
SIXTH PROBLEM SESSION EXERCISES

These exercises are dedicated to studying the solution of the eikonal equation for the
travel time function τ . We will complete the proof outlined in lecture that the function
constructed using a Hamiltonian system is in fact a solution of the eikonal equation.

Recall that the eikonal equation is

v(x) |∇τ(x;xs)| = 1.

We assume that v is a smooth strictly positive function. The so-called Hamiltonian is a
function on phase space (i.e. Rn × Rn where n can be any integer ≥ 2 although the cases
of interest for us are n = 2 and 3) defined by

H(X,Ξ) =
1

2
(v(X)2|Ξ|2 − 1).

The Hamiltonian flow, which gives the rays when projected onto the X component, is
defined by the solution of the Hamiltonian system

(1) Ẋ(t) = ∇ΞH(X(t),Ξ(t)), Ξ̇(t) = −∇XH(X(t),Ξ(t)).

To construct the solution of the eikonal equation we add initial conditions

(2) X(0) = xs, Ξ(0) =
θ

v(xs)

for θ ∈ Sn−1. By applying the inverse function theorem it is possible to show that the
mapping

(θ, t) 7→ X(t)

is a diffeomorphism for 0 < t < A, for some constant A, onto an neighborhood U of xs
minus xs. Here (θ, t) should be thought of as giving polar coordinates with respect to the
rays. Thus, for x ∈ U \ xs we can define

(3) τ(x;xs) = t(x).

These exercises are aimed at showing that this function τ(·;xs) satisfies the eikonal equation
on U \ xs.

1: If X and Ξ are solutions of the Hamiltonian system (1) show that H(X(t),Ξ(t))
does not depend on t. If X and Ξ also have initial conditions in the form (2) show
that

|Ξ(t)| = 1/v(X(t)), and Ẋ(t) · Ξ(t) = 1

for all t.
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2: Suppose that θ in (2) is allowed to vary along a smooth curve R 3 α 7→ θα in Sn−1.
Then the solutions of (1) and (2) depend on α and so we have X(t, α) and Ξ(t, α).
Show that

∂

∂t

(
∂X

∂α
(t, α) · Ξ(t, α)

)
= 0.

Since
∂X

∂α
(0, α) = 0

we can conclude that
∂X

∂α
(t, α) · Ξ(t, α) = 0

for all t.
3: Suppose x ∈ U \xs and θ(x) and t(x) are the “polar coordinates” introduced above

for x. Further, suppose the curve θα from the previous part satisfies θ0 = θ(x). Let
τ be defined by (3). Show that

∇τ(x;xs) ·
∂X

∂α
(t(x), 0) = 0

for all t, and that in fact any vector perpendicular to ∇τ(x;xs) can be realized as
∂X
∂α (t(x), 0) for some curve θα. Combine this with the previous part to show that
∇τ(x;xs) and Ξ(t(x)) are parallel. This result is closely related to something called
Gauss’ lemma in differential geometry.

4: Finally, show that in fact τ defined by (3) satisfies the eikonal equation.


