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Geometric optics, Rakesh’s construction, and
Imaging and inversion in the presence of
multipathing.




Why Beylkin isn’t enough
The theory developed by Beylkin and others cannot be the &tk story:

e The “single ray” hypotheses generally fails in the presasfc#trong refraction.

e B. White, “The Stochastic Caustic” (1982): For “random huio®th” v(x) with
variancec, points at distanc&(c—2/3) from source have more than one ray
connecting to source, with probability Inultipathingassociated with formation
of caustics= ray envelopes.

e Formation of caustics invalidates asymptotic analysis biclvBeylkin result is
based.




Why it matters

e Strong refraction leading to multipathing and caustic fation typical of salt
(4-5 km/s) intrusion into sedimentary rock (2-3 km/s) (egulfGf Mexico),
also chalk tectonics in North Sea and elsewhere - some of ds promising
petroleum provinces!




Escape from simplicity - the Canonical Relation

How do we get away from “simple geometric optics”, SSR, DSR,all violated
In sufficiently complex (and realistic) models? Raké&xtmm. PDE1988, Nolan
Comm. PDEL997: global description aFs|v| as mapping reflectors: reflections.

Y = {x,,t,x,} (time x set of source-receiver pairs) submfdRf of dim. < 5,
I1: T*(R") — T*Y the natural projection

suppr C X C R’

Canonical relationCp,) C T%(X) — {0} x T*(Y) — {0} describes singularity
mapping properties ot

(Xa ga Y, 77) < CE;[U] A
for someu € £'(X), (x,£) € WF(u), and(y,n) € WF(Fu)




Rays Construction of the Relation

Rays of geometric optics: solutions of Hamiltonian system

dX d=
2 VeH(X,E), & _VxH(X, B

with H(X, E) = 1 — v*(X)|E|*> = 0 (null bicharacteristic}.

p—
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Characterization of Cp:

(<X7 f)? (X87t7XT75877-7 SI')) S CFg[U] C T*(X) o {O} X T*<Y> o {0}
< there areays of geometric optic&X,, E;), (X,, E,) and time<, t, so that

H(XS(O)7 t? XT@)? ES(O)7 T, Er(t» — (X87 ta Xy 587 T, 57“)7

X,(t) =X, (t —t,) =%, t, -1, =t, Byts) — B (t —t,)||¢




SinceZ,(ts), —E,(t — t,) have same length, sum = bisectervelocity vectors of
Incident ray from source and reflected ray from receiverdé@ backwards in time)
make equal angles with reflectoratwith normalg¢.

Upshot: canonical relation dfs[v] simply enforces the equal-angles law of reflec-
tion.

Further,rays carry high-frequency energy exactly the fashion that seismologists
Imagine.

Finally, Rakesh’s characterization 6f is global: no assumptions about ray geom-
etry, other than no forward scattering and no grazing imméeon the acquisition
surfaceY’, are needed.




The Picture




Proof: Plan of attack

Recall that
Flolr(x,, 1) = (%,
where
1 9%0u 9 1 0%u
oV ouT aae’
1 0%u 2
ﬁw — Vu = 5(t>5(X — X5>

andu,ou =0, t < 0.

Need to understand (1) F'(u), (2) relationWV F(r) < W F(ru), (3) W F of soln
of WE in terms ofi/V/ F' of RHS (this also gives (1)!).




Singularities of the Acoustic Potential Field

Main tool: Propagation of Singularitiestheorem of Fhrmander (1970).

Given symbolb(x, &), order m, with asymptotic expansion, defmal bicharater-
ISstics (= rays) as solutiongx(t), £(¢)) of Hamiltonian system

dx Op dg _@
dt - ag(xa 5)7 E — aX(Xa €>

with p(x(t),&(t)) = 0.

Theorem: Suppose(x, D)u = f, and suppose that fog < ¢t < ¢y, (x(¢),&(t))
WE(f). Then eithe (x(t),&(t)) : to <t < t;} C WF(u) or {(x(t),&(t)) : to
t <t} CT*R") — WF(u).

IA A




Source to Fleld

RHS of wave equation far = § function inx, t. WF set ={(x,t,&,7) : X = X,,t =
0} - i.e. no restriction on covector part.

= (x,t,&€,7) € WF(u) Iff a ray starting at(x;, 0) passes ovefx,t) - i.e. (x,t)
lies on the “light cone” with vertex dtx,, 0). Symbol for wave op i9(x,t,&,7) =

2 —v%(x)[€]?), so Hamilton’s equations for null bicharacteristics are

2
dX 5 d=
— = — = — =VI X
o ve(X)E, o V log v(X)

Thusé is proportional to velocity vector of ray.

[(&, 7) normalto light cone.]
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Singularities of Products

To computelV/ F'(ru) from W EF(r) andW F'(u), useGabor calculugDuistermaat,
Ch. 1)

Herer is really (r o m)u, wheren(x,t) = x. Choose bump function localized
near(x,t)

—_—

o7 o m)u(, ) = / d’ dr'or(€)S(r)a(E — €7 — )

_ / A€o (€)a(E — €, 7)
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This will decay rapidly as(&, 7)| — oo unless (i) you can findx’, &) € WF(r)
so thatx, x’ € w(suppg), € — & € WF(u),i.e. (§,7) € WF(rom)+ WF(u), or
(i e WF(r)or(g,7) € WF(u).

Possibility (ii) will not contribute, so effectively

WE((rom)u) = {(x, 1, & + Ey(t,), ) : (x,€) € WF(r), x = X, (t,)

for a ray(Xs, E;) with X(0) = x,, somer.
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Wavefront set of Scattered Field

Once again use propagation of singulariti¢s; ¢, &,.,7.) € WF(du) < on ray
(X, E,) passing throughV’ F'(r«). Can argue that time of intersectiortis t, < t.

That Is,
X, (1) = x,, X, (t — t,) = X(ts) =,

t=t,+t,, and

for some¢ € WF(r). Q. E.D.
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Rakesh’s Thesis

Rakesh also showed thatwv| is aFourier Integral Operator= class of oscillatory
Integral operators, introduced byoknmander and others in the '70s to describe the
solutions of nonelliptic PDEs.

Phases and amplitudes of FIOs satisfy certain restricioreditions. Canonical
relations have geometric description similar to that®s|. Adjoint of FIO is FIO
with inverse canonical relation.

UDOQOs are special FIOs.

Composition of FIOs doesot yield an FIO in general. Beylkin had shown that
Flv|*Flv] is FIO (FDO, actually) under simple ray geometry hypothesis - b thi
IS only sufficient. Rakesh noted that this follows from gehegsults of Hhrmander:
simple ray geometrys canonical relation is graph of ext. deriv. of phase function
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The Shell Guys and TIC

Smit, tenKroode and Verdel (1998): provided that

e source, receiver position,, x,.) form anopen4D manifold (“complete cover-
age” - all source, receiver positions at least locally), and

e the Traveltime Injectivity Conditio*TIC”) holds: C;[%}] CTY —{0} xT*X —
{0} is afunction- that is, initial data for source and receiver rays and toéadel

time together determine reflector uniquely.

then F'[v]*F|v] is WDO =- application ofF'[v]* produces image, anBl[v|* F'[v] has
microlocal parametrix (“asymptotic inversion”).
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TIC Is a nontrivial constraint!

X X

S r

X|
>

Symmetric waveguide: timex( — x — x,) same as timex;, — x — x,), SO TIC
fails.
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Stolk’s Thesis

Stolk (2000): under “complete coverage” hypothesigor which Flv|*F|v] is =
[WDO + rel. smoothing op] form open, dense set (without assgmig!).

NB: application of F'|v]* involves accounting forll rays connecting source and
receiver with reflectors. Standard practice still attenmp@&ging with single choice
of ray pair (shortest time, max energy,...). Operto et aD@@ive nice illustration
that all rays must be included.
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Nolan’s Thesis

Limitation of Smit-tenKroode-Verdel: most idealized datequisition geometries
violate “complete coverage”. for example, idealized margstreamer geometry
(src-recvr submfd is 3D)

Nolan (1997): result remains true without “complete cogefecondition: requires
only TIC plus addl condition so that projecti@ry, — T*Y Is embedding - but
examples violating TIC are much easier to construct whencgereceiver submfd
has positive codim.,

Sinister Implication: When data is just a single gather - common shot, common
offset - image may contaiartifacts i.e. spurious reflectors not present in model.
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Horrible Example |

Synthetic 2D Example (Stolk and WWS, 200Geophysic2004)
Strongly refracting acoustic lens)(over horizontal reflecton, S°* = F[v]r.

(i) for open source-receiver set]v]*S°™ = good image of reflector - within limits
of finite frequency implied by numerical metha#ljv|* F'|v] acts likeUDO;

(ii) for common offsesubmfd (codim 1), TIC is violated and’ F'(F[v]*S°™) is
larger thanV F(r).
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Gaussian lens velocity model, flat reflector at depth 2 kmrlawewith rays and
wavefronts (Stolk & S. 2002 SEQG).
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receiver position (km)

time
(s)

Typical shot gather - lots of arrivals

21



offset

1.6

travel time # s,r
— 11
3.3
— 21
---12
31
— 3,2

Xy 2.0 R ————

2.4

Offset common image gather (slice Bfv]*d), with kinematically predicted reflec-
tor images overlain.
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Horrible Example Il

Stolk and Symes(zeophysic2004: “Marmouflat” model = smoothed Marmousi
(Versteeg & Grau 1991) with two flat reflectors.

X (km)

5.5km/s
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Typical shot gather:

receiver position (km)
5.2 5.6 6 6.4 6.8 7.2

time
(s

much evidence of multipathing, caustimation.
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angle (deq)
0] 20 4|0 60 80

|

2.2+

ANE

L

< 2.4+

(O
AUl ldaidh

2.6-

Typical common scattering angle image gather: note nonfettan box - results
from data event migrating alongrong ray pair.
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X (km)
5.6 6 6.4 6.8 7.2 7.6

zZ 12
(km)

Blue rays = energy path producing data event. Black raysiggrmath for migra-
tion, resulting in displaced, angle-dependent imagesattif
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What it all means

Note that a gather scheme makes the scattering operatdetiagonal: for exam-
ple with data sorted into common offset gathkers (x, — x;)/2,

Flv] = [Fy,[v], ..., Fuy o))", d=[dny, - diy ]t

Thus F|v|*d = ). Fj [v]*d,. Otherwise put: to form imagenigrate ;th gather
(apply migration operataF}, [v]*, thenstack individual migrated images.

Horrible Examples show that individual migrated images maytain nonphysical
apparent reflectors (artifacts).

Smit-tenKroode-Verdel, Nolan, Stolk: if TIC holds, therefie artifacts are not sta-
tionary with respect to the gather parameter, hestaek ou(interfere destructively)
In final image.
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