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Note to the Reader

These notes will form a chapter in the forthcoming volume Mathematical Frontiers in Re-
flection Seismology, to be published by SIAM and SEG. The references to other chapters
(“Chapter XXX”) pertain to this book.
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1 Introduction and Overview

This chapter develops mathematical concepts and tools underlying techniques for estimation
of material structures from observations of reflected waves. These techniques belong in some
sense to the theory of inverse problems for partial differential equations, but many of them
have their origins outside of modern mathematics. Most of the ideas developed in this
chapter arose first in the seismology, particularly in that branch devoted to exploration for
petroleum. Therefore I shall take viewpoint and terminology from exploration seismology.
A principal goal of this chapter is to provide a natural “Courant—Hilbert” setting for these
ideas and terms, which play a very important role in the following chapters.

The most powerful idea in the subject as it stands today is that of scale separation
coupled with linearization, and most of the chapter will concern its mathematical conse-
quences. The second section describes briefly the reflection seismic experiment and the
typical characteristics of its data. The principal task of theory is the explanation of these
characteristics through a physical model, and the principal characteristic to be explained
is the presence of reflections: space-time coherent oscillatory signals. The simplest theory
offering a hope of such explanation is linear acoustics, presented in the next section. The
fourth section introduces scale separation and linearization. The separation of the wave-
length and medium scales permits great simplification in the description of solutions of the
wave equation, through geometric acoustics. This high frequency asymptotic approximation,
a second layer of perturbation theory, is developed in section 5. It explains the use of the
term “wave propagation” to describe physical models defined by hyperbolic systems of par-
tial differential equations. It also clarifies the meaning of traveltime, and the possible use of
time-of-arrival as data for an inverse problem. Chapter XXX by Bube and Langan discusses
one of the most imporant settings for the resulting transmission tomography problem.

Section 6 is central: it combines linearization and high frequency asymptotics to arrive
at a description of the linearized wavefield which contains candidates for the all-important
reflections. The simplest instance of this approximation occurs when both the reference
medium parameters and their perturbations depend only on one of the space variables,
namely depth, thus modeling flat-lying sedimentary strata undisturbed by tectonic pro-
cesses. The approximation then reduces to the so-called convolutional model. This model
is the subject of Chapter XXX by Robinson, and has been enormously influential in the
development of seismic data processing. Section 7 extracts the geometrical (“kinematic”)
consequences of the approximation, which predicts a definite relation between the arrival
times of reflected waves, on the one hand, and the reference (smooth) velocity distribution
on the other. This relation leads to the possibility that the velocity could be deduced, or at
least constrained, by the arrival times. This reflection tomography problem is the subject of

Chapter XXX by Bube and Langan.

Another way to view the result of the approximation described in section 6 is as an oscil-
latory integral expression for the scattering operator mapping the parameter perturbations to
the seismogram perturbation. This operator belongs to a special class of oscillatory integrals
known as Fourter Integral Operators, a calculus for which was developed by Hormander and
others in the 1970’s. This is hardly surprising, as these operators generalize expressions



known much earlier for solutions of various problems for the wave equation.

The calculus includes a construction of approximate inverses, or parametrices, in ap-
propriate circumstances. In sections 8 through 10 I follow BEYLKIN, 1985 in deriving a
generalized Radon transform expression for a parametrix of the scattering operator. A key
step in this construction is the proof the the normal operator (i.e. the scattering operator
followed by its adjoint) is a pseudodifferential operator, and the explicit computation of its
symbol, carried out in section 8. Section 9 presents two constructions of the adjoint scatter-
ing operator, as a generalized Radon transform and wvia the solution of an adjoint boundary
value problem. The theory of Fourier integral operators shows that the output of the adjoint,
however computed, weighted or not, has high frequency signal strength concentrated in the
same places as the parameter perturbations: thus the adjoint output images the parame-
ter perturbations. As the high frequency filtered plots of both seismogram and parameter
perturbations look very similar, but with signal strength in different places, the adjoint was
dubbed early on a migration operator in exploration seismology. The “migration” is thus
of high frequency signal components to their correct locations in the model of the Earth’s
subsurface. The two adjoint computation methods explained in section 9 are examples of so
called Kirchhoff migration, on the one hand, and finite difference migration, on the other.

The parametrix may be viewed as a weighted adjoint as well. Accordingly, its applica-
tion is often termed “migration/inversion” or “true amplitude migration”. It is also called
high frequency asymptotic inversion. The construction of the generalized Radon transform
representation of the parametrix is reviewed in section 10.

Section 10 also discusses various shortcomings of migration and/or high frequency asymp-
totic inversion. Chief of these is that the results can be reliable only if the background
medium, most especially the background velocity, about which the linearization is done, is
essentially correct. Tomography, ie. traveltime inversion, provides one avenue of velocity
estimation. Another approach is to view the background velocity as part of the model which
is to be estimated as the solution of an inverse problem. Linearization itself is suspect:
the linearized or perturbational seismogram does not explain multiple reflections, and these
(nonlinear) signal components are present in both synthetic and field data. Other shortcom-
ings involve the source of acoustic energy, which in reality does not have arbitrarily high
frequency content (so throws the use of high frequency asymptotics somewhat into doubt)
and is not generally a priori better known than is the subsurface. Several of these issues
are discussed in Chapter XXX by Stolt and Weglein. In general the problems outlined in
Section 10 remain open, and provide many opportunities for further research.

The material in this Chapter is a distillation of work reported in the literature by others;
almost none of it is original. I am especially indebted to Gregory Beylkin, Norman Bleistein,
Robert Burridge, Guy Chavent, Patrick Lailly, Rakesh, and Albert Tarantola, from whose
papers | have taken the essential ideas. A reading list for study of this subject should include
at least BAMBERGER et al., 1979, BEYLKIN, 1985, BEYLKIN and BURRIDGE, 1990,
BLEISTEIN, 1987, RAKESH, 1988, KOLB et al., 1986, LAILLY, 1983, TARANTOLA,
1984, and TARANTOLA, 1986.



2 The Nature of Seismic Reflection Data

Figure 1 presents the result of a single seismic experiment in the North Sea. A ship has towed
a noise-making device, in this case an array of air guns, which has released supersonically
expanding bubbles of compressed air into the water. These in turn generated acoustic waves
which propagated through the water and into the layers of rock in the subsurface. The ship
also towed a cable full of special microphones, called hydrophones. Each hydrophone (or
actually group) generated output voltage as the result of pressure fluctuations. Some of
these pressure fluctuations were echoes, or reflected waves, from subsurface boundaries or
other changes in rock mechanics met by the wave as it propagated. The analog—summed
output voltage for each hydrophone group was digitized and recorded as a time series. These
time series are the content of Figure 1.

The plotting method is typical of this subject, and will appear throughout this volume.
Time increases downwards; the time unit is milliseconds (ms). Each vertical line or trace
represents the time varying signal recorded by a single receiver (hydrophone group). The
horizontal coordinate for each line represents amplitude of the recorded signal (voltage, in
principle). The horizontal coordinate between the lines represents distance from the boat or
source array, in this case increasing from right to left.
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FIGURE 1: Shot record (single experiment data) from seismic data set acquired in the
North Sea. Time sample rate is 4 ms, total time of recording was 3 s. Hydrophone group
spacing is 25 m. Closest offset (distance from source to receiver) is 262 m, far offset is 2262
m. Tow depth of source array was 10 m, depth of hydrophone cable was 6 m. The author
gratefully acknowledges Mobil Research and Development Corp. for provision of this data
and permission for its use.



The variations in amplitude are evidently oscillatory. The plot has been filled with black
ink in each excursion of the amplitude to the right of the axis in each trace. This device brings
out another characteristic of the data: the presence of space time coherent signals, known as
reflections. Evidently certain signal components occur at certain times on each trace, and as
one moves away from the boat the time of occurence becomes later in a systematic way. It
is natural to think that this time represents distance traveled by the wave, and a large part
of this chapter will be devoted to providing a detailed physical justification for this idea,
through a mathematical model of wave propagation and reflection.

Not all of the data is displayed in Figure 1. Sample values have been replaced by zeroes
above a line sloping down to the left. The reason for this cutoff or mute is that part of the
data above this line represents a different physical regime and has a different scale, as will
be explained to some extent below.

This single seismic experiment produced 120 traces, each with 750 samples, representing
3 s of recorded data. (For other dimensional information see the figure caption.) However
the data set from which Figure 1 was extracted contained more than 1000 such experiments.
The ship steamed along a line, and conducted one experiment (a “shot”) every ten seconds
or so. The data collectively represents the influence of the subsurface of the earth to roughly
3 km, over a narrow swath roughly 25 km long through the North Sea. The total volume of
data is roughly 750 Mb.

Moreover this is a small data set. The geometry of acquisition (ship sailing in a single line
towing one cable) is termed “2D” in the current seismic literature. Almost all contemporary
acquisition is in “3D” mode, which in practice means (at least) a ship towing up to a dozen
cables steaming successivly along many parallel lines. Data volumes of hundreds of Gbytes
or even Thytes are not unusual.

Evidently data processing methods of considerable efficiency are required to extract from
this vast quantity of data useful information about the subsurface. This book presents a
number of tools and concepts derived from physical models of seismic wave propagation,
which may be (and have been) used to design effective data processing methods. I hope also
that this and the following chapters clarify the assumptions upon which current understand-
ing and methods rest, along with their shortcomings, so as to delineate some of the many
open questions and research opportunities.

The crucial data feature, which any successful model of reflection seismology must predict,
is the presence of reflections. I turn now to the simplest physical setting in which such a
prediction seems possible.

3 Acoustic Model of Reflection

Linear acoustics models small-amplitude transient deformations of fluids and gases, i.e.
sound waves. This chapter will analyse linear acoustic models in one, two, and three space
dimensions: while the real world is obviously three dimensional, a great deal of data process-
ing is based on two-dimensional models for various reasons, and much intuition and most
rigorous mathematics concern one-dimensional models.



The (small amplitude) excess pressure field p(z, t)(x € IR",¢ € R) resulting from a source
of acoustic energy F(z,t) (the divergence of a body force field) satisfies
1 0*p 1
P ) =V —Vp(a,t) = F(a,1 1
o SR )= L Vpa) = Fla 0
where p(z) is the density at equilibrium and ¢(z) the sound velocity, both functions of spatial
location.

Assume that the fluid is in its equilibrium state (of zero excess pressure) for large negative
time, which is possible provided that the source F(z,t) is causal:

0
0}t<<0.

Physical boundaries, e.g. the ocean surface, in principle imply boundary conditions as well,
but we will ignore these. Thus the various fields are defined in IR” or R"™*', n = 1,2, 3.
The complications arising from boundary conditions are important in the design of data
processing software, but do not alter the general principles presented below.

The (ideal “inverse”) problem to be solved is:

Given recordings p(z,,t,.) of the excess pressure field at a number of receiver loca-
tions z, and times ¢,, and for a number of sources F'(z,1), estimate the coefficients

p(x) and ¢(z).

The papers in this volume present partial solutions to this problem.

Besides the modeling assumptions stated above, we make a number of further simplify-
ing assumptions which are satisfied approximately by the field configurations of reflection
seismology and sometimes by the laboratory configurations of ultrasonic NDE.

The reflection or backscattering configuration separates sources and receivers (z; and
z,) from the region of unknown parameters by a hyperplane. That is, assume that the
coeflicients are known on one side of a datum plane {z, =: z = z,}:

Whenever convenient we will also assume pg, ¢g constant for z < z;. In any case the coeffi-
cients are unknown only for z > z4.

We also assume that the source has point support. This assumption results in a rea-
sonable approximation when the spatial extent of the source is much smaller than a typical
wavelength. We further make the somewhat less realistic restrictions that the sources used
be identical, and that the source radiation pattern be isotropic. Real-world sources are of-
ten variable and distinctly anisotropic, but again the additional complications arising from
source anisotropy do not seriously impair our conclusions. Thus a typical source will have
the form

F(z,t)= f(t)é(z — )

7



where z; is the (point) source location and f(t) is the source time function — a transient
temporal signal. Note that some of the time-invariant physics of the measurement process
may be “hidden” in the source time function f(¢) by virtue of the convolution theorem and
source-receiver reciprocity. Since the wave motion measured by reflection seismology and
ultrasonic NDE experiments really is transient — the material returns to its initial state
after some time — it is easy to see that the mean of f, i.e. its dc component, vanishes.
For other reasons having to do with the physics of sound generation and reception, effective
sources have little energy in a band near zero Hertz as well. Also, the resolution, within which
material inhomogeneities can be detected from reflected waves, depends on the frequency
content of the acoustic field, and therefore of the source. All of these factors conspire to
make prototypical effective sources f(t) oscillatory, with a peak frequency corresponding to
a wavelength of perhaps 1% of the duration of a typical record.

The frequency content of acoustic signals is also limited above, principally because at
sufficiently high frequencies acoustic body waves in real materials are strongly attenuated.
Thus, the acoustic model is a reasonable approximation only in a limited frequency band.

The reflection configuration places all sources and receivers on the known-medium side
of the datum plane:
Tsn = Zs S Zd

Trpn = Zr S Zd -

As indicated by the notation, we assume for simplicity only that the n'* coordinate of source
position vectors (i.e. z;) is the same for all placements of the source, and similarly for receiver
positions. We also assume that the time interval of the pressure measurement is the same
for all receivers. We denote by X, the set of source and receiver positions, which are in
reality discrete but which we will occasionally idealize as continuous. We will ignore the
issue of temporal sampling, and also the details of the pressure-measurement process — i.e.
we regard the pressure as being measured directly, at the receiver points. Thus the data set
for the problem studied here has the form

{p(zs,2,,1): (25,2,) € X5, 0<EL<TH}.

4 Linearization

Even with all the simplifying assumptions outlined above, the possibility of recovery of p(z)
and ¢(z) from such data sets is poorly understood. In part, this is because the relation
between the coefficients p and ¢ and the solution of p of the pressure equation is nonlinear
(even though the equation itself is linear!). The greatest progress in practical methods for
wave imaging has relied on linearization of the p, ¢ — p relation. Accordingly, most of these
notes will concern the structure of this linearized problem.

Heuristic, physical reasoning, computational experience, and the few available mathemat-
ical results all point to the following conclusion: the p, ¢+ p relation is well-approximated
by its formal linearization p + dp, ¢ + d¢ +— p + dp (described explicitly below) so long as



(1) the reference coefficients p, ¢ are slowly-varying (smooth) relative to a typical data
wavelength;

(2) the perturbations dp, dc are oscillatory (“rough”).

Refinement of these rather vague criteria is an open research problem. As we shall see, the
import of (1)—(2) is that the reference velocity ¢ determines the kinematics of the pertur-
bational wavefield dp, whereas dp and d¢ determine the dynamics. Also, the smoothness of
p and ¢ will justify extensive use of high-frequency asymptotics. Together, these two tech-
niques — linearization and brutally consistent reliance on asymptotics — will enable us to
obtain decisive insight into the imaging problem, and to reproduce the essential content of
conventional data processing methodology in a mathematically consistent way.

The formal linearization is obtained by applying regular perturbation to the pressure
equation 1. We obtain that the formal perturbation field dp satisfies

1 9%p 1 26c 9*p 1 _dp

- R v v PR Ll AL v A v2

pct Ot? v pv P pcd Ot? ,0v ) VP (2)
dp=0, t<<0

Evidently dp, so defined, is indeed linear in dp, de. It will emerge that dp depends quite
nonlinearly on the reference velocity ¢, so the problem has been only partly linearized. This
observation is at the heart of velocity analysis, which means roughly the determination of
the background medium (p,¢) — which is of course also unknown in {z > z;}, even if we
accept the linearized field representation p 4+ dp! Velocity analysis is mentioned briefly in
Section 7.

Note that the assumption of the reflection configuration implies that §p, dc = 0 for z < z,.

Mathematical results on the accuracy of linearization, i.e. on the differentiability of the
map p,c — p, are quite skimpy. Using techniques introduced by LIONS, 1972 and used in
analysis of 1D inverse scattering problems by BAMBERGER et al., 1982, FERNANDEZ-
BERDAGUER et al., 1993 have shown that this mapping is Fréchet differentiable in the
L? sense, provided that the source wavelet f(¢) has several derivatives in L*. This quite
general result does not address the scale separation phenomenon noted above. In effect, this
approach shows that solutions to the wave equation exist, but does not explain why they act
like waves.

Lewis and the author ( LEWIS and SYMES, 1991) showed that for the 1D version of
this problem, and for f = d,p = 1, one has the estimate

P2 = p1 = 0pllzie) < Kalldcll 2 qo,op el a2 (o.on) + Kalldelz(o,ny)-

Here p; corresponds to ¢;, i = 1,2, dpto dc = ¢;—c;, R C R? is a bounded domain interior to
the forward light cone, [0, D] is a suffiently large interval, and K; depends on ||¢;||gifo,p]- This
estimate is optimal. On the other hand, along bounded sequences {d¢,} C H?*([0, D]) which
oscillate, i.e. tend to zero in L*([0, D]), the linearization error tends to zero, even though
generally ¢c; = ¢; + d¢ — oo in H?([0, D]). This estimate thus quantifies the anomalous
smoothness of the p, ¢ — p mapping for oscillatory perturbation of smooth p, ¢, at least in
the 1D case.



Nothing like this estimate is known currently for several dimensional problems. Nonethe-
less massive numerical evidence supports the hypothesis that something similar is true, at
least if the reference medium is smooth enough to support geometric optics. Figure 2 shows
a comparison between seismograms calculated for a smooth velocity distribution ¢ (part a),
for an oscillatory perturbation thereof ¢4 dc (part b), and for the linearized seismogram (part
c). The seismogram plots show samples of p(x;, z,,1) for fixed source position z,, a variety
of receiver positions z,, and an interval of time ¢, in typical seismic display as in Figure 1.
Plots of the reference velocity ¢,the velocity perturbation d¢, and the source time function
f(t) appear in Figure 3. In this example the density p is constant and unperturbed (dp = 0).
The numerical algorithm used to solve (approximately) the (two dimensional) wave equation
to produce these and other figures in this chapter is a centered finite difference scheme of
order two in time and four in space. The author has taken care to verify the accuracy of the
computed solution by varying the grid size.
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Figure 2(a) shows the seismogram for the reference medium (Figure 3(a)). Note the
non-appearance of reflected waves: the recorded signal consists almost entirely of a single
pulse, apparently moving at constant velocity and decaying. The next section will explain
this behaviour quite satisfactorily. Figure 2(b) shows the result of adding the oscillatory
perturbation d¢ (Figure 3(b)) to the reference velocity. Reflected waves are now evident,
having general character quite similar to that of the real data example (Figure 2) discussed
above. In particular the reflected waves have very regular geometry. Figure 2(c) shows the
linearized model. The similarity to the difference between Figure 2, (a) and (b), is obvious.

Since the bulk of the difference between the seismogram and its linearization lies in the
early part of the signal (Figure 2(a)), a natural way to assess the result of linearization is to
excise this component, by multiplying by a function = 1 below a sloping line and = 0 above
it. In seismic jargon, such a cutoff function is a mute. Figure 4 shows the muted seismogram
(a), the muted linearized seismogram (b), and the difference (c), plotted on the same scale.
The difference appears quite small; actually it is roughly 23% RMS, or about20% in the sup
norm. This is not a bad comparison, since dc is roughly 20% the size of ¢. Reducing the size
of dc reduces the error quadratically, as one would expect of a differentiable function.

More importantly, the difference between the seismogram and its linearization is quite
systematic and fraught with physical significance. Notice the coherent signal near the bottom
of Figure 4(c). This part of the data arrives at about 1700 ms. It corresponds to the reflected
waves in either Figure 4(a) or 4(b) arriving at about 850 ms - in fact it has traveled almost
precisely twice as far, reflecting once from some subsurface model feature, then again from
the surface, then yet again from the same model feature, in the process accumulating amost
exactly twice the time of travel of the wave which reflects only once. The linearization does
not model such multiple reflections, and for that reason is sometimes called primaries only
or primary reflection modeling.

17
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This chapter is concerned almost entirely with primaries only modeling and its conse-
quences. Chapter XXX by Weglein and Stolt will take up the issue of multiple reflections,
which are present in many (but not all) real-world seismic reflection data sets. Seismologists
have devoted much effort to devising processes to remove multiply reflected energy from data,
so that it could be treated subsequently with processes based on primaries only modeling.
The paper by Weglein and Stolt in this volume takes a fresh look at this problem, amongst
other things.

One last example for this section emphasizes the importance of the heuristic rule, justified
in the simplest (1D) instance by Lewis’ result, that the reference velocity should be smooth,
and the perturbation oscillatory, for the linearization to be an accurate approximation to
the actual seismogram perturbation. Figure 5 shows another similar seismogram (a), the
seismogram computed using the same reflectivity but a velocity only 2% lower (b), and the
difference (c). The difference is now clearly on the same order as the data itself. This shows
that the seismogram is a very nonlinear function of the smooth model components. We shall
come back to this point in the sequel.
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5 Progressing Wave Expansion

To understand the perturbational field dp, it is evident from 2 that we must first understand
the background field p. As might be guessed from the point-source assumption, this field is
singular — in fact, in view of the time-independence of the coefficients,

(s, 2,1) = /dt’f(t Gy, 2, 1)
where the fundamental solution (or Green’s function) G(xs, x,t) solves

1 0?G(xg,2,t) 1 B
D) ol e =i )
G(zg,z,)=0, 1<0.

Since p = po, ¢ = ¢o near the source (reflection configuration) and pg and ¢y are constant
(for convenience), we can write explicit expressions for G, good for small ¢ and |z — z4|, in
dimensions 1, 2, 3:
n=1: Gxs,z,1)=poH(cot — |z — x5])
n=2: Gzgx,l)= po Hicol — |z — ,)
21 Jedt? — |z — a,|?

_ pod(cot — |z — x4])
|z — x4 '

n=3: G(xs 1)

While it is not possible to write such explicit expressions for the fundamental solution in
the inhomogeneous region {z > z,}, it is possible to describe the leading singularity of ¢
quite precisely and this will be sufficient for our present purposes. This is accomplished via
the progressing wave expansion ( COURANT and HILBERT, 1962, Ch. VI). Each of the
formulas for G above is of the form a(z,, 2)S(t—7 (x5, 2)) where a and the travel time function
7 are smooth except possibly at @ = x5, and S(?) is singular at ¢ = 0. The progressing wave
expansion allows the extension of this expression away from = = x4, up to a limit signaled
by a fundamental change in the nature of the wavefield, and with an error which is smoother

than S.

In general, suppose that
u(zs, x,t) = alx, x5)S(t — (x5, x))
for | — 4| small and ¢ small, and write
u(zs, z,t) = a(x,x5)S(t — (x5, 2)) + R(xs, 2, 1)

where R is in some sense to be smoother than S, and @ and 7 are assumed to be smooth in
some as-yet unspecified region. Applying the wave operator, we obtain

pct Ot? p
a /1 "

24



+ ! (QVT-VCL— (VT- Ve —|—V2r) a) S'(t—7)
p p

1 1 0*R 1
V.-V t— — 2 _V.-VR.
+ ( ; a) S( T>+pc2 BT ; R

Formally, the terms written in the above order have decreasing orders of singularity, so that
if u is to solve the wave equation for x # z;, each of the coefficients above ought to vanish.

Certainly, if

1
— —|V7?=0 (3)

C2
2V7 - Va— (Vr-Viogp+V*r)a=0 (4)

then the first two terms vanish. Using the special properties of the distributions S appearing
in the fundamental solutions of the wave equation, it is possible to show that the last two
terms can also be made to vanish for a particular choice of R. We will describe briefly how
this is to be done below, after discussing the very important conditions 3 and 4.

Equation 3 is the eikonal equation of geometric optics (of which the progressing wave
expansion is a variant). Inspecting the local fundamental solutions above, evidently it is
required to satisfy 3 with a function 7(z, z,) so that

T(z,xs) = |2 :0$5| for |z — x| small.

Fortunately, ¢ = ¢ for |z — x| small so 7(z, x5) given by the preceding formula satisfies the
eikonal equation near the source. We will extend this solution by means of the method of
characteristics.

Suppose first that 7 solves the eikonal equation, and let (o) be a solution of the system
of ordinary differential equations

X = CQ(X)VT(X)( "t = %) :

Then

L1(X(0) = Vr(X(0)- X(o)

= (X(0)|Vr(X(a))* .

Therefore we can identify 7 with o: if the segment {X (o) : 09 < o’ < o} lies entirely in a
domain in which 7 is defined, then

7(X(0)) = 7(X(00)) + 0 — 70 (5)

Thus from knowledge of the characteristic curves (rays) X (o), we can construct 7. Somewhat
more surprisingly, it is possible to construct the rays directly, which furnishes a construction
of T as well.

25



Indeed, if we write
(o) = Vr(X(0))
then
o) = VVr(X(0)) X(o)
= CQ(X(O'))VVT(X(O')) -Vr(X(0))
1
= LX)V oxin
1 _
= 502(1’)V(C () lo=x (o)
1
— —§|VT($)|2VV(22(CL’) lz=X (o) -
If we write the Hamiltonian |
H(z.€) = s (x)lel
then the equations for X and ¢ read

X = VeH(X,§)
é = _vzH(va)

which are Hamilton’s equations of classical mechanics, a system of 2n autonomous ordinary
differential equation.

Now note that for each unit vector § € S"~!, the trajectory
o - <c009—|— Z, 61—09) — (Xs(0), £5(0)
satisfies Hamilton’s equations for small o, and moreover
Xo(0) = (X (0))Vr(Xo(0))

as is easily checked. Moreover, (0,8)) — Xj(0o) gives (essentially) polar coordinates centered
at 5. Now extend (Xj, &) as solutions of Hamilton’s equations over their maximal intervals
of definition for each § € "', say {0 < 0 < omax(#)}. Then every point in

Qz,) :={z: 2= Xy(0) forsome 6¢c S" ' ocl0,0,ax(0max)]}

is touched by at least one ray. If every point in Q(xz;) is touched by ezactly one ray, then the
formula (5) produces a unique value 7(z,, ) at every point in Q(xs). It is possible to show
that, in that case, T is a solution of the eikonal equation 3 (in fact, it’s not even difficult,
but we won’t do it here. See the references cited at the end of the section.).

In general, some points in Q(z,) are touched by more than one ray. Let

°(z,,t) = {z € Q(x,): if z = X4(o), then for
0 < o' <o,Xp(c") lies only on the ray
Xy . Moreover 7(zg,2) <1} .
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Also for € > 0 define
Qg(xs,t) ={reQas):ly—z|<e=y¢€ Qo(ws,t)} )

Then generally Q°(z,t) € Q(z5). The boundary points of Q°(x, ) are located on envelopes
of ray families, called caustics. Points in Q2(z,,¢) are at distance at least ¢ > 0 from
any caustic. The physics and mathematics of wave propagation and reflection both change
substantially at caustics, in ways that are only poorly understood at present. We will discuss
reflection from caustic locii briefly in Section 10. For the most part, in these notes we will
assume that the region to be examined lies inside Q°(x4,1) for each source location xs.

To recapitulate: The method of characteristics (“ray tracing” in seismology) constructs a
solution 7(x, x) of the eikonal equation which is for small |x — x| identical to the travel-time
|z — x4|/co. Because of the parameterization of the rays for small o, o evidently has units
of (time), so from (5) 7 has units of time. For that reason, and because the zero-locus of
t — 7 is the locus of arrival of the singularity (in ) in the first term of the progressing wave
expansion, we also call 7 the travel time function.

Having computed 7, it is easy to compute a. Indeed, the transport equation 4 may be
re-written

where

1
b= §(VT-V10g,0—I—V27) .

Thus @ may be computed by quadrature along the ray family associated with 7. Initial values
(for small (o) for a(X (o)) are read off from the small (x — z;) formulae for the fundamental
solutions.

The solution of the transport equation has a nice geometric interpretation: it is propor-
tional to the reciprocal square root of the change in volume of an infinitesimal transverse
element, transported along a ray via the transport equation (e.g. FRIEDLANDER, 1958,
Ch. 1). The solution becomes infinite at a caustic, or envelope of rays, where the trans-
ported transverse element collapses. Thus arrival at a caustics signals the breakdown of the
progressing wave expansion.

The method of characteristics is used extensively in seismology, as a numerical method
for the construction of travel-times. The first term in the progressing wave expansion is also
computed by integration along rays, to produce ray-theoretic seismograms. Ironically, several
people have presented evidence recently that both calculations may be performed far more
efficiently by integrating the eikonal and transport equations directly as partial differential
equations, using appropriate finite difference schemes, and avoiding entirely the construction

of rays ( VIDALE, 1988, VANTRIER and SYMES, 1991).

The entire construction is justified by the final step: the remainder R must satisfy

1 9 1 1
IR G lyp- (V-=Va)S(t—7)
P p

pc? 2
R=0, 1<0
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if u is to solve the wave equation. It is possible to show that the unique solution R of this
initial value problem has singularities no worse than that of the indefinite integral of S. Thus
the remainder R is indeed smoother than the first term, and the progressing wave expansion
has captured the leading singularity of u.

The meaning of this construction may be understood by recalling that typical source time
functions f(t) are highly oscillatory. The pressure field is given by

p:f*G

(convolution in time). We have just seen how to write G = aS(t — 7) + R, with R smoother
than S — i.e. the Fourier coefficients of R decay more quickly than those of S. If f has most
of its frequency content in a band in which the Fourier coefficients of R are much smaller

than those of S, then f* R << f* S(t —7), so
p:f*G%f*S

so that the first term of the progressing wave expansion approzimates the pressure field. A
careful quantification of this approximation relates the degree of smoothness of the reference
coefficients p and ¢, the frequency band of the source f, and the ray geometry associated
with c.

To give some idea of the accuracy of the progressing wave expansion, consider the velocity
depicted in Figure 6(a). This (2D) velocity distribution has a slow zone, or lens, immediately
below the location of the source point for this experiment. From the equations

i =%, £ =-V(A)E]

one sees that the acceleration vector & will point towards decreasing ¢. Thus rays will tend
to bend toward the slow zone, or center of the lens, creating an imperfect focus or caustic
below it. Use of the (fractional) 3/2 derivative of a Gaussian pulse for the source wavelet
f (Figure 6(b)) produces a 350 ms wavefront in 2D with the shape of the first derivative of
the Gaussian (Figure 6(c)). The 325 ms contour of the earliest arrival time, also plotted in
Figure 6(c), appears to lie almost exactly on the zero crossing over most of the wavefront
(except in the caustic zone. This is natural, as the zero crossing of the source wavelet occurs
at 25 ms. Figure 6(d) shows a plot of several vertical (z) sections through the wavefield at
t=350 ms. On the sides, at points connected to the source by unique rays, the shape of the
wave is an almost perfect shifted first derivative of a Gaussian, as predicted. Below the low
velocity zone, the ray bending due to the lens causes several rays to pass over each point,
producing several wavefront arrivals. The trailing pulse has had its phase shifted by /2.
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Lens velocity model: min (dark) = 0.6 m/ms, max = 1.0 m/ms
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FIGURE 6(A): Velocity field with slow anomaly or lens just below source point. Velocity
in center of lens is approximately half that in the surrounding region.
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FIGURE 6(B): Source wavelet used in simulation. Derivative of Gaussian pulse of order
1.5. In 2D the field generated by this isotropic radiator has a leading pulse in the shape of the
Gaussian first derivative, with one zero-crossing which can be used to calibrate traveltimes.
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z (m)

Wavefield at 350ms with 325ms traveltime contour
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FIGURE 6(C): Grey scale plot of pressure field at 350 ms (function of the two space
coordinates - NO'T a seismogram!) with the 325 ms traveltime contour superimposed. Trav-
eletime contour matches almost exactly the zero crossing of the leading pulse, as predicted
by geometric acoustics. Only the first arrival time (computed by a finite difference eikonal
equation solver) is plotted. Below the lens, a caustic has formed, with multiple wavefronts
passing over each point.
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FIGURE 6(D): Two vertical slices through the pressure field. On the left is a slice taken
outside of the caustic zone: each point is connected to the source point by a unique ray,
and geometric acoustics predicts a single pulse having the Gaussian first derivative shape
seen in the slide. On the right is a slice below and slightly to the left of the lens center, in
the caustic zone. The lower pulse has traveled around the left side of the lens. The upper
complicated signal is a superposition of a pulse traveling around the right side of the lense
and a delayed and phase shifted pulse traveling through the center of the lens.
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Excellent references for the progressing wave expansion are COURANT and HILBERT,
1962, Ch. 6, and FRIEDLANDER, 1958, Ch. 1. LUDWIG, 1966 and KRAVTSOV, 1968
gave the first satisfactory generalization of the progressing wave expansion accurate in the
vicinity of caustics; see also STICKLER et al., 1981. For a modern differential geometric
treatment of these topics, consult GUILLEMIN and STERNBERG, 1979

6 Linearized Reflection Operator as a Generalized Radon
Transform

The progressing wave expansion allows us to give a very explicit construction of the “lead-
ing order” approximation to the pressure field perturbation dp resulting from the acoustic
parameter perturbations dc¢,dp. The sense in which this approximation is “leading order”
will become clearer in the sequel. Roughly, the error is of lower frequency content than the
“leading” term, relative to the frequency content of dp,dc. Thus if §p, dc are highly oscilla-
tory, we would expect the “leading” term to constitute most of dp, and this proves to be the
case.

We enforce throughout the requirement of simple ray geometry: for some e > 0, for all
source and receiver positions (s, z,) € X, signal duration 7', and subsurface locations z,

dp(z) 7 0 0 ;
or£@y¢o}jf€ﬂxaﬂﬁﬂmwmﬂ.

Let @ ={z: dp(x) # 0 or de(x) # 0}. Then we have assumed that

Qc{z:z>z3n ) [QS(Q?S,T) N QS(J}T,T)} .

(l'syzr)eXs,r
Note that if ¢ = ¢ in all of IR", the set on the right is simply {z > 24}, but in general it is
much smaller.

A robust approach to acoustic imaging must drop this assumption, which underlies almost
all contemporary work.

I review briefly some recent progress towards removing the simple geometry assumption
at the end of the chapter.

Since

Sp = f+0G

where (G is the perturbation in the fundamental solution, it suffices to compute G, which

is the solution of
1 825G 250 0*G dp
5G =0, t<0.
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The key to an effective computation is the Green’s formula

1 d%u 1 9%
/ d:z;/dt —2——V Vu v—/ d:z:/dtu -V Vv
R" pct Ot? R® pc? 02 p
which holds so long as both sides make sense, e.g. if u,v are smooth and the support of the
product uv i1s bounded. We will apply this Green’s formula willy-nilly to singular factors

as well, but in every case the result can be justified by limiting arguments, which we omit
(trust mel).

Now
G (s, 2,,1,) = / dv / dt §G(zy, 20, 1)8(, — 2)8(1, — 1)
Rﬂ

1 0*G
= /nd:z;/dt 0G (g, 2,,1) [p(x)cQ(:z;) 5 (zr,z,t, — 1)

-V p(I)VG(:ET, z,t, — t)]
= / } dz:/dt [p(m)lc?(;z;) a;ff(ifjs,{li,t) -V ﬁV(SG(ms,m,t)]
-G(xp,x,t, — 1)

= / } d;z;/dt [p(Qj)cc(?il) a;t?(xs,x,t) - ﬁ (Vi)p((;))) .VG(:vs,x,t)]

cGap,x,t, — 1) .

We have made use of Green’s formula, and chosen for the other factor the advanced
fundamental solution G(z,,z,t, — 1) to keep the product of supports bounded.

We claim that the “leading term” in the expression for dG results from substitution of
the leading term in the progressing wave expansion for G in the above formula, and then
systematically neglecting all expressions except those involving the highest derivatives of
dc,dp. This claim will be justified later, to some extent. For now we proceed on this basis.

The dimension (i.e. n) now becomes important. Since the case n = 3 is slightly simpler
than n = 2, we begin with it. Then

Gz, y,t) ~a(z,y)o(t — 7(x,y))

where a is the transport coefficient constructed in the last section, smooth except at = = y.
Since z,, x, lie in the region {z < z;} and the support Q of dp, e lies inside {z > 24}, the
integrand above vanishes near © = x5 and = z,. Thus we may regard a(z;, z) and a(z,, )
as smooth.

Substituting the above expression for GG, we get
8Gws, s, 1) = [ d“’/dt( )o(t, — t — (2, 2))
Tsy Tpylp) = N a\Zxp,T r L= T2, T
R p(7)
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{25c($) > (a(zs, 2)0(t — (25, 7))

A(z) 12
— ép() -V(alzs, x e
(V ,0(:1:)) Via(zs, z)o(t — (xs, ))}
_6—2 d—$ Wy — 1l —=T7(T2))alzs, T —T$$25C(l’)
= g/ gy [ 4 olan =t e 0 (o)
b [~ atan e, — = o)L
- (=Vaa(zs, 2)o(t = 7(25, 2) + alzs, 1) Vor (24, 2)8(t = 7(25, 2)))
2 - 26¢(x)

= 73 ) /dt a(xp,2)0(t, —t — 7(x,, x))a(xs, 2)0(t — (x5, 2))

aatr / % [ dt a(ar,2)é(t, — t = (e, 2))a(z, 1)V
-Vt (s, 2)0(t — (x5, )

— / % / dt a(z,,z)d(l, —t — 7(z,, 2))alzs, ) Via(zs, )

_|_

. 5P($) —T(Zs, X

We would like to carry out the ¢-integrations. This is possible provided that the hyper-
surfaces defined by
0=t —t—7(z,,z) and 0=1—7(xs,2)

intersect transversely: i.e., that the normals are not parallel at points of intersection. The
correctness of the formula

oty — (s, ) — (2., 2)) = /dt 0(t, —t —71(x,,2))0(t — T(xs2))

under this transversality condition is an exercise in the definition of compound distributions

(see e.g. GEL’FAND and SHILOV, 1958). Transversality is guaranteed so long as
(—1,V,r(zs,2)) is not parallel to (1,V,7(z,,2)).

Since |V, 7(2s, 2)| = |Vo7(2,, )| = ¢ () (eikonal equation!), transversality is violated only
when V,7(z5,2) = =V, 7(z,,z). We claim that this cannot occur when = € ), under the
hypothesis enunciated at the beginning of this section. Indeed, if V7 (x5, 2) = —=V7(2,,2),
then the ray from x, to x, traversed backwards, is a continuation of the ray from =z, to
x, because both are the z-projections of the solutions of Hamilton’s equations with data
(x,V7(xs,2)). In particular, points z’ on this ray near z, are touched by this “turned”
ray, obviously, but also by the straight line to z,, which lies entirely in {z < z;} as soon
as |z’ — x| is small enough. In this “surface layer,” ¢ = ¢ is constant — so these lines
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are rays, and z’ is touched by two distinct rays — in contradiction to our assumption that

e Nz, T).

The physical meaning of the violation of the “simple ray geometry” hypothesis just
described is that a refracted ray connect the source and receiver points. Thus a segment of
the initial wavefront propagates directly (according to geometrical acoustics!) from source
to receiver. Such directly propagating waves are much more sensitive to short scale velocity
fluctuations than are the primary reflections approximated by the linearized model, and must
be treated by other means.

Thus {-integrations as indicated above. We obtain

AgaindG(zs, x,,t,) = g—t% / pc(li)a(xr,:v)a(xs,:E)Qcic((;;)cs(tr —7(x,, ) — (24, 7))

(t, — m(xr,x) — 7(xs, )

+ 82,,/%“(%71’) (‘1;57 )V T(;z:s’ )V

— d—$a$$ a:z;a;-ép(x) — T\ Tsy,T) — T\Zr, T
[ Sayelen eI Vates 2) - VLS = 7l @) = o)

To interpret the ¢.-derivatives as z-derivatives acting on dc, dp, we will introduce the
vector field
N(zg,xp,x) = =(Vyr(xs,2) + V7(2,, 1))

which does not vanish anywhere in (), according to previous reasoning. We compute

9,
ot,

where we have written 75(x) = 7(x5,2), 7.(z) = 7(x,, x) for convenience. Accordingly, we
can replace each occurrence of 8 inside the integrals above by |N|72N - V acting on 4, and

N -Vé(t, -1, —7,)=|N| 0ty — s — 77)

then integrate by parts. We erte explicitly only those resulting terms in which two spatlal
derivatives act on dp or de¢, dropping all others into “--”  including the third summand in

the formula above:

§G(2s, 2pit,) = d_%sar{m N VPR 25C —IN["3(N - V)V, - vé"’}
p p

oty —71s— 1) + -+

This expression gains significance when interpreted in terms of ray geometry. The ray from
zs to x (“incident”) has velocity vector Vr,(x), similarly that from z, to z (“reflected”) has
velocity vector V7,.(z). Thus, using the eikonal equation,

IN? = |V, + V7| = |V +|Vr?42Vr7,. - Vr,
2
= —2(1 + cos 6)
c

where 0(z,,x,,x) is the opening angle, i.e. the angle made by the velocity vectors of the
incident and reflected rays. In view of the integrand above, it is convenient to introduce

1

b= ——.
1+ cosé
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As we have seen, 6 stays away from £ for simple ray geometries, so b is smooth over X, x ().

Thus

2 2
|N|—4(N.v)22ic _ %(C) 52(N.v)2§+...

3

(Again, here and in the following, - -.”

de, dp.) while

represent terms involving only lower derivatives of

5 2 5
N[N - V)V VL = —Z (N -9V -V 4 N - 9L

p p
(where Ny = V1, — Vry)

_ (‘;—QbQ(N-V)2+(;—2(g—b2) (N-V)Q—FZ—ZZJ(N'V)(NI‘V))%

SO

d ? be 8 b §
5G($saxr7tr) = /%asar% [bz(N . V)2 (:c _I_ ?p) _I_ (5 _ b?) (N i \7)2?/0]

oty — 75 — 77)

Now because of the eikonal equation, N - N; = 0. Hence
Ny -Vo(t—75—7.)=0

and we can integrate by parts in the second term above to see that it is actually a sum of

terms of the form we are throwing away — (smooth functions) x (derivatives of dp,dc of
order < 1) x(8(t, — 75 — 7).

The upshot of all this is the expansion

62;‘5“’“ le(N V)2 (ﬁ + 5—'0) + (g - 52) (N - V)25—p]

0G (x5, 2p, ) = /dm P c p P
oty — 75 — 77)
+ [ do(@ide+ Qubp)(t 7~ 1)

+ /d;z:(Kl(Sc—l— K3dp)

where ()1 and (), are differential operators of order < 1 and K7 and K, are piecewise smooth
functions, all depending on (x5, x,, z).
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A closer examination of the first term is warranted. The expression

) ) )
b  dp _ 8o

=: , O =pc
c p o

is important enough to have a name: o is the acoustic impedance. In the special “zero-offset”
case of coincident source and receiver (x5 = x,), about which we will have more to say later,
T =7T,500=0b=1 3> and we obtain

2 2

0G (x5, s, 1) /d:z: —S(VTS V)? 200
o

i.e. the “leading” order” reflected signal depends only on the perturbation in the acoustic
impedance. Moreover, in general

b b 0
—— b= —(cosf — 1) = —b*sin’® =
2 2 2
so we can rewrite the leading term as
r 4 1,4
0G(zs, 2, Ly /dl’ Za (V- V)? (f—sin2(§0)?p) t, — 15 — 1) .
or alternatively
2a,a, . op
5G($87$T7 8t2/d <_—SH §ep)5(tr—7's—7'r)

The different angular dependence of the perturbation in GG on 7 and % respectlvely has led
to a number of suggested schemes to determine them separately.

The integral above is simply a formal way of writing the family of integrals over the
hypersurfaces

{z:t, =71(x,,2)+ 7(x5,2)}

which are indexed by t,.,z,, and ;. Under our standing “simple geometry” hypothesis,
these surfaces are all smooth, and the associated integral transform is a generalization of the
Radon transform, hence the name. This observation is due to G. BEYLKIN, 1985; see also
BEYLKIN and BURRIDGE, 1990 and BLEISTEIN, 1987.

The 2-dimensional case follows immediately from the observation that
G = t;l/ e

where t;l/Q = (~Y2H (1) interpreted as a generalized function, and G = aé(t — 7) just as in
3d. The Green’s formula becomes

0G (g, 2,,1)
_ /]R2 dz / dt §G(xy, 2p,1) 8z, — ) 8(1, — 1)
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1 0*G 1
= /]R2 dz / dt 0G(xs, xp,1) [p(m)cQ(l‘) 52 (xr,z,t, —1) =V - mVG(:L’T, z,t, —1)
26c 9 1Vép
= /IR2 d.T/dt (p?ﬁ_;Tv) G(JfS,J?,t)'G({L’T,.T,tT—t)

1 1 2 ~ ~
= 1,7t */ d;z;/dt (&&: o _ 1Y, V) Glas,z, )G (2, 2,8, — 1)
IPL2

-1 1 2b2aa, ) 1\ 4
A~ t+2*t+2*/d:1;c aa(N-V)z(—a—sin2<§9)—p)é(tr—rs—n)—l—---
p

1 1

Now ¢, 2 %1, ? is a multiple of the Heaviside function H(t), ( GEL’FAND and SHILOV, 1958,
p. 116, formula (3')) so we obtain

0G (x5, 2,,1)
1\? c*blaga, , [ 60 .o (1 .\ dp

~ T (5) /d:z: 2 (N-V) (7 — sin (59) " H(t, — 7 — )

T Abasa, o .o 1\ dop
~ -2 [ 5 CINT (V- V) (; ~ sin (59) L) bt~ 77
B T basa, oo .o (1 op
= —§/dl’ p (N V) (? — Sin (56) ?) 5(tr — Ts — 7'7“)
= 0 /dxfrasar (5—0 — sin? ! 5—'0) 0ty — 15— 77)

ot, cp o 2 p

Each step involves integration by parts and throwing away the same sort of terms as
before.

The formula just given is as noted before an integration over a family of curves with
curve-dependent weight, or a generalized Radon transform. Such formulae have come to be
known as Kirchhoff formulae in the exploration seismic literature, and I shall refer to the
formula just given as the 2D acoustic Kirchhoff simulation approximation.

It is possible to write energy estimate for the error in the approximations just developed,
but a numerical example is more instructive. Figure 7(a) displays a muted linearized seis-
mogram for the model of Figure 3, with slightly different boundary conditions than were
used in Figures 2 and 4. Numerical evaluation of the Kirchhoff simulation formula (similarly
muted) gives the data displayed in Figure 7(b). The difference between the data of Figures
7(a) and (b) is plotted in Figure 7(c). The traveltimes necessary to evaluate the Kirchhoff
simulation came from a refine ment of the technique presented in VANTRIER and SYMES,
1991 in which the eikonal equation is solved by an upwind finite difference scheme. A re-
lated difference scheme for the transport equation yielded the amplitudes a. Trapezoidal
rule integration and piecewise linear interpolation gave a feasible and compatibly accurate
evaluation of the integral.
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FIGURE 7(A): Finite difference seismogram for the model of Figure 3, using absorbing
boundary conditions on all sides of computational domain.
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FIGURE 7(B): Kirchhoff seismogram for the model of Figure 3, from numerical evaluation

of the generalized Radon transform representation developed in this section.
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Evidently the approximation embodied in the Kirchhoff simulation formula is quite ac-
curate in this case. Such accuracy is typical of problems in which the assumed separation of
scales actually occurs. Moreover, these formulae can be evaluated very economically, because
the multiplicity of sources and receivers in seismic survey design permits re-use of the compo-
nents of the integral. The computational cost of a properly designed Kirchhoff simulation or
migration is far lower than that of direct approximate solution of the wave equations for the
linearized simulation problem by finite difference schemes, for instance. For 3D migration
(see section 9), the most computation intesive process commonly employed in exploration
seismic data processing, Kirchhoff formulae analogous to the above formula form the basis
of most contemporary codes.

7 Kinematics of Reflection

In reflection seismic work, it was established long ago that reflected signals are caused by
localized, rapid changes in rock properties. Inspection of direct measurements (well logs)
often shows that these reflection zones exhibit oscillatory or abrupt changes in mechanical
properties. Similarly, ultrasonic reflections occur at sharp edges (cracks, voids). In all
cases, the material parameters in reflecting zones have rather large high-spatial-frequency
components.

The approximation to the reflected field derived in the preceding section is quite successful
in explaining the relation between oscillatory mechanical parameter perturbations and their
corresponding reflected signals, at least up to a point. This relation emerges most clearly
from consideration of perturbations of the form

do it

% (2) = x(x)e
where x is a smooth function of bounded support (for simplicity, we assume temporarily
that dp = 0). A couple of remarks are in order. Of course we do not really mean to consider
complex parameter perturbations — but since the rest of the expression for §G is real, we
can take the real part either before or after computing §G! Second, any perturbation do/c
in impedance (with support contained in that of x) can be represented as a sum of such
simple oscillatory perturbations. Since §G is linear in do /o, it suffices to study their effect
on the acoustic field.

Because of the observations mentioned at the beginning of this section, we expect highly
oscillatory do /o (i.e. large |€]) to give rise to highly oscillatory reflected waves. We would
like to know where these waves arrive at z = z,, say (so we will temporarily imagine that
the receivers fill the entire plane {z = z.}. Our idea is that a very efficient detector of
high-frequency waves arriving near x, = (x,,z.) (2. are the tangential coordinates of the
receiver point — either one or two) at a time ¢, is obtained by integrating §GG against an
oscillatory function

X(al,1,) = i)
If G has a significant component with almost the same phase surfaces and frequency the
integral should be substantial; otherwise destructive interference should render the integral
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small. More precisely, consider first the approximation
//dxi/dtrxr(x;,tr) ei(“’tr+€lrr;)5G($5,:E;,zt,t)
200(2)

= [dsl fde [ do Rlear,) (N e,z V27700

X X(:E;,tr)ei(“’“%ﬁ;)(S(tr —7(xs,2) — 7(xp, T))

from the “leading term” calculation of the previous section: we have written

A(z) b*(xs, 2, 2) a(zs, 2) a(z,, T)
2p(z) '

Inserting the oscillatory form for % and carrying out the ¢-integral,

R(zs,z,, ) =

= [ e [ dw xo(al 70, ) + 700 2)) X(0) Rz, 20, 2)(N (20, 2) - €
W (@e )t (zr2)) +Ear+Ea) 4

where we have written out explicitly only the terms of highest order (possibly) in |£]. Note
the identities

VI ) ez[w(T(l‘s,l‘)-}-T(l‘r,l'))‘}'&;I’r‘i’fl']
= i(—wN(zy, ., 2) + el
Vr/ eZ[W(T(Is,I)‘i‘T(Inl'))‘i'g;l‘lr+‘£z]
= ((wVyr(z,,2)+ el
SO

—ilé—wN —i(é; 4wV s 7r) . "ol
(TR Vot i Vi ) et

— 9eilw(rstrr )+ zp+Ea)

We can substitute the above expression for the exponential and integrate by parts any number
of times, say K, so long as one of the quantities

|6 —wN| and € + wVI/TTT|

is non-vanishing at each point m of integration, i.e. the support of the product x - x, where
Xr(zs, 2, 2) = xo(2), T(25,2) + 7(2,,2)). Granted this assumption, the integral is bounded
by a multiple of
) , -K
€7 sup  max (¢ —wN|, & +wVar)
r3E€8UDDP Xr
This expression is homogeneous in (£, £/, w) of order 2 — K. So, if £,£ and w are made large
in fixed ratio, and if
!
£ N, &

w w

+ Vz’r”—r
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don’t both vanish over the domain of integration, then the leading term decays like an w?~%.

What is more, one can show that all the terms neglected above also decay with increasing
w.

So we have established: for fixed envelope functions x, x,, and tolerance € > 0, a necessary
condition that a perturbation do /o = xe'*® give rise to a fundamental solution perturbation
0G which when localized by multiplication with x, has significant high Fourier components
with frequency w proportional to |£], is that

£y &

w w

‘I’ vz'r Tr

both vanish at some point in the support of x,x.

The geometric significance of these conditions is profound. The first one states that £ is
parallel to the sum N = V.7, + V.7, of the velocity vectors of incident and reflected rays.
In view of the equal length of these vectors (eikonal equation!) the sum is also their bisector.
Since £ is the normal to the equal-phase surfaces of do /o, these surfaces act like reflecting
surfaces, at which incident and reflected rays are related by Snell’s law. That this condition
hold for (zs,x,, ) € supp X,x means that a pair of incident and reflected rays must exist
touching € supp x with ¢, = 7(xs, z) + (2, z) for (x,,1,) € supp x,.

The second condition states that we will find a high-frequency component in the reflected
field at (2',¢,) with wavenumber (£.,w) if 0 = & + wV, - 7. Given z and z,, the moveout
(or arrival time) surface is the graph of

z. — 1(v5, ) + (20 2) (2, = (2),2)) .

A typical tangent vector to the moveout surface has the form (1',n" - V., 7). The second
condition means precisely that (£.,w) is orthogonal to all such vectors. That is, a high-

frequency component appears in G only with wavevector normal to the moveout surface.

Looked at slightly differently, we have constructed a kinematic relation between high-
frequency components of the medium perturbation do /o and of the reflected field §G. Given
a location/direction pair (z,¢),

(1) Connect the source x5 with z by a (unique!) ray!

(2) Construct a reflected ray vector at z, i.e, a 5, with |n.| = ¢(z)™! and 5, +
Vor(zs, z)|€.

(3) Solve the Hamiltonian equations with initial conditions (x,—n,). If the reflected
ray (i.e. z-projection of the solution) so produced crosses z = z,, let x, be the
intersection point. Then n, = V,7(z,,z), and set t, = 7(z,, z) + 7(z,, ).

(4) Set w = |VIT(IMEV7(IT7$)| = —wVuT(z,, ).

Set C(x,&) := (2, t,,£ ,w). Then
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(i) For i“(—(f)) = x(z)e®® with ¢ sufficiently large, and envelope function x,, x,0G |.=.,

has a large Fourier component with wave vector (£.,w) only if
(:L’;jr, Sylﬂaw) = C(l’, f)
for x € supp x and (2/,¢,) € supp X,

(ii) The map C is not well-defined at all (z,&) — the reflected rays may go “off to
China,” and never pass over the receiver surface {z = z,}. This accounts for the
intrinsic aperture-limitation of reflection imaging, as we shall see.

(iii) C is a canonical transformation in the sense of classical mechanics. We shall call
it the canonical reflection transformation (or “CRT”, for short). Moreover, C' is
homogeneous of degree 1 in £, ¢, w.

An even stronger statement than (i) is true:

(i) For sufficiently large |w|, x,0G has a large Fourier component with wave vector
(£l,w), and x,(z.t,) # 0 if and only if X% has a large Fourier component with

r
wave vector ¢ so that

(20,1, Ew) = C(a,6)

Here x is any envelope function non-zero at x.

This statement follows from the inversion theory of Section 6; essentially, we use the principle
of stationary phase to show that our analysis of component decay is sharp.

This stronger statement suggests a positive resolution to the migration problem:

Given locii of highly oscillatory components in the data, find the locii of highly
oscillatory components of the acoustic coefficients.

Highly oscillatory components in the acoustic coefficients are the result of rapid changes
in material type, which typically occur at structural boundaries. So the information to be
got wvia solution of the migration problem is the identification of structural units.

8 Normal Operator

In order to make the preceding section more precise, and to develop the inversion theory of
the subsequent sections, it is necessary to study the so-called normal operator. This study
requires a more precise definition of the linearized seismogram. Many of our subsequent
developments will assume densely sampled surface data, so we will idealize the receiver set
for each source position as a continuum. We choose a window function m(z,, z.,¢,) which
for each z; is = 1 over most of the receiver (space-time) domain, going to zero smoothly
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at the boundaries (i.e. a “tapered receiver window”). We define the impulsive linearized
forward map Ls as

Lslp, ] [5—0,5—'0] (zs, 2, t.) = m(zs, 2, 1,)0G (xs, 20, L))

Then the linearized map for an isotropic point source with time function f(¢) is simply

do ¢
f * Lslp, ][ - ]
o’ p
whereas L;s has the approximation (in 3-d):
do dp . do dp
L5[p7 C] [_7_] (37573;7“7 ) L [pa ] [ 7_] ($87$T7t7“)
o’ p o’ p

/d:z: m(zs, 2t ) R(xs, 20, ) [N (24, 20, ) - V]

(J—Ju) ~ sin? (%w)) 5—%)) 3ty = 7(wgyx) = 7(2,,2)) .

o p
Remark. One of the byproducts of our analysis of the normal operator will be precise
statements about the sense of the above approximation.

We introduce the formal adjoint L} of Ls, defined by

/da: /dt (L5 [, ¢ l5—“,5—”] (xs,z;r,t,n)) (@ 1)
[ e (200, 20)) (13t cluteo)”

The object of this section is to describe precisely the normal operator LLs. Presumably
Lg* ~ Lj in the same sense that L§ ~ Ls. L§ can be written as a sum of operators of the
) oo
w="2L o 27y AP(D)w
p o
where P(D) is a constant-coefficient differential operator and

form

/d;z: alz, 2, t.)6(t, — T(xs,2,) — T(2, 7)) w(T)

Yy r
so L§* can be written as a sum of operators of the form
P(D)A"

whence L§*L§ is a sum of operators of the form P(D)AfAP(D). The key is therefore to
understand the structure of operators of the form AjA. Note that if

Ayl ) = [ ey, )3t — (ar,y))e(y)
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then
Ajw(z) = /dtr/d:z:;/dt ar(zrzr,t,) 0(t, — Pz, x))ul(xl, 1)
= /dz:; ay(z, 2], d(x,, 2))u(zl, d(z,, x)) .

Here we have written ¢(z,,z) = 7(z,2) + 7(z,,z) and temporarily suppressed z, from the
notation. Thus

ATAw(z) =
[ ol [ dyaa(a,al d(ar,y)) aly, o), $(ar ) 6(lar,y) = Sl 2)wly)

We can divide the domain of y-integration into subdomains on which the equation ¢(z,,y) =
t has a solution for one or another of the y-coordinates. We will only treat the case in which
this equation can be solved for the last coordinate y,; the other cases go in exactly the same
way, and the end result is independent of the choice.

Thus we will assume that over the domain of y-integration, there exists a unique solution
Yo (z, 2!, y') to the equation
e Y, Y,) = ¢z, x)
and also that for y, =Y, ‘
g—i(l’m y) # 0

(here y' = (y},...Yn-1), as usual). Then

AAw(a) = [ dol, [ dyBla,al,y) wly' Vale,alsy)
with
Bz, 25,y') =

ay ('Ta .T:,gb(l’;, ylv Yn(xa :17;7 y/))) a(ylv Yn(‘rv ‘T:ﬂv y/)v

do -
al, (zl, Y, Yo(z, 2l y')) (ay (xi,y’,Yn(x,xi,y’))) :

The support of the coefficients o etc. appearing in the operators A is necessarily bounded,
because of the introduction of the window function m and because of our standing assumption
that the perturbations do/c, etc. are of fixed, bounded support. Therefore we can introduce
the definition of the Fourier transform of w and interchange orders of integration to get

(21) /df ﬁy(f)/d'f:“/dy/ﬁ({E’Jj;’y/)ei(gl'y/‘}'&nYn(l’,I;,y/) ‘
T)"

We re-write the inner integral using polar coordinates ¢ = wé, and evaluate it using the
stationary phase principle viewing w as large parameter. This procedure will justify itself
shortly. The phase of the integrand is

él : y/ + én ) Yn(xvx;*?y/)
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so the stationary phase conditions are
) §
) n
+é——F = 0
é+é5
» 0Y,

ger = 0

r

Throughout the following, these are to be regarded as determining y’ and z;. From the first
condition fn # 0, else f could not be a unit vector. So the factor of fn can be dropped from
the second condltlon.

Understanding the first condition requires computation of dY, /dy’. From its definition

a / ! ! !
O - 8—y/[¢($7"7$)_¢($T7y7Yn($7$ray))]
d¢  d¢ Y, . .,
(8_y' oy 8y/) (@, 20,y Yal@, 2, y)) -

So Y /9y’ = —(0¢ /Iy’ )(¢p/Dy,)~". Thus the first condition is equivalent to

aqb ’ AN <
a—%(xrayvyn(wvwmy))f ‘f

(xmy,Y%( z.,y')) .

That is

fl‘qub(’rT? y) |yn:YTL (‘Evz‘lrvy’)

(This condition should be familiar from the last section.)

To understand the second condition, compute the z! derivative of Y, in the obvious way,

to get
d¢p Y, = I o 08
(ayn a;p;ﬂ + 81;’) (:x,,,y 7Yn) = 8;1:T (:L‘T’;z;)

r

so the second condition implies that

i = 90
a /( r7y7Yn( ,,,y))— axr(xr,x).

Recalling the definition of ¢, this means

ar ! N or
a—x;(‘rhy 7Yn($7$rvy )) = axé(l’ml’) .

To see the meaning of this condition: recall that V7(z,y) is the velocity vector of a ray
at x, which also passes over y in the past (or vice-versa). Thus the above condition means:
The rays passing over z,, emanating from (y',Y,,) and z respectively, have tangent vectors
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at x, identical in their first n — 1 components. Because of the eikonal equation, the n'*
components are the same up to sign. Because the velocity field is constant for z, < 0, so
that the rays there are straight lines, the n'* components must be negative, since otherwise
the ray segment preceding z, would have to lie entirely in z, < 0, and could not pass
over (y',Y,) or x. Therefore the tangent vectors at z, are identical, so — from Hamilton’s
equations and the basic theorem on systems of ordinary differential equations — the rays
are identical. That is (', ¥,) and z lie on the same ray through x,. On the other hand, from
the definition of Y,

Qb(xra y/’ Yn($7 :C:n, y/)) = Qb(xrv :L’)
l.e.
(s, v, Yoz, 2L, ")) + (2, v, Yo(z, 2l y')) = 7(2s,2) + 7(2), ) .

We claim that this imples (y',Y;,) = z. Otherwise, let o — z(c) C! parameterize the segment
between (y',Y,) and z of the ray emanating from z and passing over z,, so that X(0) = z

and X(1) = (v, ¥,). Then
Pz, X(0)) = o(z,, X(1))

so from elementary calculus there exists o, € [0,1] at which

0= %qb(;z:T,X(U)) = [V7(zs, X(00)) + V7(2,, X(00))] -X(Uo) )

There must exist f(o) so that
X(o) = f(o)Vr(z,, X())

and since 7 is monotone along rays, f # 0. Thus at ¢ = oy

0 =Vr1(zs, X(00))  V7(2,, X(00)) + m )

From the eikonal equation,
Vr(zs, X(00)) = =V7(z,, X(00))

which contradicts the “simple geometry” hypothesis of Section 2.

So we conclude that the meaning of the second stationary phase condition is:

(ylv Yn($7 ;L’;, y/)) =z

In particular there is only one stationary point. In order to employ the stationary phase
formula, we must also compute the determinant of the phase Hessian. Write

O(z,2,,y',0) = ély/ + énYn(x,x;,y') :
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Then the Hessian (with respect to z!,y’) has a natural block structure:

2% 52

8 12 8 18 7
Hess = 525 e

Bzl oy’ dy'?

¢ %Y, ¢ 9%V,
_ " ox!? n 8$’ oy’
= (O D oty,
n Sr;ﬂayl o3 8yl2
so we continue differentiating:

b 0%, 0% [9Y,\’ P26 YT 9% ,
1 2 1 ($T7 y 7Yn)
dy, 0z Oy \ Ox Jy,0x!. Ox! = Ox?

D*¢
= Gt

r

dy, dz'dy’  Jy? 0z dy' = 0Jy,0x. Jdy' ~ 0z'0y
= 0.

[w 9%, 9% 9y, aYT 9% YT 9% ]( v
$T7y7 n

Now we employ the stationary phase conditions since (for the form of the stationary phase
formula to be used below) the Hessian need only be evaluated at the stationary points. Since
dY,/0x!. =0 and (y',Y,) = z (both versions of the second condition), the first equation in
the above group implies that 9*Y,,/d(z")* = 0. Thus

2
det Hess & = det [.fn oY, ]

"y’
From the first condition, &, = (0¢/0y.)(|[V|)~" so our determinant is

do 0%,
dy, O0z.dy’

V|72 det ‘

2

dp 0oy T 0*¢
dy,0z! 0y’ dy'ox!

06 06T [ O ‘1+ 9%
0y,0x! dy' \ dy, dy'Ox!

= |V¢|7H D det

= |V 2"V det |-

Now use the determinant identity

A v
det(A — va) = det (T’T)

(00N s 00 P
oz, oz dy, ’ oy’ dz! oy’

with
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to write the above as

86 8 (96 \7!
= |V¢|—2(’ﬂ—1) det ( 32:;37}/’ ‘ 9z 0yn ( yn) )

Ay’ 1

oty [0\ 29,6\
— 2(n—1) dx! VY
o (52) aa{

which is the form we want for the Hessian determinant.

Next, employment of stationary phase demands that we verify the nonvanishing of Hes-
sian determinant. The condition that this determinant vanish is that 4/ € IR*™*, v, € IR
(not all zero) exist so that

27]8 / $¢ iﬂs,l’r, )—I_ f)/nVCb(Tsaxr; ) =0

n—1

0
Z ’y} P 4VIT(£L’T, )+ v (Ver(zs,2) + Ver(2,,2)) = 0.
71=1 T

Take the dot product of both sides with V,7(z,,z) to get

Vg/r(x,,,x)T (nZ: ]aa/ V(2 x) + 4 (Ver(zs, 2) + V$T(SIZT,$)))

1 (&, 2
= — . . Vr rs nvz‘ R vl’ s
; (;w%) Vo (e, ) 4 (Ve (20,2) - Vor (2, 2)

+ Vo (2, 2)|%)
= Yu(1 4 cosb(zs, z,,))
since |V,7(z,,x)|* = ¢ ?(z) is independent of z,. As we have seen, the “simple geometry”
hypothesis implies cos § > —1, so 7, = 0 necessarily.

The remaining condition is the infinitesimal violation of the “simple geometry” assump-
tion, as explained in Section 2. Thus we conclude that 4" = 0, i.e. that the determinant is
indeed nonsingular.

It is finally required to determine the signature sgn Hess @, that is, the number of positive
eigenvalues, less the number of negative. In fact, it follows from the block structure

0| B
HessCI)rv(BT 5 )

of the Hessian at the stationary point that there are exactly the same number of positive as
negative eigenvalues.

This fact follows easily from the nonsingularity of B. Let BTB = UDUT with D positive
diagonal, U orthogonal. Since B is nonsingular, D # 0. Choose a C° family of 2(n — 1) x
2(n — 1) nonsingular matrices I'(¢) for which I'(0) = 1,

) = ((é UDO—%> '
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Now detT'(1) = (detU)?*det D~' > 0, and the nonsingular matrices of positive deter-
minant form an arcwise connected family, so this is possible. Now the determinant of
I'(o) Hess ®T (o) is clearly positive for 0 < o < 1. Therefore none of the eigenvalues of
I'(0)"Hess ®T(o) change sign, and so Hess ® has the same signature as

T -3
I'(1)"Hess ®I'(1) = ( 0 |_uTBUD )

D=:UTBTU | D-:UTCUD":
—_ 0 Bl —_—

Now ('; is symmetric, so has real spectrum py,...,u,_1, with orthonormal family of
eigenvectors vy,...,v,_1. On the other hand w = (wl,wg)T is an eigenvector of ® with
eigenvalue A if and only if

Blw2 = )\w1

B?CU]l = )\U)Q .

Assuming momentarily that A # 0, we get for w,

1
<§B?Bl + C) Wo = )\’UJQ .

But BB, = D=:UTBTUUTBUD% = I, so the above reads

1
C’U]Q = (/\ — X)’U]Q .

Now the solutions Af of

are
1
Af:§<ﬂ1i\/ﬂf+1)

which are (a) never zero, and (b) of opposite signs: A} > 0, A7 < 0, regardless of the sign
of p;. Build corresponding eigenvectors according to

w:t — )\zz Blvi .
P Vi

Then {wi} are an orthogonal family of eigenvectors with eigenvalues {\f}. Since there are
2(n — 1) of them, they represent the spectral decomposition of ®;. Thus ®;, hence Hess ®,
has signature zero.

We now have all of the information required to employ the stationary phase principle,
which we state here in sufficiently general form:
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Suppose that b and g are smooth on IR"™, with g having bounded support. Suppose
moreover that

zesupp g, Vi(z) =

0
= det Hess ¢(z) # 0

and suppose moreover that
A={z€suppg: Vu(z)=0} s finite.

Then

dx g(:x)eww(“:)

m
2

E <_> e”Tisgn Hess 1/J(z*)| det Hess ¢($*)|—%g($*)ezw¢(z*)
z*eEA w
+ R(w)
where for some K depending on g and 1,
|Rw)] < Kol 37"

More is true: one can actually develop an asymptotic series

de g()e™ ) ~ w75 | 37 gjw™
R™ iz

where the g; are explicitly determined in terms of derivatives of g, 1) and associated quantities.
We shall make explicit use only of the first term go, given above.

Collecting the facts proved above, we evaluate
[ el [ df Bz 2y Esntents)

27\ ! J
_ (—) V(s s )1 | 22

|w] Oz,

x B, 2!, &) e + O(|jw|"?) .

(x5, 2., 1)

det a(zerQb(‘Tsvwram) | |n—1
Vo(zs, x,, )

In this and succeeding formulas, z, = z,(z,, z, é) as determined by the stationarity condi-
tions. The formula for 3 simplfies considerably because, at the stationary point (y',Y,) = 2/,
we obtain

a / -1
Bl atsa") = ot dar )l ot 8o 2) 5 ato0))

By more reasoning of the sort of which the reader has become tired, it is possible to show
that % remains positive. Thus the integral is

po(s, ., £)e + O(l€[™"7%)
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where

-1

n—1
V(s x,,z)|""
|§|) Vé(zeor2) V(2s,20,2)

xon(x, x, ¢, 7, )a(w, x), §(x, x7))

2 = ; sy br
po(l’s,aﬁ,f) = ( T det( SE,TV@(LU , T ,;L‘) )

(where as before z, is regarded as a function of z, z, and é—|)

The full-blown stationary phase series yields

> (iw,s)) i

where pg is given above, and p; is homogeneous in £ of degree n — 1 — 7.

Note that pg indeed shows no traces of our special use of y,, as promised; it turns out
that all of the other terms are similarly “coordinate-free.”

Inserting this result in the expression for A]A, we obtain formally

A Aw(z) = (Qi)n / d¢ (im(af,f)) T (€) .

It is possible to make good sense out of this expression: it defines a so-called pseudodifferen-
tial operator. A development of the theory of pseudodifferential operators can be found in
TAYLOR, 1981, for example. The essential points are these:

(1) Given a series like the above, 3 p;(z,£) with p; smoothness in {z,£: |£] > 0} and
homogeneous in ¢ of degree s — j, one can find a (nonunique) smooth function

p(x, &) for which

p(x, &) = Y pi(x, ) =0(¢™)  N=1,2,....

7=0

po 1s called the principal part of p. p should satisfy some inequalities involving
derivatives — essentially, differentiating in ¢ should lower the order in £, and
differentiating in = should not raise it. (These properties follow easily for the ATA
construction above.) Such a function is called a symbol. The summand po(z, £) of
highest order (s) is called the principal symbol, or principal part of p.

(2) Given such p, the oscillatory integral

1
(2m)"

urs = [ € p(a. Oeil€) = pla, Dyu(x)

defines a map from smooth functions of bounded support to smooth functions
(and between many other function classes as well). Such an operator is called
pseudodifferential. (It is conventional to denote the operator associated with the
symbol by replacing the Fourier vector ¢ with the derivative vector D = —/—1V.
The reason will become obvious in (5) below.)
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(3) Two symbols with the same asymptotic development define operators differing
by a smoothing operator — i.e. an integral operator with an infinitely smooth
kernel. Smoothing operators yield small results when applied to oscillatory func-
tions, so the entire importance of pseudodifferential operators for the theory of
wave imaging lies in their ability to describe approximately the behaviour of high-
frequency signals. To a limited extent it is possible to make estimates concerning
this approximation; some examples appear below.

(4) With minor further restriction on support, the class of pseudodifferential operators
is closed under composition. Moreover, if p and ¢ are symbols with principal parts
po and qg, then

p(z, D)g(z, D) = r(z, D)
and the principal part of r(z, &) is po(x, &)qo(x, &) — so far as principal parts go,
one composes pseudodifferential operators simply by multiplying their symbols!
This and some related facts give a calculus of pseudodifferential operators.

(5) Differential operators with smoothly varying coefficients are naturally pseudodif-
ferential operators. Indeed

> au(n)Dula) = - /&(gj%uwwj#m@w

Thus differential operators have finite asymptotic expansions, all terms of which

have positive integral degree.

We can combine the remarks to finish the job of this chapter, namely the representation
of the normal operator. Examining the representation of L§ given at the beginning, we
recognise that

" do dp
Lé[lovc] [_7 _] ('rSaxTatT)
o’ p
= /d:z: m(zs,zl,t,.) R(xs, ., x) E Ni(zs, zp,x) Nj(xs, 2, )
7,7=1
0* do 5,1 0*  dp
b — sin?(=0(zs, T, F
{@xiaxj (O‘ (w)) S (2 (s, 2;))8:1;20:(:]. p (z)
5(tr - T(xsa LL') - T('IT? .fL')) +o
where the “ .7 represents terms involving lower derivatives of ‘%’ and %’0. These will not

figure in the computation of the principal symbol, and in any case have the same importance
as contributions already neglected in the approximation Ls ~ L§. Then:

Remarks (4) and (5) above combine to yield our principal result:

zhz%hdhhqleUA;]

is a two-by-two matriz of pseudodifferential operators of order 2.
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The principal symbols of A,,, etc. are products of the geometrical factor

%Vqﬁ(xs, )
Vo(zs, )

and terms from the integral kernel defining L§, above. In all cases these are evaluated at

o(r0s.6) = V620 det

t, = ¢(xs, 2, ) and x! = x! (x5, 2, &) chosen to satisfy the stationary phase conditions.
Recall (Section 3) that

A(z) b*(xs, 2, 2) a(xs, 2) a(z,, v)

R(zs, 2, 1) = 20(7)

and

1 2
b(xs, xr,x) = =

1+ cosb(zs,xp ) ()| N(xs, 2., x)]?
N(zs,zp,x) = Vypr(zs,z) + Ver(z,,x) .

The first stationary condition implies that
IN (2, (25,2, ), 2) - €] = | N (24, 2, (5,2, €), 7)) -
So the principal symbol of A,, is the product of the geometrical factor g(zs, z, é) and
m(zs, l’;, tr) R(zs, 2, 2)(N(zs, 20, 2) - 5))2

Az)  alzs, ) (a(z,, )

2p(x) (14 cosO(xs,z,,))?

N (23, 24, 2)|

= [¢*m(zs, 27, 1)

|2m($87 l’;, tT) a(‘TSv ‘T) Cl(.’l?r, $)
p(2) (1 + cos O(z,, 2, 7))

2m(zs, xl, 1) a(xs, x) a(x,, x)

|£| p(x) CQ(;I;)|V§D($5,$T7$)|2

= [

Accordingly (n = 3!).
Aaa(mm Z, ‘f) =

o [ 2m(xs, 2l t,) a(zs, x) a(z,, x) : oo |2
e (2t e D) 9, 0, )

—1
det Si;qu(:L‘S,xr,:l?)
Vé(zs, ., x)

Az, x, &) =
AUU($57$7§)< ! sin’ 50(z,, 2, ) ) .

sin® 10(z,, ., z) sin® 10(z,, 2., 7)
This expression simplifies still further through use of the (stationary point) identity

A

Vo(as,x,, ) = Q(l + cos 0)¢

[
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and

0 0
ox! Vo= ox,

These identities allow one to write the symbol as a sum of products of function of (s, &)

Vor(z,, ).

and (z,, ), which is useful in actual calculations.

Similar calculations hold for the 2-d case. Then (see end of Section 3; we have absorbed
factors of 7, etc., into the definition of a):

b(xs,x,,2) a(xs, x) alx,, )

R(zs,z,, ) = )

and only one factor of the vector field N - V occurs. Then we get for the principal part of
Ay, the expression

Elg(zs, , &) (m(xs, x,, 2)b(2s, 20y 2)a(zg, 2)alx,, x)p(x)")?
- (N(zs, 2, 2) - £)°
- <2m(:r:s,xr,tr)a(;vs,x)a(;z;“;p))

pla)e*(z)

X | V(s x,,2)| 7" det (

%Vqﬁ(:cs,mr,.r) -
Vé(zs,x,,x) '

Some further, instructive geometric interpretation is easy in the 2-d case. Writing

V¢ = [Vo|(siny, cosy))

we have

2V 0 oy
det ( Vo ) |V o|* cos dr tany = |V 9z,

Thus the determinant measures the rate at which the direction of V¢ changes with receiver

position. Consequenlty, the principal symbol can be written entirely in terms of angles and
local quantities:

ANoo (5, 2,6) = |€]-

o(x)Y(m(zs, z,,1,) a(xy, z) a(x,, ) (z)

(1 + cosb(xs, x,, :1;))%%(:1:5, T, )

9 Migration

The solution of the migration problem, hinted at the end of Section 4, can now be placed
on firm footing. We shall give both a straightforward discussion of the “ideal” migration
(the so-called before-stack variety), and a derivation of a number of standard “real-world”
approximations.
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Recall that the migration problemis: given a data set {dp(zs, z,,t,) : 0 <1, < tpmaz, (25, 2,) €

X,s}, find the locii of high-frequency components in the coefficient perturbations da/c, dp/p.
Of course it i1s presumed that

op = Lylp,c] [0 /0, dp/p]

for suitable reference parameters p,c. If p,c are smooth, then the analysis of the previous
section shows that

Lslp, ] f~" * dp = Lsp, " Lsp, c] [6/a,3p/ p]

is pseudodifferential. That is, if the inverse convolution operator f~'x is first applied to the
data dp, followed by the adjoint of the perturbational forward map, then the result is related
by a matrix of pseudodifferential operators to the causative coefficient perturbations.

This yields a solution of the migration problem because pseudodifferential operators are
pseudolocal: they preserve the locii of high frequency components. In fact:

Suppose P = p(x, D) is pseudodifferential, and w is a distribution, smooth near
29 € IR™. Then Pu is smooth near zg.

This statement replaces the vague “locii of high frequency components”: pseudodifferential
operators do not create singularities in new locations. Thus any singularities of the processed
data set above are amongst the singularities of [§o/a,dp/p]. In fact, the converse is also true,
as follows from the inversion theory of the next section. Thus the locations of the singularities
of [do/a,dp/p] are found by the above “before-stack migration” procedure. This view of
migration and the interpretations advanced below for the various migration algorithms are
due, for the most part, to Albert Tarantola, Patrick Lailly, Gregory Beylkin, and Rakesh.
Their original papers are cited in the introduction, and should be consulted for additional
insight and different emphases.

The proof of the pseudolocal property is simple and revealing, and we shall give it below.
We will also describe algorithms for before-stack migration. First, though, we record some
deficiencies in the approach.

The interpretation of “high-frequency locii” as “singularities” increases precision at the
cost of scope. Available direct evidence shows that real earth parameter distributions are
singular — 1.e., not smooth — virtually everywhere. Therefore, strictly speaking no informa-
tion is to be gained by identifying the singularities of model parameters, as these parameters
ought to be singular everywhere in any event! In practice, the mechanical properties of
sedimentary rocks have abnormally large fluctuations in a limited number of locations —
boundaries of geological units and gas or oil reservoirs, for example. Therefore the goal of
migration ought to be identification of a measure of local singularity strength, rather than
identification of of singularities per se. It is difficult to define precisely such a measure of
strength. Geophysicists have tended to rely on output signal strength from migration al-
gorithms as giving qualitative estimates of strong parameter fluctuations (or at least their
locii). (Often geophysicists claim to access only phase information in this way — but of course
phases can only be recognised by virtue of associated signal amplitudes!) The quantitative
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differences in output between different migration algorithms can sometimes masquerade as
qualitative differences, however. The inversion theory of the next section suggests one way
to make more precise and standardized estimates of parameter fluctuations, but a definitive
resolution of the singularity strength issue remains to be achieved.

A second difficulty is that the convolution inverse “f~1%” in the migration formula above
does not exist, because the source function f(#) is essentially bandlimited, as discussed in §2.
(It is also known only with some difficult-to-assess error, though we shall treat it as known.)
Thus the best practically achievable “normal operator” is something like

Lilp: ] Lflp, ]

where f is a “bandlimited delta.” Such operators are “not quite” pseudodifferential, and
the extent to which their properties approximate those of pseudodifferential operators is not
known with any precision to this author’s knowledge.

To see the extent to which singularities are reproduced under mildly realistic circum-
stances, consider the data displayed in Figure 8(a), resulting from Kirchhoff simulation
applied to the model of Figure 3, but with a difference source time dependence (Figure 8(b),
a bandpass trapezoidal filter with 5 — 7.5 — 30 — 35 Hz profile. Shot record migration via the
Kirchhoff migration formula (i.e. application of the adjoint L% ) produces Figure 8(c). For
comparison Figure 8(d) shows the relative velocity perturbation de/c used to produce the
data, plotted in the same way. The very close correspondence between the high frequency
signal locations in the two fields is clear, as are the differences. While a large part of the
high frequency signal in the migration output coincides in location with part of that in the
velocity perturbation, quite a lot of the latter is not present in the former. In fact only the
singularities preserved by application of the normal operator are present in the migration re-
sult (or rather their finite frequency “ghosts” are!). The construction of the normal operator
shows that only Snell points, i.e. connected to source and receiver by rays whos bisector is
the reflector normal, appear with significant high frequency energy in the migration output.
The resulting imaging aperture is evident in Figure 8(c).
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FIGURE 8(A) Data simulated from velocity and velocity perturbation of Figure 3 and
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same acquisition geometry, but using the bandpass filter of Figure 8(b) as source.
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FIGURE 8(B) Bandpass filter with 5 - 7.5 - 30 - 35 Hz trapezoidal kernel, used as source.
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Also evident are signal components unrelated to the parameter fluctuations, so called
“migration artifacts”. Much of this unwanted signal is due to truncation of the integration
range in the discrete implementation of the generalized Radon transform formula. These are
largely removed by use of more data: the adjoint of the map from de, dp to all shot records
simultaneously involves an integration over the shot coordinate zs as well. This summation
over shots tends to cancel destructively the artifacts, enlarge the inversion aperture, and
enhance the signal. For example, the shot record shown above is the first of 60, spaced 32
m apart, which were migrated collectively to produce Figure 8(e). This collective migration
(i.e. application of the appropriate adjoint) amounts to migration of the individual shot
records followed by summation (“stack”) of the outputs (“migrated partial images”). Hence
the application of the adjoint to a multi-shot data set is termed “post migration stack” (at
least by some - the reader should be forewarned that most of the concepts introduced in this
chapter go by many names, and this one is no exception!).
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FIGURE 8(E): Post migration stack = output of adjoint operator of map from velocity
perturbation to 61 shot records over the model depicted in Figure 3 with shot locations
separated by 32 m. Note that migration artifacts have been eliminated for the most part by
the summation over shots implicity in the adjoint construction.
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A very important feature of the post-migration stack is its sensitivity to errors in the
background parameters p and ¢ (especially ¢!). If the data are well-approximated by the
perturbational map at p, ¢ and if L* is computed with p,,, ¢,,, then we obtain

Lg[pma cm] L(S[,O, c]

which is in general no longer pseudodifferential. In fact the output of this operator will
generally have singularities in different positions than does its input. Even worse, if we write

Lslp, ;] [6o /o, 0p/p] = 0G (25, -, ")

then
L5[pm7 cm]* L(S[,O, c] = Z L5[Pm7 Crms $5]* L[pa <, :L‘S] .

If ¢,, = ¢, then each individual operator

L5[pm7 C, CL‘S]* L5[:07 C, xb‘]

is pseudodifferential, and therefore so is their sum. If ¢,, # ¢, then generally the above opera-
tor moves an input singularity to an zs-dependent output position. Then summation over z;
“smears” the singularity out; destructive interference may actually convert a singularity to a
smooth signal. This smearing phenomenon is analysed in a simple special case, in Appendix
A of SANTOSA and SYMES, 1989. In any case, if ¢ # ¢, singularities in [do /0, dp/p] are

moved, and possibly lost altogether in the final summation over x5 (“stack”).

To illustrate this phenomenon, I display in Figure 8(f) the postmigration stack of the
data used to generate Figure 8(e), but this time the adjoint is computed with a constant
velocity of ¢,, = 1.5 m/ms. Reference to Figure 3(a) shows that this velocity is correct only
near the surface. The output of this adjoint scattering operator with incorrect velocity is
plotted on the same scale as was used in Figure 8(e). Evidently considerable destructive
interference has occurred. Also those locii of high frequency energy (“events”) which remain
recognizable are located incorrectly: use of an incorrect velocity has translated time into
distance (“migrated”) the events incorrectly.
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FIGURE 8(F): Post migration stack = output of adjoint scattering operator, but with

ncorrect velocity (¢ = 1.5 m/ms). Much destructive interference occurs and remaining
events are positioned incorrectly.
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This sensitivity of before-stack migration performance to reference velocity has led seis-
mologists to rely on a number of imaging techniques less directly motivated by the physics
of wave propagation, but much more robust against reference velocity error. These “after-
stack” migration processes are also dramatically cheaper, requiring far smaller computational
resources than before-stack migration. For these reasons after-stack migration was the most
common migration process applied to seismic reflection data, until rather recently. A large
research effort has provided the seismic industry with tools to estimate velocity with suffi-
cient accuracy to give usable before-stack migration results, in many cases. Together with
the increasing power of computers, these improved velocity analysis tools have made before-
stack migration practical: it is now routine for 2D data, and carried out with increasing
frequency for 3D data. Note that the “difficult” cases for velocity estimation still abound,
and as a research topic velocity estimation is far from exhausted.

We shall also describe a simple version of after-stack migration at the end of the section.
Before doing so, we shall

(i) discuss the pseudolocal property of pseudodifferential operators;

(ii) describe the major families of before-stack migration agorithms.

The crucial fact which underlies the effectiveness of migration is the pseudolocal property
of pseudodifferential operators. To state this property precisely, we give a simple criterion
for detecting local smoothness: a function u (locally integrable, say) is smooth at zo € IR"
if we can find a smooth envelope function x with x(x¢) # 0 so that xu is smooth.

Now suppose that p(z, &) is the symbol of a pseudodifferential operator, and that u is
smooth at xo. We claim that p(z, D)u is also smooth at o (this is the pseudolocal property).
In fact, let x; be another smooth envelope function, so built that yi(z¢) # 0 and for some

d>0
xi(z) 0, xi(y) =0=lz—yl=4.
In fact, we can arrange that yu is smooth and that y(z) = 1if xi(z) # 0. Write
vi@p(e Dyue) = [ de [ dy pe, )= (@)x(w)uy)
* /df/dy p(a, ) xa(2)(1 = x(y))uly) .

Since yu is smooth, we can integrate by parts repeatedly in the first integral using the
identity

(1-— Ay)ei(ﬂf—y)f =(1+ 5)262'(96—@/)'5
and loading the derivatives onto xyu(y). This gives sufficiently many negative powers of 1+|¢|?
eventually that the first integral is convergent even after any fixed number of differentiations
in z. Thus the first term is smooth. For the second, note that |z —y| > § when xq(z)(1 —
X(y)) # 0, so we can integrate by parts in &:

[ d¢ [ dy pla, )¢ (@)1 = x(y))u(y)
= = [de [dy(1 = 20 (.0 + (¢ =) M xal@)(1 = x()u(y)
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As mentioned in the last section, it is characteristic of symbols that, when differentiated
in £, their order drops: the defining estimates for the symbol classes in fact take the form
(for symbols of order m):

Dz D{p(x, )| < Capr(1+ [€)

for any compact K C IR". (We have used multi-index notation here: o = (o, ...a,),|a| =

>
Hlel

a1
it -+ - Oor

etc.). Thus integration by parts in £ causes the integrand to decrease in |£], and so eventually

D2y = (—i)l°!

to support differentiation in = under the integral sign.

Note that the size of the z-derivatives of y1p(z, D)u will be influenced by the size of the
support of x (hence by § > 0): The smaller this support is, the larger typically are the two
integrands after the integration-by-parts manipulations above. Thus the resolution, with
which smooth and non-smooth points may be distinguished, is limited.

Next we address the computation of the before-stack migration result: clearly, the key
issue is the calculation of the adjoint operator L*. There are two general approaches to this
computation.

The first approach begins with the “integral” representation
) )
Lléo/a,ép/p] = /dw R(N-V,.)? (—U — sin2(§0)—p) S(t—71—7) .
o p
Evidently

L* u(xs,z) = /d:z:; R (zs,2,,7)(N - V,) u(z!, m5(z) + 7,(2))

1
% ( —sin® 10(z,, z,, ) ) '

Apart from the derivative, each component of the output is a weighted integral over the
moveout curves t = 75, + 7,..

Since one wants only an “image,” i.e. a function of location rich in high-frequency energy,
the presence of two components represents redundancy. An obvious way to prune the output
is to compute only the first component, i.e. the “impedance” image:

Mu(zs,2) = /dl’;R(IS,LL’T,SL‘)(N-VI)ZU(.TL‘;,TS(:L') + 7.(x))
0*u

Sl @) + 7(z)

= /da:;];’(:z:s,xr,x)
where R is a modified amplitude function. In fact, it follows from the calculations in the
previous section that R could be greatly modified, and the image of « under the resulting
shot record migration operator M would still have the same locii of high-frequency compo-
nents. The essential point is that these are mapped by the inverse of the canonical reflection
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transformation constructed in Section 4 — which property depends on the choice of phase

(i.e. 75(x) + 7.(x)) and hardly at all on the amplitude (fm’)

The family of integral migration formulas so obtained goes under the name “Kirchhoff
migration” in the literature. A great variety of such formulae have been suggested, but all
fit in the general scheme just explained.

Another family of migration algorithms comes from the recognition that the adjoint
operator L* is itself defined by the solution of a boundary value problem. As noted above,
it suffices to compute the impedance component, i.e. to assume that dp = 0. Thus M is
adjoint to the map

defc s 6G | o=,

defined by solving

1 0? 1 20c 9*G
— — —V-V|iG=— — 0G = t .
(,oc2 ETE VPV) G Y G=0, << 0
Suppose v solves
1 2

Then Green’s formula (Section 3) gives

/dm%{c??—@/dt v(m,t)a;TCj(:z:s,x,t)}
/dw/dt 0G (x5, 2,t) F (2,1) .

Therefore, if F(z,t) =3, u(z,,1)é(x — z,), we see that

2

Mu(z,, z) = (:2(2—51;)/(% v(:z:,t)a—G

Ts,x,t) .

ot? (
That is, the adjoint (shot record migration) operator is obtained by “propagating the data
backwards in time, using the receivers as sources” (i.e. solving the final-value problem given
above) and “cross-correlating the back-propagated field with the second t¢-derivative of the
direct field.” In practice GG is often replaced by the leading term in its progressing wave

expansion, and often the leading singularity is changed so that 9*G//9dt* has a d-singularity;
then M becomes something like

Mu(zs, ) ~ v(z, m(xs,2)) .

None of these manipulations changes the basic singularity-mapping property of M.

Algorithms following this pattern usually employ a finite-difference scheme to solve the
final-value problem numerically, and so are known as “finite-difference reverse-time before-
stack shot record migration.”
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Remark. The literature exhibits a great deal of confusion about the identity of the adjoint
field v. Many authors clearly regard v as a time-reversed version of dp or §G, i.e. “the

9

scattered field, run backwards in time.” Obviously v is not identical to dp or 6G: it is a

mathematical device used to compute the adjoint operator and nothing more.

As mentioned before, the final image is produced from data {u(z,, z,,t)} by stacking, i.e.
forming the sum of shot migrations over source (“shot”) locations

> Mu(zs,z) .

This sum is exceedingly sensitive to errors in background velocity. Accordingly, other algo-
rithms have been devised which are markedly less sensitive to this velocity. These “after-
stack” processes depend on two main observations. First, suppose that one is given the
zero-offset dataset G (s, x5,1) =: u(xs,t). Then (Section 3)

)
u(xs,t) ~ /d:z: R (V- V)2—05(t —27%) .
o
Now 27 is the travel-time function (from z,) for the medium with velocity field ¢(x)/2 (as

follows directly from the eikonal equation). Thus ezcept for amplitudes, u is high-frequency
asymptotic to the solution U |,—,, of the problem

4 0? do(x)
—— — —V? | U(z,t) = §(ty; U=0, t<0
(5 g~ %) Ve = 20, ,
as is easily verified by use of Green’s formula, the progressing wave expansion, and high-
frequency asymptotics. This approximation is called the “exploding reflector model.,” as the
impedance perturbation functions as a ¢ = 0 impulse. A reverse-time migration algorithm is
easily generated, by identifying the adjoint of the map

do
— = U |p=s,
a

via Green’s formula; one obtains the prescription:

Solve:

(%g_;_v2)v(l,’t)zzu(xs,t)ﬂ:c—xs) v=0, t>>0

Tg

Image:

{v(z,0)} .

There is also a Kirchhoff-style version of this algorithm, obtained by expressing the
solution v as an integral against the fundamental solution, and truncating its progressing
wave expansion. Also, paraxial approximations to the wave equation have been used in an
attempt to speed up the numerical calculations. We refer the reader to the SEG reprint
collection on migration ( GARDNER, 1985) for many original references, with the warning
that these papers are often mathematically self-contradictory. See also the excellent recent

comprehensive reference YILMAZ, 1987.
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So far, the reason for the appellation “after-stack” is not evident. The reason is the
second main observation: to some extent, zero-offset data can be approximated by summing
multi-offset data (i.e. {p(zs,z,,1)}) over certain trajectories in (z;,z,,t). In rough outline,
the crudest version of this construction depends on the assumption that “reflectors are all
flat” i.e. that do /o has high-frequency components only with vertical wave-vectors (ideally,
do/o = do/o(z)).Indeed, sedimentary rocks originate in flat-lying sediment layers. In many
places, subsequent geological processes have not distorted too much this flat structure, so
the “flat reflector hypothesis” is not too inaccurate. If it were not for this fact, reflection
seismology would probably not have attained its current importance in geophysical exploration
technology.

Given that the reflectors are flat, a unique family of moveout curves is picked out for
each source, by the kinematic construction of Section 4: in general, for each source/receiver
location pair (x5, x,), and time ¢,, at only one place on the reflector locus {z : t, = 7(zs, z) +
7(x,,2)} is the virtual reflector normal N = V7, + V7, vertical — and by symmetry this
point lies under the midpoint of the source-receiver segment ' = (2} + /). Thus the
data is sorted into common midpoint bins (or gathers) {p(z,, z,,t,) : 3(z} + 2) = z}. An
approximate phase correction is applied, depending on ¢, and the half-offset z; = %(xr — )

P( T, Ty t) = p(Xm — Thy Ty hy b+ (T, Th, 1))

where ¢ is constructed to approximately remove the offset-dependence of the signal. This is
the so-called normal-moveout (NMO) correction. Then the data is stacked:

Pst.(l’mat) = Zﬁ(l’m,l’h,t) :
Th

This stacked section is regarded as an approximate zero-offset section and submitted to the
zero-offset migration algorithms outlined above (hence “after-stack migration”). Ignoring
amplitudes, one can justify this point of view using the same geometric-optics tools employed
in the rest of these notes.

The effectiveness of this strategy obviously depends on the choice of phase correction
d(xm,xh,t). The secret of success of after-stack processing is that ¢ is chosen so that the
“energy” of the stacked section

> pst(@m, 1))

Tom,t

is maximized relative to the energy of the input common midpoint gathers. In principle, ¢
ought to be determined by the velocity model; in practice, it is determined to obtain the
best possible image, i.e., the least destructive cancellation. In this way the result of after-
stack migration becomes much less sensitive to the velocity model, because the velocity model
is adjusted to produce the most robust result. In the subsequent zero-offset migration, the
velocity ¢(x) is either set equal to some convenient constant (“time migration”) or adjusted
to approximate the true distribution of earth velocities (“depth migration”). In either case,
this second-stage use of velocity has a subsidiary effect to that of the NMO correction.

Note that the physical meaning of velocity in the NMO correction step is essentially
lost: the kinematics are merely adjusted to give the best stack. Under some circumstances
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(notably, when the data really come from flat-lying reflectors) there is arguably some con-
nection between the physical velocity and the stack-optimizing kinetics — in general, there
is no such connection.

In the last fifteen years, so-called dip moveout correction has been advanced as a partial
cure for this defect in the kinematic treatment of reflections, the idea being to treat non-
flat-lying (“dipping”) reflectors consistently, at least regarding kinematics. Dip moveout is
beyond the scope of these notes.

Finally, note that none of the after-stack processes take physically consistent account of
signal amplitudes: only phases are preserved — and, as previously remarked, phases are
only recognizable through amplitudes, so even phases must be regarded with suspicion in
after-stack output.

10 Inversion, Caustics, and Nonlinearity

The formulas derived at the end of Section 5 lead to a number of so-called inversion methods,
i.e. techniques for direct estimation of parameters (do,dp). For example, if we restrict
ourselves to the 2-D, dp = 0 case, then for each shot formally

S(zsr0.1s) = £ * Lslp, ][50/, 0]
implies that
50—/0- = A;;M [:07 ¢, .Z‘S](f*)_IS(SES, ) )

where M|[p, ¢, x;] is the before-stack migration operator introduced in Section 6, i.e. M is
adjoint to do /o — Ls[p,c] [60/0,0](x,-,-). This is a prototypical inversion formula, which
we pause to examine critically.

As observed in Section 6, (f*)~! doesn’t exist; at best one can produce a bandlimited
partial inverse to (f#), i.e. a convolution operator fi* for which

h*xfrum~u

for a linear space of bandlimited signals .

The production of such deconvolution operators f; is well understood, but the influence
of the defect f; * f — & on the remainder of the inversion process is not.

Next we observe that A} also does not exist, strictly speaking. We can write (Section
5) for the principal symbol

Aooo(Tsy2,8) = m(zg, (25,2, 8), 1, (25, 2, 8))p(as, 2, )

where p(xs, z, ) is a symbol of order 1 and m is the window or mute, introduced in Section 5,
the presence of which reflects the finite size of the measurement domain (finite cable length).
The reflected receiver location z,(zs,z,£) is determined by the reflection kinematics, and
is homogeneous of degree zero in &. Thus m(zs, x,,t.) is an aperture filter, homogeneous
of degree zero and nonzero only over the range of reflector normals at x mapped into the
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“cable,” i.e. support of m(zs,-,-), by the CRT. This inversion aperture is typically far less
than the full circle S, so m vanishes over a large part of S*.

The composition of pseudodifferential operators corresponds to the product of principal
symbols, as noted in Section 5. Thus (A,,)~" ought to be a pseudodifferential operator with
principal symbol 1/A,,o; unfortunately A,,o vanishes outside the aperture just constructed.
Therefore the best we can do is to construct an aperture-limited high-frequency approximate
inverse.

Remark. In the modern p.d.e. literature, the term microlocal has roughly the same mean-
ing as “aperture limited” here. A high-frequency approximate inverse is called a parametriz.

First we build a cutoff operator to project out the undetermined components of the
solution. In fact, we already have such an operator:

Q(‘TS? €, 5) = m(xm xr($57 €, é)v tr($57 z, é))

is its symbol. The “simple geometry” hypothesis implied that Ay, (x5, 2, €) is well-defined
and non-vanishing when Q(xs, z, &) # 0.

Now first consider the (hypothetical) case f = 4, so that (f*)~! really does exist, and is
in fact the identity map. Let I'(z,, z, ) be any symbol satisfying

F($s7$7§)/\a’a(x57x7§) =1
when  Q(z,2,6) #0

Then
QFAUU = Q + .-

where “-.” represents a smoothing operator. That is,
do
Q—=QI'MS+ --- .
o

Thus the sequence of operations S — (migration)M.S — (amplitudecorrection)['M S “in-
verts” the model-seismogram relation to a limited extent, in that it recovers the Fourier
components of the model within the inversion aperture with an error decreasing with spatial
frequency.

If we drop the unrealistic hypothesis f = 4§, then another limitation emerges: (f*)~*
doesn’t exist and we can at best replace it with a bandlimited deconvolution operator fx.
Then f; * f is a “bandlimited delta,” and the operator

dojoc— Mfi+S

is no longer a pseudodifferential operator with symbol A,,. There is presumably a class of
“spatially bandlimited” impedance perturbations for which the above operator is well ap-
proximated by A,,. If this class includes perturbations of sufficiently high frequency content,
presumably these are recovered accurately by the above formula. The characterization of
such “recoverable classes” has not been carried out, to the author’s knowledge.
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BEYLKIN, 1985 proposed a slightly different approach: it is possible to write the product
QUM as a generalized Radon transform. In fact, this follows from the calculations very
similar to those in Section 5. This sort of inversion formula also suffers from the limitations
just outlined.

Despite the theoretical imperfections, the sort of accuracy achievable with this approach
is impressive. My research group at Rice University has implemented a version of Beylkin’s
construction, using the same techniques as in the implementation of Kirchhoff migration
described previously (finite difference solution of eikonal and transport equations, simple
second order quadrature and interpolation). The cost of getting the amplitudes right is a
roughly 50% premium over Kirchhoff migration (i.e. the adjoint operator).

Figure 9(a) shows a synthetic shot gather created from a least-squares inversion (described
below) of the North Sea data of Figure 1. This synthetic data has lower frequency content,
but some of the same complexity as the field data. The model acquisition geometry is the
same as that used in the field, as described in the caption of Figure 1. The source used
in the simulation was a 5-7.5-30-35 Hz trapezoidal bandpass filter. This simulates ideal
preprocessing in which the bandlimited data is rendered as close to a perturbational Green’s
function as possible, by deconvolution, i.e. application of a convolution pseudoinverse to
the source signature. [Robinson discusses the deconvolution of seismic data extensively in
Chapter XXX]. The application of the high frequency asymptotic inversion to this data
produced the rather complex pattern of velocity perturbation displayed in Figure 9(b). For
comparison the actual input velocity perturbation used to produce the data is displayed in
Figure 9(c). One can see similarities, as well as differences to be expected in a result derived
from a single shot record, notably aperture limitation and truncation artifacts. Figure 9(d)
presents the restmulation of the data, using this time the high frequency asymptotic inversion
estimate of the velocity perturbation (Figure 9(b)) instead of the input (Figure 9(c)). Figure
9(e) shows the error in the resimulation, which is approximately 20% RMS.
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DATA - SHOT 21 of 25 Hz synthetic
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FIGURE 9(A): Synthetic data set derived from least squares inversion of 41 common
source gathers from the survey described in Figure 1. Source is a bandpass filter. Long scale
velocity obtained by smooting sonic log of nearby well. Least squares inversion estimate of
short scale velocity perturbation displayed in Figure 9(c).
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Plane 1
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FIGURE 9(B): High frequency asymptotic inversion of data in Figure 9(a). Velocity
model is that used to synthesize the data.
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RESIMULATED DATA
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FIGURE 9(D): Resimulation of data. Compare to Figure 9(a) - plotted on same scale.
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DIFFERENCE
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FIGURE 9(E): Difference of Figures 9(a), 9(d), plotted on same scale.
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Aperture-limitation is intrinsic to the inversion problem (and, implicitly, to the migration
problem as well). The bandlimited nature of f, on the other hand, adversely affects the
accuracy of the inversion formulas just described. An alternate approach is the minimization
of the error between predicted and observed linearized seismograms, say in the least-squares
sense:

minimize /dms/dxr/dtr [L¢lp,c]ldo/o,dp/p] — Sdata]2 .
over éo/o,dp/p

Such (very large) linear least squares problems can be solved with some efficiency by
iterative techniques of the conjugate gradient family ( GOLUB and LOAN, 1983), Ch. 10).
The aperture- and band-limited nature of the solution remains, but the solution obtained
in this way solves a definite problem, in contrast to the high frequency asymptotic inversion
formulas described above. See for example IKELLE et al., 1986 for an application of this
methodology.

On the other hand high frequency asymptotic inversion can provide a reasonably accu-
rate approximate right inverse to the scattering operator, as we saw above (Figure 9 and
surrounding discussion). It is natural to think that this approximate inverse might be used
to accelerate the progress of iterative methods, thus combining the two approaches. In the
conjugate gradient literature, the use of approximate inverses to accelerate convergence is
known as (pre- or post-) conditioning. See GOLUB and LOAN, 1983), Ch. 10 for a basic
discussion and references. This combination of high frequency asymptotic and iterative least
squares inversion has proven to be quite a bit more effective than either separately: see
VIRIEUX et al., 1992, JIN and MADARIGA, 1994, MADARIAGA et al., 1992, SEVINK
and HERMAN, 1993, and SEVINK and HERMAN, 1994 for accounts of very interesting

work along these lines.

We end with a discussion of matters beyond the limits of wave imaging, as defined in
these notes.

First, it was noted already in Section 2 that, in common with the literature on wave
imaging without exception, we have assumed that no caustics occur in the incident ray
family. This assumption amounts to a severe restriction on the degree of heterogeneity
in the reference velocity field ( WHITE, 1982). A robust modification of the techniques
presented here must drop this assumption. Some progress in this direction:

RAKESH, 1988: showed that the kinematic relation between high-frequency
parameter perturbations and field perturbations persists, regardless of caustics
(in fact that this relation is always a Fourier Integral Operator);

PERCELL, 1989: established that reflected field amplitude anomalies may be

caused by incident field caustics.

NOLAN and SYMES, 1995: gave a rigorous interpretation of Percell’s asymptotic
expansions, showing that the normal operator for the single point source problem
as studied above is not pseudodifferential in any open set containing caustic points.

SMIT et al., 1995: showed that when source and receiver points occupy an open
set on the surface, the integration over source and receiver point implicit in appli-
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cation of the adjoint (see above!) renders the normal operator pseudodifferential,
by smearing out the more singular parts.

Second, in order to apply any of the methodology based on perturbation of the wave
field, it is necessary to determine the reference fields p(z), c(x). Accurate estimation of ¢(x)
is especially critical for before-stack migration, as noted in Section 6, and a fortiori for the
inversion methods of this section. At present velocity estimation for before-stack migration
is regarded as a frontier research topic in reflection seismology.

Third, the mathematical basis of linearization is only poorly understood at present.
Rather complete results for dimension 1 were obtained in SYMES, 1986b, LEWIS, 1989,
and SUZUKI, 1988. These contrast with the much murkier situation in dimension > 1,
where only partial results are available — see SUN, 1988, SYMES, 1986a, BOURGEOIS
et al., 1989, BAO, 1990, FERNANDEZ-BERDAGUER et al., 1993. Estimates for the
error between the response to finite model perturbations and their linear approximations are
necessary for

(i) design of effective inversion algorithms

(ii) analysis of model/data of sensitivity by (linear) spectral techniques.

These estimates are of more than academic interest. See Santosa and Symes (1989) for an
account of the consequences of the structural peculiarities of these estimates for velocity
estimation.

Finally, we mention that the significance of the parameter estimates obtained by any
of these techniques — integral or iterative linearized inversion, nonlinear inversion — is far
from clear, because of the aperture- and band-limitations already mentioned. The discussion
at the beginning of this section suggests that accurate point parameter values are not to be
expected. At best, heavily filtered versions of the causative perturbations are accessible. For
an interesting recent discussion of the obstacles to be overcome in interpreting inverted data,

see BEYDOUN et al., 1990.
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