can reuse virtually entire infrastructure (“bread”)

Write new step forward to include method of images updates at
boundary: either

I keep physical boundary at n = 0 etc., write special stencil for
n = 1 (row/col just inside boundary) with implicit cond’n
p(−1, ...) = −p(1, ...) etc.

I allocate larger arrays with one more row and column on each
side, indexed with n = −1 etc. - must compute difference
between coordinate indices n etc. and offset in array row/col.
Then method of images ⇒ run around boundary explicitly
setting p(−1, ...) = p(1, ...)

	Wave physics, wave equations, and waves
	Finite difference methods for the wave equation: accuracy, stability, dispersion
	wave.c: a simple finite difference modeling application
	Imaging with waves: reverse time migration
	rtm.c: a simple reverse time migration application
	An exercise: decreasing dispersion by increasing order

