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Wave Equation Migration

Techniques for computing'|v]*:
() Reverse time

(i) Reverse depth




Reverse Time Migration, Zero Offset

Start with the zero-offset case - easier, but only if youaeelit with the exploding
reflector model, which replacdsjv] by

Flulr(x,,t) = w(x,, 1), x, € X,,0<t < T

2
(ia——v2>w:5(t)2—r w=0,t<0

v2’

To compute the adjoint, start with its definition: choase £( X x (0,7)), so that

< Fl*d,r >=<d, F[v]r >

T
:/ de/ dt d(xg, t)w(x, t)
s 0




The only thing you know aboub is that it solves a wave equation withon the
RHS. To get this fact into play, (i) rewrite the integral agppace-time integral:

_ /33 dx /OT dt /S drs d(xs,1)0(x — Xs)w(x, t)

(i) write the other factor in the integrand as the image oé#dfy under the (adjoint
of the) wave operator (it's self-adjoint), that is,

4 0? )
V) alxt) = / A, d(x., £)(x — x,)

= /R3 da /OT dt Kv??x) g; - V2> q(x, t)] w(x, )

SO




(1)) integrate by parts

/R do / dt [(024 5’22 _ v2> w(x,t)] 7(%, 1)

which works if¢g = 0, ¢t > T (final value conditioly (iv) use the wave equation for

X3 ' X)d(t)g(x, 1

(v) observe that you have computed the adjoint:

_ /Rg dz 7 (x) [ > alx, 0)] < Flod >

v(x)




Summary of the computation, with the usual description:

e Use that data as sources, backpropagate in time - i.e. swvitl value (“re-
verse time”) problem

4 0? 5
A v q(x,t):/ drsd(xs,t)0(x —x4), ¢q=0,t>T

V2 Ot? .
e read out the “image” (= adjoint output) at 0:
S 9
F[U] d T U(X)QQ(X’ O)

Note: The adjoint (time-reversed) fielgis not the physical field u) run back-
wards in time, contrary to some imputations in the literatur




Historical Remarks

e Known as “two way reverse time finite difference poststacgnaiion” in geo-
physical literature (Whitmore, 1982)

e uses full (two way) wave equation, propagates adjoint figicklvards in time,
generally implemented using finite difference discreiat

e Same as “adjoint state method”, Lions 1968, Chavent 1974dotrol and in-
verse problems for PDEs - much earlier for control of ODEsiHly,ararantola
'80s.

e My buddy Tapia says: all you're doing is transposing a matrixue (after
discretization), but it's important that these matrices trangular, so can be
Implemented by recursions - forward for simulation, bactdggor adjoint.




Reverse Time Migration, Prestack

A slightly messier computation computes the adjointFof| (i.e. multioffset or
prestackmigration):

Flu]*d(x) = —% / dx /0 ' dt (%v%,) (x,t;X,)

whereadjoint fieldq satisfies; =0, t > 17" and

2
(2, f s
(V)




Proof

< Fll'd,r >=<d, Flv|r >

T
://d:vsda:r/ dtd(XT,t;Xs)%(Xr,t;Xs)
0 t
T
:/de/dx/ dt {/ dx'rd(Xr,t;XS)é(X_Xr)}%(Xat;xs>
0
I 1 0? 5 dou
YRR (gl




T 1 07 ) dq
_—/de/dx/O dt [(Ew—V)CSU] a(xatuxs)

(boundary terms in integration by parts vanish becauseu(i= 0, t << 0; (i)
g =0, t >> 0; (ili) both vanish for largex, at each)

g 2r 0?1 dq
— —/ dxg / dx/o dt (U2 572 (9?5) (x,t; Xs)
2 g 0%udq
— —/ dl’s / d.I'T(X)U2(X>/O dt (@E) (X,t,X3>

=<, Flv]"d >

g.ed.




Implementation

Algorithm: finite difference or finite element discretizati in x, finite difference
time stepping.

e For eachx,, solve wave equation far forward int, record final (t=T) Cauchy
data, also (for example) Dirichlet boundary data.

e Stepu andq backwards in time together; at each time step, data senssiase
for ¢ (“backpropagate data”)

e During backwards time stepping, accumulate (approximatto)

2 g 0?1 dq .
Q(x)+ = U2(X)/0 dt (ﬁ%) (x,t;Xs)

(“crosscorrelate reference and backpropagated field”).
e nextx, - after lastx,, F'lv]*d = Q.
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Reverse Depth Migration, Zero Offset

aka: depth extrapolation, downward continuation, or syfipiave equation migra-
tion”.

Introduced by Claerbout, early 70’s (“swimming pool eqaat). Again, assume
exploding reflector model:

Flulr(x,,t) = w(x,, 1), x, € X,,0<t<T

Basic idea: 2nd order wave equation permits waves to mové diractions, but
waves carrying reflected energy are (mostly) mowipgShould satisfy a 1st order
equation for wave motion in one direction.
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Coming up...

For the moment use 2D notatien= (z, z) etc. Write wave equation as evolution
equation inz:

0> 4 9% 0

ow_ _ w=—3(t)=
072 V20t2 Ox? V2

Suppose that you could take the square root of the operap@arantheses - call it
B. Then the LHS of the wave equation becomes

(% _ B) (% | B) w = _5@%

so settingd = (< + B) w you get
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Some Issues

This mightbe the required equation for upcoming waves.
Two major problems: (i) how the h—Il do you take the square obatPDO?
(i) what guarantees that the equation just written goveptwming waves?

Answers to be found in the theory ¢DOs!

13



ClassicalvDOs

Importantsubclassof classical Y'DOs: those whose (“classical’) symbols have
asymptotic expansions:

p(x,€) ~ > pi(x,€), |€] — o0

j<m

In which p; is homogeneous ié of degreey:

pi(x, 7€) = 'p;(x, 7€), T, |€| > 1

Theprincipal symbols the homogeneous term of highest degree pi,gabove.
14




Products oftDOs arerDOSs.

ClassicalDOs have more completealculus including prescriptions for “com-
puting” adjoints, products, and the like. From now on unletb®rwise stated, all
UDOQOs are classical.

Product rule for?DOs: if p', p? are classical,
= px.8) = px€
]<m ]<m

then so isp'(x, D)p*(x, D), and its principal symbol ip! ,(x,£)p’,(x, &), and
there is an algorithm for computing the rest of the expansion

In an open neighborhood x = of (x, £,), symbol ofp'(x, D)p?(x, D) depends
only on symbols op', p? in X x =.
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Consequence: if(x, D) has an asymptotic expansion and is of ordee R, and
am(x0,&€y) > 0in P C R" x R" — 0, then there exists(x, D) of orderm /2 with
asymptotic expansion for which

(a(x, D) = b(x, D)b(x, D))u € E(R")
foranyu € &'(R™) with W F(u) C P.
Moreover,b,, »(x,&) = \/an(x,€), (x,€) € P. Will call b amicrolocal square
root of a.
Similar construction: iti(x, &) # 0 in P, then there ig(x, D) of order—m so that
c(x, D)a(x, D)u — u, a(x,D)c(x, D)u—u € E(R")
foranyu € &'(R") with W F(u) C P.

Moreover,c_,,(x,&) = 1/a,(x,€), (x,&) € P. Will call b amicrolocal inverseof
a.
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Application: the Square Root Operator

0> 4 9? 4

ale, 2, Dy, D) = 022 v(z,2)202  u(x, z)QD752 - D
IS
a(x,z,7,§) = ! T — ¢
v(x, z2)?
Foro > 0, set
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The SSR Operator

Then according to the last slide, there i1s an orderdO-valued function ofz,
b(x, z, Dy, D), with principal symbol

2
bl(az,z,T,f)\/ ! 72527\/2)(4 _¢ (z,1,€,7) € Ps(2)

v(x, 2)? r,z)?2 1%

for whicha(z, z, Dy, D,)u ~ b(x, z, Dy, D,)b(x, 2z, Dy, D)u if WE(u) C Ps(z).

b is the world-famousingle squareroot (“SSR”) operator - see Claerbout, IEI.
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The SSR Assumption

To what extent has this construction factored the wave ¢ogpera

o . g .
(& —1b(z, 2z, Dy, Dt)> (& +ib(x, 2, D, Dt))
2
= a— + b('ra 2 D:U: Dt>b<x7 2 DI? Dt) + @(CE’, 2 DfU? Dt)

022 0z

SSR Assumption: For some) > 0, the wavefieldv satisfies

(x,2,t,€,(,7) e WF(w) = (x,t,£,7) € Ps(z) and(T > 0
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This statement has a ray-theoretic interpretation (whidlewentually make sense):
rays carrying significant energy are nowhere horizontabnglany such ray; de-
creases asincreases eoming up!

w(x,z,t) = (é +ib(x, z, D,, Dt)> w(z, z,t)

0z
b(x,z, Dy, D)b(x, z, D, Dy)w >~ ! D? — D% ) w
3~ T t )~ T t — ’U(ﬂj‘, 2)2 t T
with a smooth error, so
o . ) 2r(z, 2)
(@ o Zb(l‘, 2, Dxa Dt)) ’LU(I‘, <y t) — _’U(.I', Z>25(t)

(0
+1 (&b(x, 2, Dy, Dt)> w(z, z,t)
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(sinceb depends on, the z deriv. does not commute with). Sow = wy + wy,
where

2r(x, z)

70(t)

o . s
(& o Zb(.I',Z, D:U7 Dt)) wo(l', Z7t> - =

v(x, 2)

(this is theSSR modeling equation)

o ) (0
(& —ib(w, z, Dy, Dt)) wi(x, 2,t) =1 (@b(%za Dy, Dt)) w(z, z,1)

Claim: W F(w;) C W F(w). Granted this= W F'(wy) C W F(w) also.
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Upshot: SSR modeling
ﬁO[U]T<x37 Zs) t) — UNJO<3787 Zs) t)

produces the same singularities (i.e. the same waves) axlexgpreflector model-
INg, SO is as good a basis for migration.

SSR migration: assume that sources all liezpg- 0.

<F0 *d?"> <dF0[]

/de/dtd T, t)Wo(Ts, 0, 1)
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_ / d. / it / dz (24, 1)5(2)T0(@s, 2, 1

Define the adjoint field by

(6’2 —b(z, 2, Dy, Dt)) q(z,2,t) = d(z,1)0(2), q(r,2,t) =0, 2 <0
Z

which is equivalent to solving the initial value problem

(aé - ib(x”z?Dx)Dt)) Q(I',Z,t> — O’ z > O” Q(I',O,t> - d(l’,t)
<

Insert in expression for inner product, integrate by parsg self-adjointness of
get

<d, Fylr >:/da:/dz QZ;f;qu(x,z,O)

(V)
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whence

Bl d(z, 2) = —>

v(x, z)QQ(x’ %0)

Standard description of the SSR migration algorithm:

e downward continue data (i.e. solve fgr

e image att = 0.

The art of SSR migration: computable approximation$(ta z, D.., D;) - swim-
ming pool operator, many successors.
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Proof of the Claim

Unfinished business: proof of claim
Depends on celebrat@&ilopagation of Singularitiestheorem of Khirmander (1970).

Given symbolp(x, &), order m, with asymptotic expansion, defimieharateristics
as solutiongx(t), &£(t)) of Hamiltonian system

dx Op d§ Op

dt — a£<X7 6)7 % — _a_X<X7 6)

with p(x(t),&(t)) = 0.

Theorem: Suppose(x, D)u = f, and suppose that fog < ¢t < t;, (x(¢),&(t)) ¢
WEF(f). Then eithed (x(t),&(t)) : tg <t < t1} C WF(u) or{(x(t),&(t)) : tg <
t <t} CTHR") — WF(u).




P of S has at least two distinct proofs:

e Nirenberg, 1972
e HOormander, 1970 (in Taylor, 1981)

Proof of claim: check that bicharacteristics for SSR omgratre just upcoming
rays of geom. optics for wave equation. These passtnto 0 where RHS is
smooth, also initial condn at largeis smooth - so each ray has one “end” outside
of W F'(w,). If ray carries singularity, must pass @f ' of w, but then it's entirely
contained by P of S applied to. g. e. d.
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Reverse Depth Migration, Prestack

Nonzero offset (“prestack™): starting point is integrgbresentation of the scattered
field

F[U]r(xr,t;xs):% / da ?(”S; / ds G(x,,t — 5 X)G(X0, 5 X)

By analogy with zero offset case, would like to view this agpgleding reflectors
In both directions”: reflectors propagate energy upwaratoces and to receivers.

However can’t do this because reflection locatiosamefor both.
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The “survey sinking” idea

Bold stroke: introduce a new space variapléa “sunken source”, think of as a
“sunken receiver”), define

PlolR(x,, 1:x.) — / / dr dy R(x, y) / ds G(x,, t — 5 X)G(Xs, 5:y)

and note thaf[v|R = F[v]r if

28



This trick decomposeg’|v| into two “exploding reflectors”:

~

F[U]R<X7“7 t, Xs) — U<X7 t, XS) |X=X7~

where

(v(i)zgjz - Vi) u(x, t; Xs) = / dy R(x,y)G(xs,t;y)

= w,(Xg, t;X)

(“‘upward continue the receivers”),

<v<;>2§t2 ) Vi’) wi(y, %) = R(x, y)d(t)

(“‘upward continue the sources”).
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This factorization ofF'[v] (r — R — F[v]R) leads to a reverse time computation
of adjoint F'[v]* - will discuss this later.

It's equally possible to continue the receivers first, tHesources, which leads to

(v&)?g; ) ng) e t3) = [ e R y) Gl 19

= wT(XM t? Y>
(“‘upward continue the sources”),

1 0? ) o Rl
(v<x>26t2 - VX) wi(x,t:y) = R(x,y)3(t)

(“upward continue the receivers”).
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The DSR Assumption

Apply reverse depth concept: as before, go 2D temporarity,(z, 2,), vy = (v, zs),
all sources and receivers on= 0.

Double Sguare Root (“DSR”) assumption: For somé > 0, the wavefield: satis-
files

($72T7t7y7Z87£7C877_7777 CT> E WF(“) :>
<xat7€77-) S 7)5(27”)7 <y7t77777-) S P5<ZS>7 andCTT > 07 CST > 07

As for SSR, there is a ray-theoretic interpretation: ragaifisource and receiver to

scattering point stay away from the vertical and decreasefam increasing, i.e.
they are all upcoming.
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Sincez will be singled out (and eventualli(x, y) will have a factor ofé(x,y)),

Impose the constraint that

~

R(z,z,x,2) = R(x,y,2)0(z — z5)

Define upcoming projections as for SSR:

. 0 .
Wy = (@zs + ib(y, 25, D, Dt)> Wy,

iy = ( 0 +z‘b<az,zT,Dx,Dt>) w,,
0z,

U = ( 0 + 1b(y, zS,Dy,Dt)) ( 0 +ib(:v,zr,Dx,Dt)) U

0z, 0z,
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Except for lower order commutators which we justify throg/away as before,

(6(9 — by, zs, Dy, Dt)> Wy = R(S(zr — 25)0(t),
Zs

(aa —ib(x, 2, Dy, Dt)) W, = RO(2, — 2,)0(1),
2

9,
(6’% —ib(x, 2, Dy, DQ) U = W,

0 . L
(625 o Zb(yaz&Dvat)) U = Wy

Initial (final) conditions are that,, w,, andwu all vanish for large: - the equations
are to be solve in decreasind“upward continuation”).
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Simultaneous upward continuation:
0 0

—fEL(QZ, Zat;ya Z) — B
%

0z

W, 2, 6 Y, 2)|omn, + =—0(x, 2,85 Y, 25) | =2,

0z,

= [tb(z, 2, Dy, Dy)t + s + by, 25, Dy, Dy)U + W]

r—=is—=%

Sincew,(y, z, t; z, z) = W, (x, 2, t;y, z) = R(x,y, 2)d(t), 4 is seen to satisfy the

DSR modeling equation:

(aﬁ —ib(x, 2, Dy, Dy) — ib(y, z, Dy, Dt)) a(w, 2, by, 2) = 2R(z,y, 2)6(t)
Z

~

Fv]|R(x,, t; x) = a(x,,0,t; x4, 0)
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DSR Migration

Computation of adjoint follows same pattern as for SSR, aadd to

DSR migration equation: solve

0
(0_ —ib(z, 2, Dy, Dy) — ib(y, 2, Dy, Dt)) G(x,y,z,t) =0
2

In increasingz with initial condition atz = 0:
q~(x7“7 x87 07 t) — d(xﬁ Ls, t)
ThenFu]*d(z,y, z) = q(z,y, z,0)
The physical DSR model haB(z,y, 2) = r(z, 2)é(z — y), so final step in DSR
computation ofF'[v]* is adjoint ofr — R:

Flv)*d(x,z) = ¢(x,x, 2,0)
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Standard description of DSR migration

(See Claerbout, IEI):

e downward continue sources and receivers (solve DSR magratjuation)

e image at = 0 and zero offsetsf = y)

Another moniker: “survey sinking”: DSR field is (related to) the field that you
would get by conducting the survey with sources and receigedepth:. At any
given depth, the zero-offset, time-zero part of the fielthesihstantaneous response
to scatterers on which source = receiver is sitting, theeefonstitutes an image.

As for SSR, the art of DSR migration is in the approximatioha DSR operator.
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Remarks

Stolk and deHoop (2001) derived DSR modeling and migratiaravmore system-
atic argument than that used here, involvinQO matrix factorization of the wave
equation written as a first order evolution system.imhis idea goes back to Tay-
lor (1975) who used it to show that singularities propagaéilong bicharacteristics
reflect as expected at boundaries.

Stolk (2003) has also carried out a very careful global goieibn of a family of
SSRVYDOs which are of non-classical type at near-horizontalatioas (“nearly
evanescent waves”). This construction should lead to nediate discretizations.

The last part of the course will present the various appbrext-hoc “prestack
modeling” ideas within a unified framework.
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