SIXTH PROBLEM SESSION EXERCISES

These exercises are dedicated to studying the solution of the eikonal equation for the travel time function τ . We will complete the proof outlined in lecture that the function constructed using a Hamiltonian system is in fact a solution of the eikonal equation.

Recall that the eikonal equation is

$$v(x) |\nabla \tau(x; x_s)| = 1.$$

We assume that v is a smooth strictly positive function. The so-called Hamiltonian is a function on phase space (i.e. $\mathbb{R}^n \times \mathbb{R}^n$ where n can be any integer ≥ 2 although the cases of interest for us are n = 2 and 3) defined by

$$H(X,\Xi) = \frac{1}{2}(v(X)^2|\Xi|^2 - 1).$$

The Hamiltonian flow, which gives the rays when projected onto the X component, is defined by the solution of the Hamiltonian system

(1)
$$\dot{X}(t) = \nabla_{\Xi} H(X(t), \Xi(t)), \quad \dot{\Xi}(t) = -\nabla_X H(X(t), \Xi(t)).$$

To construct the solution of the eikonal equation we add initial conditions

(2)
$$X(0) = x_s, \quad \Xi(0) = \frac{\theta}{v(x_s)}$$

for $\theta \in \mathbb{S}^{n-1}$. By applying the inverse function theorem it is possible to show that the mapping

$$(\theta, t) \mapsto X(t)$$

is a diffeomorphism for 0 < t < A, for some constant A, onto an neighborhood U of x_s minus x_s . Here (θ, t) should be thought of as giving polar coordinates with respect to the rays. Thus, for $x \in U \setminus x_s$ we can define

(3)
$$\tau(x;x_s) = t(x).$$

These exercises are aimed at showing that this function $\tau(\cdot; x_s)$ satisfies the eikonal equation on $U \setminus x_s$.

1: If X and Ξ are solutions of the Hamiltonian system (1) show that $H(X(t), \Xi(t))$ does not depend on t. If X and Ξ also have initial conditions in the form (2) show that

$$|\Xi(t)| = 1/v(X(t)), \text{ and } X(t) \cdot \Xi(t) = 1$$

for all t.

2: Suppose that θ in (2) is allowed to vary along a smooth curve $\mathbb{R} \ni \alpha \mapsto \theta_{\alpha}$ in \mathbb{S}^{n-1} . Then the solutions of (1) and (2) depend on α and so we have $X(t, \alpha)$ and $\Xi(t, \alpha)$. Show that

$$\frac{\partial}{\partial t} \left(\frac{\partial X}{\partial \alpha}(t, \alpha) \cdot \Xi(t, \alpha) \right) = 0.$$

Since

$$\frac{\partial X}{\partial \alpha}(0,\alpha)=0$$

we can conclude that

$$\frac{\partial X}{\partial \alpha}(t,\alpha) \cdot \Xi(t,\alpha) = 0$$

for all t.

3: Suppose $x \in U \setminus x_s$ and $\theta(x)$ and t(x) are the "polar coordinates" introduced above for x. Further, suppose the curve θ_{α} from the previous part satisfies $\theta_0 = \theta(x)$. Let τ be defined by (3). Show that

$$\nabla \tau(x; x_s) \cdot \frac{\partial X}{\partial \alpha}(t(x), 0) = 0$$

for all t, and that in fact any vector perpendicular to $\nabla \tau(x; x_s)$ can be realized as $\frac{\partial X}{\partial \alpha}(t(x), 0)$ for some curve θ_{α} . Combine this with the previous part to show that $\nabla \tau(x; x_s)$ and $\Xi(t(x))$ are parallel. This result is closely related to something called Gauss' lemma in differential geometry.

4: Finally, show that in fact τ defined by (3) satisfies the eikonal equation.