TSOpt: a transient simulation package
based on SVL

William W. Symes

Outline

e Transient simulation-driven optimization

e Overview of SVL

e TSOpt: structure and usage

e Example: Acoustic simulation of seismograms

e Conclusion - Parallelism, Components

Transient simulation-driven optimization

Core problem: minimizeg|u, ¢], in which thestate «(¢) andcontrol ¢ satisfy the DE
constraint gtate equation)

G [%,u,c] =0

Will focus on reduced problem ("black box”, "NAND”) approlacsolve state equa-
tion, minimize J**4[c] = J[uld], c].

Many components of solution also useful for treatment ajioal problem as con-
strained optimization problem ("all at once”, "SAND”").

If problem properties permit, most efficient approach is saeiative of Newton’s
method=- need:

e definition of storage classes for state, control;

e evaluation for LHS of state equation, together with its whives (’sensitivity
equation”) with respect to, ¢, possibly second derivatives, and adjoints of these;

e definition of (discrete) time step;

e combine these with an interface defininfuactional, i.e. a scalar-valued func-
tion, to be coupled to optimization algorithms.

e functional interfaces much be embedded in sufficiently aghtem of types to
support algorihm definition, implementation.

The Standard Vector Library

Aim: provide framework for implementation of simulation\ten optimization al-
gorithms.

Design principle: core classes should cleanly emutateulus in Hilbert space.
Stratified by level of abstraction; implementation detaifgprously confined to
strata requiring them.

Example: SVLVect or s do not report dimension or length - not required to define
the behaviour of vectors!

Successor to HCL (Gockenbach et al., ACM TOMS 1999) - innowuatinclude
templated classes, exception handling, namespaces searse of function for-
warding, better memory management and encapsulationintussic localization
of interaction with network in distributed implementation

The Standard Vector Library

Consists of

e calculus classesSpace (vector spaces)/ect or (vector),Funct i onal (scalar
valued function)Oper at or (vector valued function)l.i near Qp (linear op-
erator), and supporting classes suchPasduct Space, Least Squar es-
Functi onal , etc.

e data management class&sat aCont ai ner (abstract data containebpcal -
Dat aCont al ner (concrete data containerfunct i onCbj ect (encapsu-
lated function, evaluated dyat aCont ai ner objects).

Written in ISO C++. Base classes templated (where necessay scalar type.

Data Management Classes

e Local Dat aCont ai ner <Scal ar >: provides access to raw datac@l ar
* getData(),int getSize()). Concrete child classes may also provde
metadata appropriate to particular data types (grid, FE, seismicSubclass of
Dat aCont ai ner.

e Dat aCont ai ner : abstract DC, provides evaluationlefinct i onCbj ect s,
child classes implement by delegation through tree DCsgndi LDC leaves

e Funct i onMpj ect : templated subclasses provide evaluation on varying num-
bers of LDC yoi d operator () (Local Dat aCont ai ner <Scal ar >
&, . ..)) -unary, binary,...

¢ Various composites such Bsoduct Dat aCont ai ner , which delegates eval-
uation to its components, etc.

Calculus Classes

e Space<Scal ar >: factory class foDat aCont ai ner s appropriate to vector
data type, also repository for linear algebra operatians@r combination, inner
product).

e VVect or <Scal ar >: consists ofSpace reference and dynamically allocated
Dat aCont ai ner . LA ops delegated t&pace, evaluation of arbitrary
Funct i onQbj ect s to Dat aCont ai ner member.

e Funct i onal <Scal ar >: Scal ar -valued function of vector variable, together
with gradient, possibly higher derivatives. Chief usefite methods arappl v,
appl yG adi ent ,... Usual implementation: evaludtenct i onObj ect (s).

e OQper at or <Scal ar >, Li near Qp<Scal ar >: vector-valued functions, struc-
ture similar to that ofFunct 1 onal .

Rn: A typical SVL class family

Defines standard "Fortran” or "Matlab” vectors, no metadatabutes other than
length.

e RnArr ay: subclass of.ocal Dat aCont ai ner, instance stores lengtmt
n, arrayScal ar * a:

Int getSize() { return n; }
Scalar * getData() { return a; }

e RnSpace: implementsDat aCont ai ner * bui | dDat aCont ai ner (its
factory function) by callindRnAr r ay constructor, linear algebra ops by calling
a packaged set dfunct i onCbj ect s (Li near Al gebr aPackage) - stan-
dard implementations of linear comb., inner product whiah be used in most
Space implementations.

Rn: A typical SVL class family

Thereisno RnVect or !

Access to a vector in BnSpace: via Vect or constructor - concrete, not sub-
classed:

RnSpace<doubl e> sp(n); // n-dim RnSpace
Vect or <doubl e> v(sp); [// get a vector in sp

Major consequence: for algorithms formulated exclusivelierms of SVL calcu-
lus classes, need for dynamic memory management is draiiateduced. Usual
access to workspace, eg. in domain of an operator reppby at or A:

Vect or <doubl e> v(A. get Domai n());

SVL: interaction with Data

The only way to interact with data in SVL: via evaluationFafnct i onChj ect s!

Example: define a vector iR'?, read data into it from an ascii file.

try {
RnSpace<doubl e> sp(10);

Vect or <doubl e> v(sp);
ASCl | Reader <doubl e> ar("nyfile.dat");
v.eval (ar);

}
catch (SVLException & e) {

}

10

TSOpt: SVL-based time domain simulation for
optimization

Aim: define abstract interfaces for the elements of time-aionsimulation, con-
crete simulation operators based on these - isolate the obkarious elements to

facilitate code re-use. Evolution 6DTD package based on HCL (Gockenbach et
al., ACM TOMS 2002).

Example: common definition of time step (Euler, BDF,...) laggble w/o loss of
efficiency across wide range of problems - like Fortran OD#faliies, but with
better data encapsulation and built-in access to deres(iisensitivities”), adjoints,
and other optimization artifacts.

Provide platform for structure use of Automatic Differexttbn: user defines only

single step operations, rest of simulation (including egie¥#ank checkpointing
scheme for adjoint state method) is built-in.

11

TSOpt: Design Goals

e top-level interface is SVIOper at or - useful for both NAND and SAND for-
mulations; objective, constraints defined in terms of ojgerautput

e allow arbitrary product structure for control, state
e accomodate adaptive discretization - adaptive time stgpgpatial meshing
e internal, external discretizations of control, state mifed

e both implicit, explicit, single- and multi-step schemamaplicit and explicit state
equations

e accommodate multisimulations, in which output of simulasanulticomponent
vector, each component of which is itself the output of a satnon.

e Implement using-unct i onCbj ect interface - natural relation to component
frameworks - must b&nar y to allow for arbitrary numbers of control, state
components

12

TSOpt: User-supplied Classes

e St at 1 cs: defines state, control at single time step, also transidigtween
Internal, external representations of these

e Dynam cs: defines LHS of state equation, compatibly wahat i1 cs defini-
tion of state and control and with enough functionality tglement arbitrary...

e St ep: time step class (Euler, Leapfrog, Crank-Nicholsonapplication regu-
lated by...

e Cl ock: control of simulation time

13

TSOpt::Statics

/[** return reference to factory, which builds control and
state instances (i.e. Internal representations) */
virtual Mbdel Bui | der<Scal ar> & get Mbdel Bui | der () = O;
[** return reference to factory, which builds translators
between internal, external control representations */
virtual Sanpl er Factory<Scal ar> &
get Cont r ol Sanpl er Factory() = O;
[** return reference to factory, which builds transl ators
between internal and external state representations */
virtual Sanpl er Factory<Scal ar> &
get Dat aSanpl er Factory() = O;

14

TSOpt.:ModelBuilder

Factory with two products:

[** dynam cally allocate control LDC */

virtual Local DataCont ai ner<Scal ar> * buildControl () = O;
/[** dynamcally allocate state LDC */

virtual Local Dat aCont ai ner<Scal ar> * buildState() = O;

Allocation is dynamic - memory is managed by calling objgur{ of library, no
worry for user!).

Return type may include whatever metadata is useful in ahgfiparticular dynam-
Ics to be used (grid information, notably).

15

TSOpt..:SamplerFactory
Also factory with two products:

[** use auxliary data of LDC to initialize internal data..*/
virtual void initialize(Local DataCont ai ner<Scalar> & d) = 0;
[** dynamcally allocate forward sanpler FO */

virtual FwdSanpl er<Scalar> * buil dFwd() = O;

[** dynam cally allocate adjoint sanpler FO */

virtual Adj Sanpl er<Scalar> * buil dAdj () = O;

Sanpl erFactory::initialize =opportunity to pass any data not proper to
theSanpl er Fact ory itself, eg. to component simulations of a multisimulation.
May be no-op for single simulation implementations, wigampl er Fact ory
Instance data is complete.

16

TSOpt::[Fwd][Ad]]Sampler

Translation between internat external data reps - subclasddfar yFunct i on-
(bj ect

/** Provides access to sanple tine */

virtual void setTine(Scalar t) = O;

[** nunmber of output LDCs */

virtual i1 nt getNunberOData() = O;

[** wite nmethod - output of internal buffer onto out put
LDC, index O <=1 < getNunberOData() */

virtual void save(Local Dat aCont ai ner<Scalar> & d, int i)=0;

[** sanple to internal buffer */

virtual void operator()(Local Dat aCont al ner <Scal ar> & x) =0;

Adj Sanmpl er : | oad instead ocave, oper at or () samplegrominternal buffer.

17

TSOpt:.:Dynamics
Expresses LHS of state equation, together with derivainesadjoint. Main method:

virtual void rhse(Local Dat aCont ai ner<Scal ar> & u,
Local Dat aCont ai ner <Scal ar> & c,
Local Dat aCont ai ner <Scal ar> & up,
Scal ar a, Scalar b 0, Scalar b,
Scalar t) = 0;

which expresses
u, = boug + bu + aH (u, c, 1)

For explicit schemes;, = next time level of state. For 1-stefd,= RHS,b, = 0. For
multistep,u, = lin comb of previous time levels. For implicit equationsschemes,
H = G = LHS of state equationy, = residual in Newton loop.

18

TSOpt::Step
Base encapsulates time stepping methods:

virtual void fwdStep(Mdel <Scal ar> & ndl,
Dynam cs<Scal ar> & dyn,
Cl ock<Scal ar> & cl k) = 0;

UsesMbdel , implemented in the base library, which uddsiel Bui | der (user-
supplied as part dbt at i ¢cs) to construct and return references to storage for state,

control, and their perts. on as-needed basis.

Also uses...

19

TSOpt::Clock

Keeps track of time (!).

virtual Scalar getTinme() = O;
virtual void setTine(Scalar t) = O;
virtual void setTineStep(Scalar dt) = 0O

Child classConst Cl ock provided in base library, for fixed step methods:
Const C ock(Scal ar tbeg, Scalar tend, Scal ar dt);

Adaptive stepping can record time step history.

20

Example: a Simple Seismic Simulator

Acoustic 2D multisimulation using (2,4) leapfrog FD scheme

e basic data structures@ i dDat a (LDC) for control (velocity), internal state
(pressure field)Sei sm cDat aCont al ner (DC) andSei sm cBi n (LDC)
for external state (seismogram - implemented using Seismix)

e St ati cs: Model Bui | der uses constructors for grid, seismic DC classes;
Sanpl er s use cubic spline interpolatorSanpl er Fact or ys use their con-
structors.

e Dynam cs: implement standard (2,4) scheme in F77, use AD to buildvderi
tive, adjoint subroutines, wrap.

e St ep, C ock: Leapfrog with overwrite (in base libraryfonst C ock.

21

Example: Command Source Code

e Build St ati cs, Dynam cs, St ep, andC ock instances using data (file-
names, parameters) read from input data file. NB: this ireguabth definition
of internal (simulation) grids and construction of operatto interpolate / ad-
joint interpolate between these and archival represemsbf fields.St at i cs
also includes definitions @pace instances specifying domain, range of simu-
lation operator (external representations of controtegta

e Construct TSOp:
TSOp<f | oat > op(sta, dyn, stp, clk);

e Usebuilt-in unit tests provided by SVL (Oper at or : : checkDeri v,
Li near Op: : checkAdj oi nt Rel at i on) to verify code.

e Efficiency: execution times within a 1-5% of pure F77 implematation -
96-99%+ of execution time spent in F77 time stepping subroutes.

22

Conclusion

e SVL provides clean ISO C++ framework for simulation drivgstimization.

e TSOpt implements common code underlying all transient diiven opt apps:
user implements only code defining particular app

e For even modest-sized problems (2D acoustics), virtuattian overhead is
negligible.

e Parallelism via client-server arch - server implementsy aldta management
layer of SVL, i.e. server-side subclasses of LDCs and FOss@&Bubclasses are

free to use MPI or any other parallel execution runtime hWaréhe artifacts of
which are kept separate from base library.

e RTSOpt - remote execution version of TSOpt, based on SVLRersimple
socket-based client-server framework).

23

Thanks to...

e Mark Gockenbach

e Roscoe Bartlett

e Tony Padula, Eric Dussaud, Hala Dajani, Peng Shen
e The Rice Inversion Project

e National Science Foundation

e Department of Energy - LACSI

24

