
1. WEAK SOLUTIONS AND REFLECTION

Refer to Section 1.2.5 of Prof. Demanet’s notes, and to the definition of weak solution
of the wave equation in the sense of Lions (slide 40, part 1), modified as follows

• 1D wave equation, rather that 3D;

• time interval is (−∞,∞) rather than [0, T ];

• Ω = R

No boundary conditions are imposed, and the solution is permitted to have unbounded
support - but the integrations present in the definitions are still over bounded domains,
as the test functions φ have compact support.

1.1. STRONG SOLUTIONS ARE WEAK SOLUTIONS:

suppose that ρ, c, f are smooth, say ρ, c ∈ C1(R), f ∈ C0(R2). Show that an
“ordinary” solution of the wave equation, that is, u ∈ C2(R2) satisfying

1

ρc2
∂2u

∂t2
− ∂

∂x

1

ρ

∂u

∂x
= f,

is a weak solution.

1.2. WEAK SOLUTIONS OBEY THE USUAL LAWS OF REFLECTION:

Suppose that ρ and κ = ρc2 are as described in Section 1.2.5. Suppose that u is as
given in equations (1.19) and (1.20), reproduced here:

u(x, t) = f(x− c1t) +Rf(−x− c1t), x < 0 (̇1.19)

u(x, t) = Tf
(
c1
c2

(x− c2t)
)
, x > 0 (1.20)

with the other symbols having the meaning explained in Section 1.2.5. Show that u is a
weak solution of the wave equation in the sense of Lions. [Since such weak solutions are
uniquely defined by their data, it is the weak solution - thus the notion of weak solution
captures the physics of reflection and transmission.] Hint: write the integral in the defn
of weak solution as a limit of integrals over the complement of the slab {(x, t) : |x| ≤ ε}
as ε→ 0. u is smooth away from x = 0, so integration by parts in the complement of the
slab is permissible; integrate by parts to move all derivatives onto u, and then take the
limit, watching what happens to the boundary contributions.
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2. DISTRIBUTION SOLUTIONS

Back to 3D, Ω = R3, unbounded time interval.

Suppose that the coefficients and solution are smooth enough that the wave equation
is solved in the ordinary sense (both sides continuous, and equal pointwise). Observe that
u satisfies ∫ ∫

dtdx u

{
1

ρc2
∂2φ

∂t2
−∇ · 1

ρ
∇φ

}
=
∫ ∫

dtdxfφ

for any φ ∈ C∞
0 (R4). This observation leads to a definition of distribution solution: a

distribution u ∈ D′(R4) solves the wave equation with right-hand side f ∈ D′(R4) iff〈
u,

{
1

ρc2
∂2φ

∂t2
−∇ · 1

ρ
∇φ

}〉
= 〈f, φ〉 for all φ ∈ C∞

0 (R4),

in which the angle brackets represent the duality pairing of distributions with test func-
tions. This pairing amounts to the integral of the product when u is a locally integrable
function, so the definition of distribution solution yet another generalization of the ordi-
nary notion. [Converse also holds: a distribution solution is a weak solution in the sense
of Lions if it happens to have the regularity described in slide 40, and a solution in the
ordinary sense if it is of class C2.]

2.1. DISTRIBUTION SOLUTION OF THE RADIATION PROBLEM

This problem describes a slightly different point of view on section 1.2.3 of Prof.
Demanet’s notes.

Suppose that ρ, c are constant, and w ∈ C∞
0 (R). Show that the locally integrable

function u, given by

u(x, t) =
w(t− ‖x− y‖/c)

4π‖x− y‖
solves the radiation problem(

1

c2
∂2u

∂t2
−∇2u

)
(x, t) = w(t)δ(x− y); u = 0, t << 0

in the sense of distributions.

[It is possible to take w → δ along a Dirac sequence - u will also converge, in the sense
of distributions, to the Green’s function G of (1.15) (modulo a factor of c2).]

Note: The notion of distribution solution makes sense if c is smooth, rather than constant,
and in fact is a central tool in the analysis of linear PDE with smooth coefficients. The
concept in its present form dates back to the mid-20th century work of Laurent Schwartz
and others. See any good graduate text on PDE, such as Michael E. Taylor, Partial
Differential Equations, Springer, New York, 1996. Weak solutions in the sense of Lions,
on the other hand, provide a sensible notion of solution for some classes of linear PDEs
with nonsmooth coefficients, in particular a natural and physically correct representation
of waves in heterogeneous materials. The standard reference is J.-L. Lions and E. Magenes,
Non-homogeneous Boundary Value Problems and Applications, Springer, New York, 1972.
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