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A step beyond linearization: velocity analysis




Velocity Analysis

Partially linearized seismic inverse problem (“velocityadysis”). given observed
seismic datal, find smoothvelocityv € £(X), X C R? oscillatory reflectivity
r e £'(X) so that

Flulr ~d

Acoustic partially linearized model: acoustic potentialdiz and its perturbation

du solve
1 0 5 1 0 2 2

plus suitable bdry and initial conditions.

F[v]r:@
ot |y

data acquisition manifold” = {(x,,;x,)} € R’, dimnY < 5 (many idealizations
here!).
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Flv] : £(X) — D'(Y) is a linear map (FIO of order), but dependence onis
guite nonlinear, so this inverse problem is nonlinear.

Agenda:

e reformulation of inverse problem viextensions

e “standard processing’ extension and standard VA

¢ the surface oriented extension and standard MVA

e the DO property and why it’s important

e global failure of thel’'DO property for the SOE

e Claerbout’s depth oriented extension hasWi®O property

e differential semblance




Extensions

Extensionof F'[v]: manifold X and mapsy : &'(X) — &'(X), F[v] : £'(X) —
D'(Y) so that
P[]
E(X) — DY)

x 1 T id
&X) — DY)

commutes.
Invertible extensionf’'[v] has aright parametrixG|v], i.e. I — Fv]G[v] is smooth-
Ing. [The trivial extension X = X, ' = F - is virtually never invertible.] Alsoy

has deft inversen.

Reformulation of inverse problem: givelfind v so thatG[v]d € R(x) (implicitly
determines- also!).
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Example 1: Standard VA extension

Treat each CMRs if it were the result of an experiment performed over arege
medium but permit the layers to vary with midpoint.

Thusv = v(z),r = r(z) for purposes of analysis, but at the end- v(x,,, z),r =

(X, 2)-
Flo|R(Xpm, h,t) >~ A(Xm, h, 2(Xm, b, ) R(Xp, 2(Xm, b, t))
Herez(x,,, h,t) is the inverse of the 2-way traveltime
t(Xm, by 2) = 27 (X + (R, 0, 2), Xom ) vu(xm.2)

computed with the layered velocityx,,, z), i.e.
2(Xpm, by t(Xn, by 21)) = 2.




That is, F'[v| is a change of variable followed by multiplication by a sniofatnc-
tion. NB: industry standard practice is to use vertical trawsdtt, instead ofz for
depth variable.

Can write this asi'[v] = F'S*, where F[v] = N[v|"'M[v] has right parametrix
G[v] = M[v]N|v]:

Nv] =NMO operator N{v|d(x,, h, z) = d(Xp, h, t(Xm, h, 2))
M v| = multiplication by A
S = stacking oper ator

Sf(xm,z) = / dh f(Xm, h, z), S*r(xm, h, z) = r(x, 2)




Identify as extension:F[v], G[v] as above X = {x,,,z},H = {h},X = X X
H,x = 5% n=25 -the invertible extension properties are clear.

Standard names for the Standard VA extension objeEfs] = “inverse NMQO”,
G[v] = “NMO” [often the multiplication opM [v] is neglected]n = “stack”, y =
“spread”

How thisisused for velocity analysis: Look for v that make<:[v]d € R(x)

So what isR(x)? x[r](xm, 2, h) = r(xm, 2) Anything in range ofy is independent
of h. Practical issues;> replace “independent of” with “smooth in”.




Flatten them gathers!

Inverse problem reduced to: adjusto makeG/[v]d°™ smooth inh, i.e. flatin z, h
display for eaclx,, (NMO-corrected CMF.

Replace: with ¢, v with vgys em localizes computation: reflection through, £, 0
flattenedby adjustingurnis(x.m, to) = 1D search, do by visual inspection.

Various aids - NMO corrected CMP gathers, velocity speéta,
See: Claerboutmaging the Earth’s Interior

WWS: MGSS 2000 notes
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L eft: part of survey {) from North Sea (thanks: Shell Research), lightly prepro-
cessed.

Right: restriction ofG[v]d to x,, = const (function of depth, offset): shows rel.
sm’ness im (offset) for properly chosen.




Example 2: Surface oriented or standard MVA
extension

. This only works where Earth is “nearly layered”. Where tiaigs, replace NMO
by prestack migration.

Shot version, = set of shot locationsY = X x 3, x[r](x, x,) = r(x).

2
%/ dx 7(x, X;) / ds G(x,,t — s;x)G(Xg, $;X)
Offset version (preferred because it minimizes truncaadifacts): >, = set of
half-offsets in dataX = X x 3, x[r](x,h) = r(x).

_ 02

Flu|r(x,,t,h) = @/ dx 7(x, h) / ds G(xs + h,t — s;%x)G(xs, s; X)

Fl)r(x,, t,x,) =
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[Parametrize data with source locatign, time ¢, offseth.] NB: note that both
versions are “block diagonal” - family of operators (FIOs¥@ametrized by, or
h.
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Properties of SOE

Beylkin (1985), Rakesh (1988): ffv|2(x) “not too big”, then

e [ hasthe UDO property: FF*is ¥DO
e singularities off’ F'*d C singularities ofd

e straightforward construction of right parametrik= F*Q, () = DO, also as
generalized Radon Transform - explicitly computable.

Range ofy (offset version):7(x, h) independent oh = “semblance principle”:
find v so thatG[v]d°™ is independent oh. Practical limitations= replace “inde-
pendent oh” by “smooth inh”.
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Industrial MVA

Application of these ideas = industrial practice of migvatvelocity analysis.

Idea: twiddlev until G[v]d°® is smooth inh.

Since it is hard to insped®[v]d°™(x,y, z, h), pull out subset for constant, y =
common image gather (“CIG”): display function ofz, h for fixed x, y. These play
same role as NMO corrected CMP gathers in layered case.

Try to adjustv so that selected CIGs aflat - just as in Standard VA. This is much
harder, as there is no RMS velocity trick to localize the catapon - each CIG
depends globally on.

Description, some examples: Yilm&&eismic Data Processing
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Bad news

Nolan (1997). big trouble! In general, standard extensio@sthot have thel/DO
property. Geometric optics analysis: fw||2x), “large”, multiple rays connect
source, receiver to reflecting points é; block diagonal structure af' [v| = info
necessary to distinguish multiple raygi®jected out

14



Example (Stolk & WWS, 2001): Gaussian lens over flat refleatalepth z{(x) =
d(x1 — 2), 1 = depth).

15



offset
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Left: Const. A slice of Gd: several refl. points corresponding to same singularity
in d°.
Right: CIG (const.z, y slice) of Gd: not smooth ir!
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Example 3: Claerbout’s depth oriented extension

Standard MVA extension only works when Earth has simple egngetry. Claer-
bout proposed alternative extension:

¢ = somewhat arbitrary set of vectors near 0 (“offset&’)= X x X4, x[r](x,h) =
r(x)d(h), nlr](x) = r(x,0)

2
Flo|r(x, t,x;) :%/ da:/ dh7(x,h) / ds G(xs,t — s;x + 2h)G(x,, $;X)
24
62
= —/ dx / dy 7(X,y — X) / ds G(xs,t — s;y)G(%X,, $;X)
ot x+25,

NB: in this formulation, there appears to be too many model patars.
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Shot record modeling

for eachx, solve

Flolr(x,, t;x5) = u(x, t; Xs)|x=x,

where

1 o ) i |
(U(X)28t2 — VX> u(x, t;Xs) = /x+22d dy7(x,y)G(y,t;X,)

Finite difference scheme: form RHS for eqgn 1, stgg forward in t.
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ComputingGy]

Instead of parametrix, be satisfied with adjoint.

Reverse time adjoint computation - specify adjoint fieldrastandard reverse time
prestack migration:

1 0 5
(v(x)28t2 — Vx> w(x, t;Xs) = / dr, d(x,,t;Xs)0(x — X,
with w(x, t;x,) = 0,t >> 0. Then
F]*d(x,h) = / dx / dt G(x + 2h, t; x5)w(x, t; X;)

l.e. exactly the same computation as for reverse time miestacept that crosscor-
relation occurs at an offséh.
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Nomenclature

NB: the “usual computation” of7[v] is either DSR or a variant of shot record com-
putation of previous slide using depth extrapolatidnis usually restricted to be
horizontal, i1.e.h3 = 0.

Common names: shot-geophone or survey-sinking migratwah OSR), or shot
record migration.

“Downward continue sources and receivers, image=at, h = ("

These are what is typically meant by “wave equation migrétio
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What should be the character of the image when the velocdgrigect?
Hint: for simulation of seismograms, the input reflectivitgd the formr-(x)d(h).
Therefore guess that when velocity is corrétiage is concentrated near = 0.

Examples: 2D finite difference implementation of reverseetimethod. Correct
velocity = 1. Input reflectivity used to generate synthetic data: randdfor
output reflectivity (image off'[v]*), constrain offset to be horizontali(x, h) =
7(x, h1)o(hs). Display CIGs (i.ex; =const. slices).

21



offset (km) offset (km)
0 0

offset (km)
02 Q1 01 0.2 Q1 01 0 01

01 01

05 05

Offset Image Gather, x=1 km 0IG, =1 km: vel 10% high 0IG, x=1 km: vel 10% low

Two way reverse time horizontal offset S-G image gathersath drom random
reflectivity, constant velocity. From left to right: corteglocity, 10% high, 10%
low.
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Stolk and deHoop, 2001

Claerbout extension has tRDO
property, at least when restrictedit@f the form7(x, h) = R(x, hy, ho)d(h3), and
under DSR assumption.

Sketch of proof (after Rakesh, 1988):

This will follow from injectivity of wavefront orcanonical relationC's C T*(X) —
{0} x T*(Y) — {0} which describes singularity mapping properties-of

(thaga VaY)”) S CF(;[U] A

for someu € £'(X), (x,h,&,v) € WF(u), and(y,n) € WF(Fu)

23



Characterization of

(x,h, &, v), (Xs,t,%, &, 7, &) € Crlv] C THX) —{0} x T*(Y) — {0}
< there areays of geometric optic&X,, E;), (X,, E,) and time<, t, so that
[1(X(0),t, X,.(0), 25(0), 7, 2,(0)) = (X, t, %X, &5, T, &),

X(ts) = x, X (t;) =x+2h, t,+t, =t,

~»

ES(tS) + Er(trmfa Es(ts) — Er(trmy
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X(t.) k(ts)

trt=ti+t,

x4t k()

X (€ K(t:)

X (t) k(L)

/
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Proof

Uses wave equations far G and

e Gabor calculus: computes wave front sets of products, ackib, integrals, etc.
See Duistermaat, Ch. 1.

e Propagation of Singularities Theorem

and that'’s all' [No integral representations, phase fumsj...]
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Note intrinsic ambiguity: if you have a ray pair, move tintgst, resp. t., ¢, for
whicht,+t, = t'+t' = t then you can construct two poirits, h, &, v), (x',h’, &', /)
which are candidates for membershiplin/'(7) and which satisfy the above rela-
tions with the same point in the cotangent bundI&afY").

No wonder - there are too many model parameters!

Stolk and deHoop fix this ambiguity by imposing two constrsin

e DSR assumption: all rays carrying significant reflected gmésource or re-
ceiver) are upcoming.

e RestrictF to the domainZ c £'(X)
rez & f(X, h) = R(X, hq, hg)é(hg)
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If 7 € Z,then(x,h,&,v) € WF(rF) = hs = 0. So source and receiver rays@h
must terminate at same depth, to hit such a point.

Because of DSR assumption, this fixes the traveltitnées.
Restricted to Z, C'z isinjective.

— [*I'is YDO when restricted tE.

28



x{t) kdt)

X (t) K (t)
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Lens data, shot-geophone migration [B. Biondi, 2002]
Left: Image via DSR. MiddleG/[v]d - well-focused (ah = 0), i.e. in range ofy to
extent possible. Right: Angle CIG.
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Quantitative VA

SupposdV : £'(X) — D'(Z) annihilates range of:

X W
E'X) — &X) — D(Z) — 0

and moreovefV is bounded ord.?(X). Then

Tlo:d) = S| WGl

minimizedwhen[v, nG[v]d] solves partially linearized inverse problem.

Construction ofinnihilator of R(F[v]) (Guillemin, 1985):

d € R(Fv]) < Gld € R(x) & WG[v|d =0
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Annihilators, annihilators everywhere...

For Standard Extended Model, several popular choices:

o IV =(I— A)‘%Vh (“differential semblance” - WWS, 1986)
oW =1-— ﬁ [ dh (“stack power” - Toldi, 1985)

o W = I — xF[v]'F[v] = minimizing J[v, d] equivalent to least squares.

For Claerbout extension, differential semblame= h.
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But not many are good for much...

Sinceproblem is hugeonly W giving rise to differentiable — J[v, d] are useful -
must be able to use Newton!!! Once again, idealizée) = 6(¢).

Theorem (Stolk & WWS, 2003):v — J[v, d] smooth< W pseudodifferential.

l.e. only differential semblancegives rise to smooth optimization problenmi-
formly in source bandwidth

NB: Least squares embedded in larger family of optimizat@mulations, some
(others) of which are tractable.

Numerical examples using synthetic and field data: WWS eCélauris & Noble
2001, Mulder & tenKroode 2002. deHoop et al. 2004.
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Beyond Born

Nonlinear effects not included in linearized modaiultiple reflections Conven-
tional approach: treat aoherent noiseattempt to eliminate - active area of re-
search going back 40+ years, with recent important devetopsn

Why not model this “noise”?

Proposal:nonlinear extensionwith F'lv|r replaced byF|[c|. Create annihilators in
same way (now also nonlinear), optimize differential seanbeé.

Nonlinear analog of Standard Extended Model appears tonmtible - in fact
extended nonlinear inverse problenuisderdetermined

Open problems: no theory. Also must determine) (Lailly SEG 2003).
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And so on...

e Elasticity: theory of asymptotic Born inversion at smoo#ctkground in good
shape (Beylkin & Burridge 1988, deHoop & Bleistein 1997).edhy of exten-
sions, annihilators, differential semblance partiallynpbete (Brandsberg-Dahl
et al 2003).

¢ Anisotropy - work of deHoop (Brandsberg-Dahl et al 2003).

e Anelasticity - in the sedimentary sectia,= 100 — 1000, lower in gassy sedi-
ments and near surface. No mathematical results, but somerras - Minkoff
& WWS 1997, Blanch et al 1998.

e Source determination - actually always an issue. Some ssiagaeasting as an
Inverse problem - Minkoff & WWS 1997, Routh et al SEG 2003.
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