
TSOpt: a transient simulation package

based on SVL

William W. Symes



Outline

• Transient simulation-driven optimization

• Overview of SVL

• TSOpt: structure and usage

• Example: Acoustic simulation of seismograms

• Conclusion - Parallelism, Components

1



Transient simulation-driven optimization

Core problem: minimizeJ [u, c], in which thestate u(t) andcontrol c satisfy the DE
constraint (state equation)

G

[

du

dt
, u, c

]

= 0

Will focus on reduced problem (”black box”, ”NAND”) approach: solve state equa-
tion, minimizeJ red[c] = J [u[c], c].

Many components of solution also useful for treatment of original problem as con-
strained optimization problem (”all at once”, ”SAND”).

2



If problem properties permit, most efficient approach is some relative of Newton’s
method⇒ need:

• definition of storage classes for state, control;

• evaluation for LHS of state equation, together with its derivatives (”sensitivity
equation”) with respect tou, c, possibly second derivatives, and adjoints of these;

• definition of (discrete) time step;

• combine these with an interface defining afunctional, i.e. a scalar-valued func-
tion, to be coupled to optimization algorithms.

• functional interfaces much be embedded in sufficiently richsystem of types to
support algorihm definition, implementation.

3



The Standard Vector Library

Aim: provide framework for implementation of simulation driven optimization al-
gorithms.

Design principle: core classes should cleanly emulatecalculus in Hilbert space.
Stratified by level of abstraction; implementation detailsrigorously confined to
strata requiring them.

Example: SVLVectors do not report dimension or length - not required to define
the behaviour of vectors!

Successor to HCL (Gockenbach et al., ACM TOMS 1999) - innovations include
templated classes, exception handling, namespaces, extensive use of function for-
warding, better memory management and encapsulation, plusintrinsic localization
of interaction with network in distributed implementation.

4



The Standard Vector Library

Consists of

• calculus classes:Space (vector spaces),Vector (vector),Functional (scalar
valued function),Operator (vector valued function),LinearOp (linear op-
erator), and supporting classes such asProductSpace, LeastSquares-
Functional, etc.

• data management classes:DataContainer (abstract data container),Local-
DataContainer (concrete data container),FunctionObject (encapsu-
lated function, evaluated byDataContainer objects).

Written in ISO C++. Base classes templated (where necessary) on a scalar type.

5



Data Management Classes

• LocalDataContainer<Scalar>: provides access to raw data (Scalar

* getData(), int getSize()). Concrete child classes may also provde
metadata appropriate to particular data types (grid, FE, seismic,...). Subclass of
DataContainer.

• DataContainer: abstract DC, provides evaluation ofFunctionObjects,
child classes implement by delegation through tree DCs ending in LDC leaves

• FunctionObject: templated subclasses provide evaluation on varying num-
bers of LDC (void operator()(LocalDataContainer<Scalar>

&,...)) - unary, binary,...

• Various composites such asProductDataContainer, which delegates eval-
uation to its components, etc.

6



Calculus Classes

• Space<Scalar>: factory class forDataContainers appropriate to vector
data type, also repository for linear algebra operations (linear combination, inner
product).

• Vector<Scalar>: consists ofSpace reference and dynamically allocated
DataContainer. LA ops delegated toSpace, evaluation of arbitrary
FunctionObjects to DataContainer member.

• Functional<Scalar>: Scalar-valued function of vector variable, together
with gradient, possibly higher derivatives. Chief user-defined methods areapply,
applyGradient,... Usual implementation: evaluateFunctionObject(s).

• Operator<Scalar>, LinearOp<Scalar>: vector-valued functions, struc-
ture similar to that ofFunctional.

7



Rn: A typical SVL class family

Defines standard ”Fortran” or ”Matlab” vectors, no metadataattributes other than
length.

• RnArray: subclass ofLocalDataContainer, instance stores lengthint
n, arrayScalar * a:

int getSize() { return n; }
Scalar * getData() { return a; }

• RnSpace: implementsDataContainer * buildDataContainer (its
factory function) by callingRnArray constructor, linear algebra ops by calling
a packaged set ofFunctionObjects (LinearAlgebraPackage) - stan-
dard implementations of linear comb., inner product which can be used in most
Space implementations.

8



Rn: A typical SVL class family

There is no RnVector!

Access to a vector in aRnSpace: via Vector constructor - concrete, not sub-
classed:

RnSpace<double> sp(n); // n-diml RnSpace
Vector<double> v(sp); // get a vector in sp

Major consequence: for algorithms formulated exclusivelyin terms of SVL calcu-
lus classes, need for dynamic memory management is dramatically reduced. Usual
access to workspace, eg. in domain of an operator rep. byOperator A:

Vector<double> v(A.getDomain());

9



SVL: interaction with Data

The only way to interact with data in SVL: via evaluation ofFunctionObjects!

Example: define a vector inR10, read data into it from an ascii file.

try {
RnSpace<double> sp(10);
Vector<double> v(sp);
ASCIIReader<double> ar("myfile.dat");
v.eval(ar);

}
catch (SVLException & e) {

...
}

10



TSOpt: SVL-based time domain simulation for
optimization

Aim: define abstract interfaces for the elements of time-domain simulation, con-
crete simulation operators based on these - isolate the roles of various elements to
facilitate code re-use. Evolution ofFDTD package based on HCL (Gockenbach et
al., ACM TOMS 2002).

Example: common definition of time step (Euler, BDF,...) applicable w/o loss of
efficiency across wide range of problems - like Fortran ODE libraries, but with
better data encapsulation and built-in access to derivatives (”sensitivities”), adjoints,
and other optimization artifacts.

Provide platform for structure use of Automatic Differentiation: user defines only
single step operations, rest of simulation (including eg. Griewank checkpointing
scheme for adjoint state method) is built-in.

11



TSOpt: Design Goals

• top-level interface is SVLOperator - useful for both NAND and SAND for-
mulations; objective, constraints defined in terms of operator output

• allow arbitrary product structure for control, state

• accomodate adaptive discretization - adaptive time stepping, spatial meshing

• internal, external discretizations of control, state may differ

• both implicit, explicit, single- and multi-step schemes, implicit and explicit state
equations

• accommodate multisimulations, in which output of simulator is multicomponent
vector, each component of which is itself the output of a simulation.

• implement usingFunctionObject interface - natural relation to component
frameworks - must beUnary to allow for arbitrary numbers of control, state
components

12



TSOpt: User-supplied Classes

• Statics: defines state, control at single time step, also translation between
internal, external representations of these

• Dynamics: defines LHS of state equation, compatibly withStatics defini-
tion of state and control and with enough functionality to implement arbitrary...

• Step: time step class (Euler, Leapfrog, Crank-Nicholson,...),application regu-
lated by...

• Clock: control of simulation time

13



TSOpt::Statics

/** return reference to factory, which builds control and

state instances (i.e. internal representations) */

virtual ModelBuilder<Scalar> & getModelBuilder() = 0;

/** return reference to factory, which builds translators

between internal, external control representations */

virtual SamplerFactory<Scalar> &

getControlSamplerFactory() = 0;

/** return reference to factory, which builds translators

between internal and external state representations */

virtual SamplerFactory<Scalar> &

getDataSamplerFactory() = 0;

14



TSOpt::ModelBuilder

Factory with two products:

/** dynamically allocate control LDC */

virtual LocalDataContainer<Scalar> * buildControl() = 0;

/** dynamically allocate state LDC */

virtual LocalDataContainer<Scalar> * buildState() = 0;

Allocation is dynamic - memory is managed by calling object (part of library, no
worry for user!).

Return type may include whatever metadata is useful in defining particular dynam-
ics to be used (grid information, notably).

15



TSOpt::SamplerFactory

Also factory with two products:

/** use auxliary data of LDC to initialize internal data..*/
virtual void initialize(LocalDataContainer<Scalar> & d) = 0;
/** dynamically allocate forward sampler FO */
virtual FwdSampler<Scalar> * buildFwd() = 0;
/** dynamically allocate adjoint sampler FO */
virtual AdjSampler<Scalar> * buildAdj() = 0;

SamplerFactory::initialize = opportunity to pass any data not proper to
theSamplerFactory itself, eg. to component simulations of a multisimulation.
May be no-op for single simulation implementations, whenSamplerFactory
instance data is complete.

16



TSOpt::[Fwd][Adj]Sampler

Translation between internal→ external data reps - subclass ofUnaryFunction-
Object

/** Provides access to sample time */
virtual void setTime(Scalar t) = 0;
/** number of output LDCs */
virtual int getNumberOfData() = 0;
/** write method - output of internal buffer onto output

LDC, index 0 <= i < getNumberOfData() */
virtual void save(LocalDataContainer<Scalar> & d, int i)=0;
/** sample to internal buffer */
virtual void operator()(LocalDataContainer<Scalar> & x)=0;

AdjSampler: load instead ofsave, operator() samplesfrom internal buffer.

17



TSOpt::Dynamics

Expresses LHS of state equation, together with derivativesand adjoint. Main method:

virtual void rhse(LocalDataContainer<Scalar> & u,
LocalDataContainer<Scalar> & c,
LocalDataContainer<Scalar> & up,
Scalar a, Scalar b_0, Scalar b,
Scalar t) = 0;

which expresses

up = b0u0 + bu + aH(u, c, t)

For explicit schemes,up = next time level of state. For 1-step,H = RHS,b0 = 0. For
multistep,u0 = lin comb of previous time levels. For implicit equations orschemes,
H = G = LHS of state equation,up = residual in Newton loop.

18



TSOpt::Step

Base encapsulates time stepping methods:

virtual void fwdStep(Model<Scalar> & mdl,

Dynamics<Scalar> & dyn,

Clock<Scalar> & clk) = 0;

...

UsesModel, implemented in the base library, which usesModelBuilder (user-
supplied as part ofStatics) to construct and return references to storage for state,
control, and their perts. on as-needed basis.

Also uses...

19



TSOpt::Clock

Keeps track of time (!).

virtual Scalar getTime() = 0;

virtual void setTime(Scalar t) = 0;

virtual void setTimeStep(Scalar dt) = 0;

...

Child classConstClock provided in base library, for fixed step methods:

ConstClock(Scalar tbeg, Scalar tend, Scalar dt);

Adaptive stepping can record time step history.

20



Example: a Simple Seismic Simulator

Acoustic 2D multisimulation using (2,4) leapfrog FD scheme.

• basic data structures:GridData (LDC) for control (velocity), internal state
(pressure field),SeismicDataContainer (DC) andSeismicBin (LDC)
for external state (seismogram - implemented using SeismicUnix)

• Statics: ModelBuilder uses constructors for grid, seismic DC classes;
Samplers use cubic spline interpolators,SamplerFactorys use their con-
structors.

• Dynamics: implement standard (2,4) scheme in F77, use AD to build deriva-
tive, adjoint subroutines, wrap.

• Step, Clock: Leapfrog with overwrite (in base library),ConstClock.

21



Example: Command Source Code

• Build Statics, Dynamics, Step, andClock instances using data (file-
names, parameters) read from input data file. NB: this includes both definition
of internal (simulation) grids and construction of operators to interpolate / ad-
joint interpolate between these and archival representations of fields.Statics
also includes definitions ofSpace instances specifying domain, range of simu-
lation operator (external representations of control, state).

• Construct TSOp:

TSOp<float> op(sta, dyn, stp, clk);

• Usebuilt-in unit tests provided by SVL (Operator::checkDeriv,
LinearOp::checkAdjointRelation) to verify code.

• Efficiency: execution times within a 1-5% of pure F77 implementation -
96-99%+ of execution time spent in F77 time stepping subroutines.

22



Conclusion

• SVL provides clean ISO C++ framework for simulation driven optimization.

• TSOpt implements common code underlying all transient sim-driven opt apps:
user implements only code defining particular app

• For even modest-sized problems (2D acoustics), virtual function overhead is
negligible.

• Parallelism via client-server arch - server implements only data management
layer of SVL, i.e. server-side subclasses of LDCs and FOs. These subclasses are
free to use MPI or any other parallel execution runtime library, the artifacts of
which are kept separate from base library.

• RTSOpt - remote execution version of TSOpt, based on SVLRemote (simple
socket-based client-server framework).

23



Thanks to...

• Mark Gockenbach

• Roscoe Bartlett

• Tony Padula, Eric Dussaud, Hala Dajani, Peng Shen

• The Rice Inversion Project

• National Science Foundation

• Department of Energy - LACSI

24


