
Adaptation of SVL and TSFCore for
Interoperation

Anthony Padula

October, 2003

This work was done with the help of

Roscoe Bartlett (SNL)

Bart van Bloemen Waanders (SNL)

William W. Symes (Rice)

1

Problem OON packages express algorithms using common mathematicalconcepts.
Implementation of these concepts differ in both semantics and syntax. This
makes direct combination of OON packages impossible.

Solution Given sufficient semantical overlap, adapter classes can bewritten to cope
with syntactical differences. May then combine packages.

Objective of Project Identify structural features of OON libraries which influence
interoperability, considering both the programming efficiency and runtime effi-
ciency of adaptation.

Illustrative Example To solve transient optimal control problems, combine

Moocho optimization library based on TSFCore (Sandia)

TSOpt time–stepping simulator based on SVL (Rice)

2

Outline

• Adapting low–level data containers.

• Issues in adapting high–level types.

• The Example

3

Common Truth: Arrays

Examples of classes which serve as the encapsulation of an array of contiguous
data, but are all implemented in slightly different manners:

Package Array Class
SVL LocalDataContainer
TSFCore SubVector
TNT Array1D
C++ STL vector
OOQP OOQPVector

4

Common Truth: Accessing Data

Some methods of data access:

A. expose data pointers (e. g.SVL::LocalDataContainer,
TSFCore::SubVector)

B. indexing operator[] (e. g.stl::vector, TNT::Array1D)

C. complete encapsulation, but list of ’standard’ methods (e. g.OOQPVector).
A method for copying in/out is often provided .

Adaptation is possible between packages which use the same method, as well as
down the listA → B. Impossible to go up the list efficientlyB → A

5

Compatibility

SVL and TSFCore both use method A. They provide slightly different capabilities,
but have enough semantic overlap to adapt efficiently.

• TSFCore::SubVector y from SVL::LocalDataContainer x:

SubVector<Scalar> y;

y.initialize(go,sd? sd: x.getSize() - (fe-1),

x.getData()+(fe-1), 1);

Requires some pointer arithmetic, but no copying.

• SVL::LocalDataContainer from aTSFCore::SubVector: uses
LocalSubVector adapter = subclass of LDC.

6

template<class Scalar>

LocalSubVector: public LocalDataContainer {

public:

/** return size of local data container */

virtual int getSize() { return s->subDim(); }

/** return address of data array */

virtual Scalar * getData() {

return const_cast<Scalar *>(s->values());

}

/** virtual copy constructor */

SVL::DataContainer * clone() {

return new LocalSubVector<Scalar>(*s);

}

};

7

Composing Adapters

Low–level containers are encapsulated at a higher level byDataContainer in
SVL andVector in TSFCore, examples of the Composite pattern.

Operations on data are implemented bySVL::FunctionObject andTSFCore::RTOp
which are examples of the Visitor pattern. A visitor can passthrough the high–level
interface to gain access to the low–level containers.

Remaining Steps:

1. Adapt the visitors using the low–level data storage adapters

2. Adapt the composites using the visitor adapters

3. Combine tools written to the various interfaces to produce an application.

8

FORTOp

Extractor

RTOpT

FunctionObject

get_op_type_num_entries()
extract_op_state()
load_op_state()

get_reduct_op()

FORTOp()
apply_op()
get_op_type_num_entries()
extract_op_state()
load_op_state()

apply_op()

f

*1

Figure 1: Class diagram for FORTOp

9

Adaptation Issues

Several critical differences between the visitorsRTOp andFunctionObject:

• forms of parameter lists

• reduction handling

• pervasiveness of functions related to parallelism

10

Different Parameter Lists

The footprint for theRTOp::apply op method is

void apply_op(const int num_vecs
, const RTOpPack::SubVectorT<Scalar> sub_vecs[]
, const int num_targ_vecs
, const RTOpPack::MutableSubVectorT<Scalar>

targ_sub_vecs[]
, RTOp_ReductTarget reduct_obj) const;

The footprint for aBinaryFunctionObject::operator() method is

virtual void operator()
(LocalDataContainer<Scalar> &,
LocalDataContainer<Scalar> &);

11

Reductions

A reduction is an operation which takes one or more data containers as input and
produces a result of an arbitrary type as output.

The default assumptions are thatevery RTOp is a reduction andevery
FunctionObject is not. Further the typeRTOp ReductTarget is really a
void *, while SVL had no formal return type at all and simply used a templated
RetType in the interface.

Problem With a templatedRetType, impossible to dynamically cast a
FunctionObject to a UnaryFunctionObjectRedn without knowing
the return type apriori.

Thus, in the case of theFORTOp adapter, since the only type info
is void * , we’re stuck!

12

Solution

Add an abstract base class to SVL for the return type⇒ no need to template the
reduction interfaces. Then adaptation is possible.

class RetType {

public:

RetType() {}

virtual RetType & operator=(const RetType & r) = 0;

virtual RetType * clone() const = 0;

virtual void reinitialize() = 0;

virtual void write(SVLException & e) = 0;

virtual ostream & write(ostream & str) = 0;

};

13

This suggests a new baseReduction class:

class Reduction {
protected:

RetType & result;
public:

Reduction(RetType & res) : result(res) {}
virtual void setResult() { result.reinitialize();}
virtual void setResult(RetType & res) { result = res;}
virtual RetType & getResult() { return result; }
virtual RetType * createRetType() {
RetType * temp = result.clone();

temp->reinitialize();
return temp;

}
virtual void accumulateResult(RetType & res1) = 0;

};

14

Parallel Pervasiveness

RTOp base class contains methods to admit parallelism through anMPI-compatible
interface.

SVL intended to handle parallelism through subclassing and wrappers

RTOp example methods:

• void get op type num entries(int* num values,

int* num indexes, int* num chars) const;

• void extract op state(int num vals, Scalar val data[],

int num indexes ,RTOp index type index data[],

int num chars, RTOp char type char data[]) const;

15

• void get reduct type num entries(int* num values,

int* num indexes, int* num chars) const;

• void reduce reduct objs(RTOp ReductTarget in obj,

RTOp ReductTarget inout obj) const;

These methods make adaptation difficult when coming from a package lacking such
functionality in the base class. We must dynamically cast toa SVL subclass which
offers sufficient functionality.

16

Workaround for Parallel Pervasiveness

Existing infrastructure for remote classes andStreamable objects.

GivenStreamable FOs and RetTypes, make aSVLStream object which, in-
stead of dumping data to the network, buffered the data so we could implement the
needed functionality.

Thus, was created theStateExtractor. Pretends to be aSVLStream in order
to

• sort data into a double, char, and int buffer as things are fedin.

• provide counts on the current number of items in its buffers.

• copy buffers into arrays

• do these in reverse, in order to load a state instead of extracting one.

17

Example Application

Combine adapters to build an application

1. Define transient system of differential equationsc(dy
dt

, y, u) = 0 using TSFCore.

2. Convert constraintc(dy
dt

, y, u) = 0 to a least–squares function

F (u, yd) = f(y(u), u, yd) = ‖yd − y(u)‖2

using TSOpt.

3. Solve the problem using Moocho.

18

TransientNPDyanmics

LogProbTNLP

TransientNonlinearProblemFirstOrder

Dynamics

Stencil

TSOp
Operator

LeastSquaresFnclGN

Functional

Vector

NPSVLFunctional

NPFOUnconstrained

FunctionalEvaluation

NonlinearProblemFirstOrder

NLPTSFCoreNP

NLP

MoochoSolver

MoochoClient

<<description>>
The relationships
involved in the
Logistics Problem
example

Model

*

1

1

1

1

1
1

*

1

*

*
*

1

1 1
c(u)

*

1

11

Figure 2: Example application using several different packages

19

FORTOp

Extractor

RTOpT

FunctionObject

get_op_type_num_entries()
extract_op_state()
load_op_state()

get_reduct_op()

FORTOp()
apply_op()
get_op_type_num_entries()
extract_op_state()
load_op_state()

apply_op()

f

*1

Figure 3: Class diagram for FORTOp

20

SVLClient: f:Randomize d:TSFCoreVectorDC

fop:FORTOp

dv:SerialVector

lsv:LocalSubVector

eval(f)

new(f)

apply_op(fop, dv,...)
sub:=getSubVector()

apply_op(sub,...)

new(sub)

operator()(lsv)

Figure 4: Sequence of calls to apply a UFO to a TSFCore::Vector

21

RTOpUFO

UnaryFunctionObject

RTOpT

RTOpUFO()
operator()()

nv : integer
nt : integer
targ : ReductTarget

op

* 1
operator()()

Figure 5: Class diagram for RTOpFO

22

v:DCTSFCoreVector op:assign_scalardc:SeismicDataContainer

fo:RTOpUFO

ldc:SeismicLDC

sv:SubVectorT

TSFCoreClient:

apply_op(op,v,...)

new (op, nv, nvt)

eval(fo)

operator()(ldc)

d:=getData()

new (d)

apply_op(nv,sv,nvt,svt)

* ldc := get()

Figure 6: Sequence of calls to apply a RTOp to a SVL::DataContainer

23

