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High frequency asymptotics and imaging

operators
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Aymptotic assumption

Linearization is accurate⇔ length scale ofv >> length scale ofr ' wavelength,
properties ofF [v] dominated by those ofFδ[v] (= F [v] with w = δ). Implicit in
migration concept (eg. Hagedoorn, 1954); explicit use: Cohen & Bleistein, SIAM
JAM 1977.

Key idea:reflectors (rapid changes inr) emulatesingularities; reflections(rapidly
oscillating features in data) also emulate singularities.

NB: “everybody’s favorite reflector”: the smooth interfaceacross whichr jumps.
But this is an oversimplification - reflectors in the Earth may be complex zones of
rapid change, pehaps in all directions. More flexible notionneeded!!
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Wave Front Sets

Paley-Wiener characterization of smoothness:u ∈ D′(Rn) is
smooth atx0 ⇔ for some nbhdX of x0, anyφ ∈ E(X) andN , there isCN ≥ 0 so
that for anyξ 6= 0,

|F(φu)(τξ)| ≤ CN(τ |ξ|)−N

Harmonic analysis of singularities,aprèsHörmander: thewave front setWF (u) ⊂

Rn×Rn−0 of u ∈ D′(Rn) - captures orientation as well as position of singularities.

(x0, ξ0) /∈ WF (u) ⇔, there is some open nbhdX × Ξ ⊂ Rn × Rn − 0 of (x0, ξ0)

so that for anyφ ∈ E(X),N , there isCN ≥ 0 so that for allξ ∈ Ξ,

|F(φu)(τξ)| ≤ CN(τ |ξ|)−N
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Housekeeping chores

(i) note that the nbhdsΞ may naturally be taken to becones

(ii) WF (u) is invariant under chg. of coords if it is regarded as a subsetof the
cotangent bundleT ∗(Rn) (i.e. theξ components transform as covectors).

[Good refs: Duistermaat, 1996; Taylor, 1981; Hörmander, 1983]

The standard example: ifu jumps across the interfacef(x) = 0, otherwise smooth,
thenWF (u) ⊂ Nf = {(x, ξ) : f(x) = 0, ξ||∇f(x)} (normal bundleof f = 0).
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Wavefront set of a jump discontinuity
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WF (H(φ)) = {(x, ξ) : φ(x) = 0, ξ||∇φ(x)}
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Microlocal property of differential operators

Supposeu ∈ D′(Rn), (x0, ξ0) /∈ WF (u), andP (x, D) is a partial differential
operator:

P (x, D) =
∑

|α|≤m

aα(x)Dα

D = (D1, ..., Dn), Di = −i
∂

∂xi

α = (α1, ..., αn), |α| =
∑

i

αi,

Dα = Dα1
1 ...D

αn
n

Then(x0, ξ0) /∈ WF (P (x, D)u) [i.e.: WF (Pu) ⊂WF (u)].

6



Proof

ChooseX × Ξ as in the definition,φ ∈ D(X) form the required Fourier transform
∫

dx eix·(τξ)φ(x)P (x, D)u(x)

and start integrating by parts: eventually

=
∑

|α|≤m

τ |α|ξα
∫

dx eix·(τξ)φα(x)u(x)

whereφα ∈ D(X) is a linear combination of derivatives ofφ and theaαs. Since
each integral is rapidly decreasing asτ → ∞ for ξ ∈ Ξ, it remains rapidly decreas-
ing after multiplication byτ |α|, and so does the sum.Q. E. D.
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Formalizing the reflector concept

Key idea, restated: reflectors (or “reflecting elements”) will be points inWF (r).
Reflections will be points inWF (d).

These ideas lead to a usable definition ofimage: a reflectivity model̃r is an image
of r if WF (r̃) ⊂ WF (r) (the closer to equality, the better the image).

Idealizedmigration problem : givend (henceWF (d)) deduce somehow a function
which hasthe right reflectors, i.e. a functioñr with WF (r̃) ' WF (r).

NB: you’re going to needv! (“It all depends on v(x,y,z)” - J. Claerbout)
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Integral representation of linearized operator

With w = δ, acoustic potentialu is same as Causal Green’s functionG(x, t;xs) =
retarded fundamental solution:

(

1

v2

∂2

∂t2
−∇2

)

G(x, t;xs) = δ(t)δ(x − bxs)

andG ≡ 0, t < 0. Then (w = δ!) p = ∂G
∂t , δp = ∂δG

∂t , and
(

1

v2

∂2

∂t2
−∇2

)

δG(x, t;xs) =
2

v2(x)

∂2G

∂t2
(x, t;xs)r(x)

Simplification: from now on, defineF [v]r = δG|x=xr
- i.e. lose at-derivative.

Duhamel’s principle⇒

δG(xr, t;xs) =

∫

dx
2r(x)

v(x)2

∫

dsG(xr, t− s;x)
∂2G

∂t2
(x, s;xs)
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Add geometric optics...

Geometric optics approximation ofG should be good, asv is smooth. Local ver-
sion: if x “not too far” fromxs, then

G(x, t;xs) = a(x;xs)δ(t− τ (x; xs)) +R(x, t;xs)

where the traveltimeτ (x; xs) solves the eikonal equation

v|∇τ | = 1

τ (x;xs) ∼
|x − xs|

v(xs)
, x → xs

and the amplitudea(x;xs) solves the transport equation

∇ · (a2∇τ ) = 0
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Simple Geometric Optics

“Not too far” means: there should be one and only one ray of geometric optics
connecting eachxs or xr to eachx ∈ suppr.

Will call this thesimple geometric opticsassumption.
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An oft-forgotten detail

All of this is meaningful only if the remainderR is small in a suitable sense: energy
estimate (Exercise!) ⇒

∫

dx

∫ T

0

dt |R(x, t;xs)|
2 ≤ C‖v‖C4
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Numerics, and a caution

Numerical solution of eikonal, transport: ray tracing (Lagrangian), various sorts of
upwind finite difference (Eulerian) methods. See eg. Sethian book, WWS 1999
MGSS notes (online) for details.

For “random but smooth”v(x) with varianceσ, more than one connecting ray oc-
curs as soon as the distance isO(σ−2/3). Suchmultipathingis invariably accompa-
nied by the formation of acaustic(White, 1982).

Upon caustic formation, the simple geometric optics field description above is no
longer correct (Ludwig, 1966).
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A caustic example (1)
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sin1: velocity field

2D Example of strong refraction: Sinusoidal velocity fieldv(x, z) = 1+0.2 sin πz
2

sin 3πx
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A caustic example (2)
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sin1: rays with takeoff angles in range 1.41372 to 1.72788

Rays in sinusoidal velocity field, source point = origin. Note formation of caustic,
multiple rays to source point in lower center.
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The linearized operator as Generalized Radon

Transform

Assume:supp r contained in simple geometric optics domain (each point reached
by unique ray from any source or receiver point).

Then distribution kernelK of F [v] is

K(xr, t,xs;x) =

∫

dsG(xr, t− s;x)
∂2G

∂t2
(x, s;xs)

2

v2(x)

'

∫

ds
2a(xr,x)a(x,xs)

v2(x)
δ′(t− s− τ (xr,x))δ′′(s− τ (x,xs))
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=
2a(x,xr)a(x,xs)

v2(x)
δ′′(t− τ (x,xr) − τ (x,xs))

provided that

∇xτ (x,xr) + ∇xτ (x,xs) 6= 0

⇔ velocity atx of ray fromxs not negative of velocity of ray fromxr ⇔ no forward
scattering. [Gel’fand and Shilov, 1958 - when is pullback of distribution again a
distribution].
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Q: What does' mean?

A: It means “differs by something smoother”.

In theory, can complete the geometric optics approximationof the Green’s function
so that the difference isC∞ - then the two sides have the same singularities, ie. the
same wavefront set.

In practice, it’s sufficient to make the difference just a bitsmoother, so the first term
of the geometric optics approximation (displayed above) suffices (can formalize
this with modification of wavefront set defn).

These lectures will ignore the distinction.
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GRT = “Kirchhoff” modeling

So: forr supported in simple geometric optics domain, no forward scattering⇒

δG(xr, t;xs) '

∂2

∂t2

∫

dx
2r(x)

v2(x)
a(x,xr)a(x,xs)δ(t− τ (x,xr) − τ (x,xs))

That is: pressure perturbation is sum (integral) ofr over reflection isochron{x :

t = τ (x,xr) + τ (x,xs)}, w. weighting, filtering. Note: ifv =const. then isochron
is ellipsoid, asτ (xs,x) = |xs − x|/v!

(y,x )+  (y,x )ττt=

x x

y

s

r s

r
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Zero Offset data and the Exploding Reflector

Zero offset data (xs = xr) is seldom actually measured (contrast radar, sonar!), but
routinelyapproximatedthroughNMO-stack(to be explained later).

Extracting image from zero offset data, rather than from all(100’s) of offsets, is
tremendousdata reduction- when approximation is accurate, leads to excellent
images.

Imaging basis: theexploding reflectormodel (Claerbout, 1970’s).
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For zero-offset data, distribution kernel ofF [v] is

K(xs, t,xs;x) =
∂2

∂t2

∫

ds
2

v2(x)
G(xs, t− s;x)G(x, s;xs)

Under some circumstances (explained below),K ( = G time-convolved with itself)
is “similar” (also explained) tõG = Green’s function forv/2. Then

δG(xs, t;xs) ∼
∂2

∂t2

∫

dx G̃(xs, t,x)
2r(x)

v2(x)

∼ solutionw of
(

4

v2

∂2

∂t2
−∇2

)

w = δ(t)
2r

v2

Thus reflector “explodes” at time zero, resulting field propagates in “material” with
velocity v/2.
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Explain when the exploding reflector model “works”, i.e. whenG time-convolved
with itself is “similar” to G̃ = Green’s function forv/2. If supp r lies in simple
geometry domain, then

K(xs, t,xs;x) =

∫

ds
2a2(x,xs)

v2(x)
δ(t− s− τ (xs,x))δ′′(s− τ (x,xs))

=
2a2(x,xs)

v2(x)
δ′′(t− 2τ (x,xs))

whereas the Green’s functioñG for v/2 is

G̃(x, t;xs) = ã(x,xs)δ(t− 2τ (x,xs))

(half velocity = double traveltime, same rays!).
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Difference between effects ofK, G̃: for eachxs scaler by smooth fcn - preserves
WF (r) henceWF (F [v]r) and relation between them. Also: adjoints have same
effect onWF sets.

Upshot: from imaging point of view (i.e. apart from amplitude, derivative (filter)),
kernel ofF [v] restricted to zero offset is same as Green’s function forv/2, provided
that simple geometry hypothesis holds:only one ray connects each source point to
each scattering point, ie.no multipathing.

See Claerbout, IEI, for examples which demonstrate that multipathing really does
invalidate exploding reflector model.

23



Standard Processing

Inspirational interlude: the sort-of-layered theory =“Standard Processing”

Suppose werev,r functions ofz = x3 only, all sources and receivers atz = 0.
Then the entire system is translation-invariant inx1, x2 ⇒ Green’s functionG its
perturbationδG, and the idealized dataδG|z=0 are really only functions oft and
half-offseth = |xs−xr|/2. There would beonly one seismic experiment, equivalent
to anycommon midpoint gather(“CMP”).

This isn’t really true -look at the data!!! However it isapproximatelycorrect in
many places in the world: CMPs change very slowly with midpoint xm = (xr +

xs)/2.
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Standard processing: treat each CMPas if it were the result of an experiment per-
formed over a layered medium, but permit the layers to vary with midpoint.

Thusv = v(z), r = r(z) for purposes of analysis, but at the endv = v(xm, z), r =

r(xm, z).

F [v]r(xr, t;xs)

'

∫

dx
2r(z)

v2(z)
a(x, xr)a(x, xs)δ

′′(t− τ (x, xr) − τ (x, xs))

=

∫

dz
2r(z)

v2(z)

∫

dω

∫

dxω2a(x, xr)a(x, xs)e
iω(t−τ(x,xr)−τ(x,xs))
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Since we have already thrown away smoother (lower frequency) terms, do it again
usingstationary phase.Upshot (see 2000 MGSS notes for details): up to smoother
(lower frequency) error,

F [v]r(h, t) ' A(z(h, t), h)R(z(h, t))

Herez(h, t) is the inverse of the 2-way traveltime

t(h, z) = 2τ ((h, 0, z), (0, 0, 0))

i.e. z(t(h, z′), h) = z′. R is (yet another version of) “reflectivity”

R(z) =
1

2

dr

dz
(z)

That is,F [v] is a a derivative followed by a change of variable followed bymulti-
plication by a smooth function. Substitutet0 (vertical travel time) forz (depth) and
you get “Inverse NMO” (t0 → (t, h)). Will be sloppy and callz → (t, h) INMO.
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Anatomy of an adjoint

∫

dt

∫

dh d(t, h)F [v]r(t, h) =

∫

dt

∫

dh d(t, h)A(z(t, h), h)R(z(t, h))

=

∫

dz R(z)

∫

dh
∂t

∂z
(z, h)A(z, h)d(t(z, h), h) =

∫

dz r(z)(F [v]∗d)(z)

soF [v]∗ = − ∂
∂z
SM [v]N [v], where

• N [v] = NMO operator N [v]d(z, h) = d(t(z, h), h)

•M [v] = multiplication by ∂t
∂z
A

• S = stacking operatorSf(z) =
∫

dh f(z, h)
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F [v]∗F [v]r(z) = −
∂

∂z

[
∫

dh
dt

dz
(z, h)A2(z, h)

]

∂

∂z
r(z)

Microlocal property of PDOs⇒WF (F [v]∗F [v]r) ⊂ WF (r) i.e. F [v]∗ is an imag-
ing operator.

If you leave out the amplitude factor (M [v]) and the derivatives, as is commonly
done, then you get essentially the same expression - so (NMO,stack) is an imaging
operator!

It’s even easy to get an (asymptotic) inverse out of this - exercise for the reader.

Now make everything dependent onxm and you’ve got standard processing. (end
of layered interlude).
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Multioffset (“Prestack”) Imaging, après Beylkin

If d = F [v]r, then

F [v]∗d = F [v]∗F [v]r

In the layered case,F [v]∗F [v] is an operator which preserves wave front sets.When-
everF [v]∗F [v] preserves wave front sets,F [v]∗ is an imaging operator.

Beylkin, JMP 1985: forr supported in simple geometric optics domain,

•WF (Fδ[v]
∗Fδ[v]r) ⊂WF (r)

• if Sobs = S[v]+Fδ[v]r (data consistent with linearized model), thenFδ[v]∗(Sobs−
S[v]) is an image ofr

• an operatorFδ[v]† exists for whichFδ[v]†(Sobs − S[v]) − r is smootherthan
r, under some constraints onr - an inverse modulo smoothing operatorsor
parametrix.
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Outline of proof

ExpressF [v]∗F [v] as “Kirchhoff modeling” followed by “Kirchhoff migration”;
(ii) introduce Fourier transform; (iii) approximate for large wavenumbers using
stationary phase, leads to representation ofF [v]∗F [v] modulo smoothing error as
pseudodifferential operator(“ΨDO”):

F [v]∗F [v]r(x) ' p(x, D)r(x) ≡

∫

dξ p(x, ξ)eix·ξr̂(ξ)

in which p ∈ C∞, and for somem (theorder of p), all multiindicesα, β, and all
compactK ⊂ Rn, there exist constantsCα,β,K ≥ 0 for which

|Dα
xD

β

ξ
p(x, ξ)| ≤ Cα,β,K(1 + |ξ|)m−|β|, x ∈ K

Explicit computation ofsymbolp - for details, see Notes on Math Foundations.

30



Microlocal PropertyofΨDOs

:

if p(x,D) is aΨDO, u ∈ E ′(Rn) thenWF (p(x,D)u) ⊂ WF (u).

Will prove this, from which imaging property of prestack Kirchhoff migration fol-
lows. First, a few other properties:

• differential operators areΨDOs (easy - exercise)

• ΨDOs of orderm form a module overC∞(Rn) (also easy)

• product ofΨDO orderm, ΨDO orderl = ΨDO order≤ m + l; adjoint ofΨDO
orderm is ΨDO orderm (much harder)

Complete accounts of theory, many apps: books of Duistermaat, Taylor, Nirenberg,
Treves, Ḧormander.
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Proof of Microlocal Property

Suppose(x0, ξ0) /∈ WF (u), choose neighborhoodsX, Ξ as in defn, withΞ conic.
Need to choose analogous nbhds forP (x,D)u. Pick δ > 0 so thatB3δ(x0) ⊂ X,
setX ′ = Bδ(x0).

Similarly pick 0 < ε < 1/3 so thatB3ε(ξ0/|ξ0|) ⊂ Ξ, and choseΞ′ = {τξ : ξ ∈

Bε(ξ0/|ξ0|), τ > 0}.

Need to chooseφ ∈ E ′(X ′), estimateF(φP (x, D)u). Chooseψ ∈ E(X) so that
ψ ≡ 1 onB2δ(x0).

NB: this implies that ifx ∈ X ′, ψ(y) 6= 1 then|x − y| ≥ δ.
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Write u = (1 − ψ)u + ψu. Claim: φP (x, D)((1 − ψ)u) is smooth.

φ(x)P (x, D)((1 − ψ)u))(x)

= φ(x)

∫

dξ P (x, ξ)eix·ξ
∫

dy (1 − ψ(y))u(y)e−iy·ξ

=

∫

dξ

∫

dy P (x, ξ)φ(x)(1 − ψ(y))ei(x−y)·ξu(y)

=

∫

dξ

∫

dy (−∇2
ξ)
MP (x, ξ)φ(x)(1 − ψ(y))|x − y|−2Mei(x−y)·ξu(y)
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using the identity

ei(x−y)·ξ = |x − y|−2
[

−∇2
ξe
i(x−y)·ξ

]

and integrating by parts2M times in ξ. This is permissible becauseφ(x)(1 −

ψ(y)) 6= 0 ⇒ |x − y| > δ.

According to the definition ofΨDO,

|(−∇2
ξ)
MP (x, ξ)| ≤ C|ξ|m−2M

For anyK, the integral thus becomes absolutely convergent afterK differentiations
of the integrand, providedM is chosen large enough. Q.E.D. Claim.

This leaves us withφP (x, D)(ψu). Pickη ∈ Ξ′ and w.l.o.g. scale|η| = 1.
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Fourier transform:

F(φP (x, D)(ψu))(τη) =

∫

dx

∫

dξ P (x, ξ)φ(x)ψ̂u(ξ)eix·(ξ−τη)

Introduceτθ = ξ, and rewrite this as

= τn
∫

dx

∫

dθ P (x, τθ)φ(x)ψ̂u(τθ)eiτx·(θ−η)

Divide the domain of the inner integral into{θ : |θ − η| > ε} and its complement.
Use

−∇2
xe
iτx·(θ−η) = τ 2|θ − η|2eiτx·(θ−η)
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Integrate by parts2M times to estimate the first integral:

τn−2M

∣

∣

∣

∣

∫

dx

∫

|θ−η|>ε

dθ (−∇2
x)
M [P (x, τθ)φ(x)]ψ̂u(τθ)

× |θ − η|−2Meiτx·(θ−η)
∣

∣

∣

≤ Cτn+m−2M

m being the order ofP . Thus the first integral is rapidly decreasing inτ .
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For the second integral, note that|θ − η| ≤ ε ⇒ θ ∈ Ξ, per the defn ofΞ′. Since
X × Ξ is disjoint from the wavefront set ofu, for a sequence of constantsCN ,
|ψ̂u(τθ)| ≤ CNτ

−N uniformly for θ in the (compact) domain of integration, whence
the second integral is also rapidly decreasing inτ . Q. E. D.

And that’s why Kirchhoff migration works, at least in the simple geometric optics
regime.
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Asymptotic Prestack Inversion

Recall: in layered case,

F [v]r(h, t) ' A(z(h, t), h)
1

2

dr

dz
(z(h, t))

F [v]∗d(z) ' −
∂

∂z

∫

dhA(z, h)
∂t

∂z
(z, h)d(t(z, h), h)

F [v]∗F [v] = −
∂

∂z

[
∫

dh
dt

dz
(z, h)A2(z, h)

]

∂

∂z

In particular, the normal operatorF [v]∗F [v] is an elliptic PDO.
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Thus normal operator isasymptotically invertibleand you can construct approxi-
mate least-squares solution toF [v]r = d:

r̃ ' (F [v]∗F [v])−1F [v]∗d

Relation betweenr and r̃: difference issmootherthan either. Thus difference is
small if r is oscillatory - consistent with conditions under which linearization is
accurate.

Analogous construction in simple geometric optics case: due to Beylkin (1985).

Complication:F [v]∗F [v] cannot be invertible - becauseWF (F [v]∗F [v]r) generally
quite a bit “smaller” thanWF (r).
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Inversion aperture

Γ[v] ⊂ R3 × R3 − 0:

if WF (r) ⊂ Γ[v], thenWF (F [v]∗F [v]r) = WF (r) andF [v]∗F [v] “acts invertible”.
[construction ofΓ[v] - later!]

Beylkin: with proper choice of amplitudeb(xr, t;xs), the modified Kirchhoff mi-
gration operator

F [v]†d(x) =

∫ ∫ ∫

dxr dxs dt b(xr, t;xs)δ(t− τ (x; xs) − τ (x;xr))d(xr, t;xs)

yieldsF [v]†F [v]r ' r if WF (r) ⊂ Γ[v]
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For details of Beylkin construction: Beylkin, 1985; Milleret al 1989; Bleistein,
Cohen, and Stockwell 2000; WWS Math Foundations, MGSS notes1998. All
components are by-products of eikonal solution.

aka: Generalized Radon Transform (“GRT”) inversion, Ray-Born inversion, migra-
tion/inversion, true amplitude migration,...

Many extensions, eg. to elasticity: Bleistein, Burridge, deHoop, Lambaŕe,...

Apparent limitation: construction relies on simple geometric optics (no multipathing)
- how much of this can be rescued? cf. Part III.
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Example of GRT Inversion (application ofF [v]†): K. Araya (1995), “2.5D” in-
version of marine streamer data from Gulf of Mexico: 500 source positions, 120
receiver channels, 750 Mb.
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