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How do you turn lots of this...
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(field seismogram from the Gulf of Mexico - thanks: Exxon.)
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Main Theme

Estimating the index of refraction (wave velocity) isthe central issuein seismic
imaging.

Combines elements of

• optics, radar, sonar - reflected wave imaging

• tomography - with curved rays

Many unanswered mathematical questions with practical implications!
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A mathematical view

...of reflection seismic imaging, as practiced in the petroleum industry:

• an inverse problem, based on a model of seismic wave propagation

• contemporary practice relies onpartial linearizationand high-frequency asymp-
totics

• recent progress in understanding capabilities, limitations of methods based on
linearization/asymptotics in presence ofstrong refraction: applications ofmi-
crolocal analysiswith implications for practice

• limitations of linearization lead to many open problems
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Agenda

1. Seismic inverse problem in the acoustic model: nature of data and model, lin-
earization, reflectors and reflections idealized viaharmonic analysis of singular-
ities.

2. High frequency asymptotics: why adjoints of modeling operators are imaging
operators (“Kirchhoff migration”). Beylkin theory of highfrequency asymptotic
inversion.

3. Adjoint state imaging with the wave equation: reverse time and reverse depth.

4. Geometric optics, Rakesh’s construction, and asymptotic inversion w/ caustics
and multipathing, imaging artifacts, and prestack migration apr̀es Claerbout.

5. A step beyond linearization: a mathematical framework for velocity analysis.
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1. The Acoustic Model and Linearization
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Marine reflection seismology

• acoustic source (airgun array, explosives,...)

• acoustic receivers (hydrophone streamer, ocean bottom cable,...)

• recording and onboard processing

hydrophone streamer
acoustic source
(airgun array)x xr sh

Land acquisition similar, but acquisition and processing are more complex. Vast
bulk (90%+) of data acquired each year is marine.

Data parameters: timet, source locationxs, and receiver locationxr or half offset
h = xr−xs

2
, h = |h|.
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Idealized marine “streamer” geometry:xs andxr lie roughly on constant depth
plane, source-receiver lines are parallel→ 3 spatial degrees of freedom (eg.xs, h):
codimension 1. [Other geometries are interesting, eg. ocean bottom cables, but
streamer surveys still prevalent.]

How much data? Contemporary surveys may feature

• Simultaneous recording by multiple streamers (up to 12!)

• Many (roughly) parallel ship tracks (“lines”), areal coverage

• single line (“2D”)∼ Gbyte; multiple lines (“3D”)∼ Tbyte
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Shot gather, Mississippi Canyon
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(thanks: Exxon)
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Lightly processed...
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bandpass filter 4-10-25-40 Hz, mute
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Gathers: distinguished data subsets

Aka “bins”, extracted from data after acquisition.

Characterized by common value of an acquisition parameter

• shot (or common source) gather: traces with same shot location xs (previous
expls)

• offset (or common offset) gather: traces with same half offset h

• ...
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A key observation

The most striking visual characteristic of seismic reflection data: presence of wave
events (“reflections”) = coherent space-time structures.

What features in the subsurface structure cause reflectionsto occur?

Abrupt (wavelength scale) changes in material mechanics act as internal bound-
aries, causing reflection of waves.

What is the mechanism through which this occurs?
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Well logs: a “direct” view of the subsurface
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Blocked logs from well in North Sea (thanks: Mobil R & D). Solid: p-wave ve-
locity (m/s), dashed: s-wave velocity (m/s), dash-dot: density (kg/m3). “Blocked”
means “averaged” (over 30 m windows). Original sample rate of log tool < 1 m.
Reflectors= jumps in velocities, density,velocity trends.
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The Modeling Task

A useful model of the reflection seismology experiment must

• predict wave motion

• produce reflections from reflectors

• accomodate significant variation of wave velocity, material density,...

A really goodmodel will also accomodate

• multiple wave modes, speeds

• material anisotropy

• attenuation, frequency dispersion of waves

• complex source, receiver characteristics
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The Acoustic Model

Not really good, but good enough for this week and basis of most contemporary
processing.

Relatesρ(x)= material density,λ(x) = bulk modulus,p(x, t)= pressure,v(x, t) =
particle velocity,f(x, t)= force density (sound source):

ρ
∂v

∂t
= −∇p + f ,

∂p

∂t
= −λ∇ · v (+ i.c.′s, b.c.′s)

(compressional) wave speedc =
√

λ
ρ
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acoustic field potential

u(x, t) =
∫ t

−∞ ds p(x, s):

p =
∂u

∂t
, v =

1

ρ
∇u

Equivalent form: second order wave equation for potential

1

ρc2

∂2u

∂t2
−∇ ·

1

ρ
∇u =

∫ t

−∞

dt∇ ·

(

f

ρ

)

≡
f

ρ

plus initial, boundary conditions.
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Theory

Weak solutionof Dirichlet problem inΩ ⊂ R
3 (similar treatment for other b. c.’s):

u ∈ C1([0, T ]; L2(Ω)) ∩ C0([0, T ]; H1

0(Ω))

satisfying for anyφ ∈ C∞
0 ((0, T ) × Ω),

∫ T

0

∫

Ω

dt dx

{

1

ρc2

∂u

∂t

∂φ

∂t
−

1

ρ
∇u · ∇φ +

1

ρ
fφ

}

= 0

Theorem (Lions, 1972) Suppose thatlog ρ, log c ∈ L∞(Ω), f ∈ L2(Ω × R). Then
weak solutions of Dirichlet problem exist; initial data

u(·, 0) ∈ H1

0(Ω),
∂u

∂t
(·, 0) ∈ L2(Ω)

uniquely determine them.
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Further idealizations

• density is constant,

• source force density isisotropic point radiator with known time dependence
(“source pulse”w(t))

f(x, t;xs) = w(t)δ(x− xs)

⇒ acoustic potential, pressure depends onxs also.

Forward map S = time history of pressure for eachxs at receiver locationsxr

(predicted seismic data), depends on velocity fieldc(x):

F [c] = {p(xr, t;xs)}
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Reflection seismic inverse problem

givenobserved seismic datad, find c so that

F [c] ' d

This inverse problem is

• large scale - up to Tbytes, Pflops

• nonlinear

• yields to no known direct attack
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Partial linearization

Almost all useful technology to date relies on partial linearization: writec = v(1+r)

and treatr as relative first order perturbation aboutv, resulting in perturbation of
presure fieldδp = ∂δu

∂t
= 0, t ≤ 0, where

(

1

v2

∂2

∂t2
−∇2

)

δu =
2r

v2

∂2u

∂t2

Definelinearized forward map F by

F [v]r = {δp(xr, t;xs)}

Analysis ofF [v] is the main content of contemporary reflection seismic theory.
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Linearization error

Critical question: If there is any justiceF [v]r = directional derivativeDF [v][vr]

of F - but in what sense? Physical intuition, numerical simulation, and not nearly
enough mathematics: linearization error

F [v(1 + r)] − (F [v] + F [v]r)

• smallwhenv smooth,r rough or oscillatory on wavelength scale - well-separated
scales

• largewhenv not smooth and/orr not oscillatory - poorly separated scales

2D finite difference simulation: shot gathers with typical marine seismic geometry.
Smooth (linear)v(x, z), oscillatory (random)r(x, z) depending only onz(“layered
medium”). Source waveletw(t) = bandpass filter.
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Left: Total velocityc = v(1 + r) with smooth (linear) backgroundv(x, z), oscilla-
tory (random)r(x, z). Std dev ofr = 5%.
Right: Simulated seismic response (F [v(1 + r)]), wavelet = bandpass filter 4-10-
30-45 Hz. Simulator is (2,4) finite difference scheme.
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Model in previous slide as smooth background (left,v(x, z)) plus rough perturba-
tion (right,r(x, z)).
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Left: Simulated seismic response of smooth model (F [v]),
Right: Simulated linearized response, rough perturbationof smooth model (F [v]r)
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Model in previous slide as rough background (left,v(x, z)) plus smooth 5% pertur-
bation (r(x, z)).
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Left: Simulated seismic response of rough model (F [v]),
Right: Simulated linearized response, smooth perturbation of rough model (F [v]r)
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Left: linearization error (F [v(1+ r)]−F [v]−F [v]r), rough perturbation of smooth
background
Right: linearization error, smooth perturbation of rough background (plotted with
same grey scale).
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Summary

• v smooth,r oscillatory⇒ F [v]r approximatesprimary reflection = result of
wave interacting with material heterogeneity only once (single scattering); error
consists ofmultiple reflections, which are “not too large” ifr is “not too big”,
and sometimes can be suppressed.

• v nonsmooth,r smooth⇒ error consists oftime shiftsin waves which are very
large perturbations as waves are oscillatory.

No mathematical results are known which justify/explain these observations in any
rigorous way, except in 1D.

28



Velocity Analysis and Imaging

Velocity analysisproblem = partially linearized inverse problem: givend find v, r

so that

S[v] + F [v]r ' d

Imaging problem = linear subproblem: givend andv, find r so that

F [v]r ' d − S[v]

Last 20 years:

• much progress on imaging

• much less on velocity analysis
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