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1. The Acoustic Model of Reflection

Seismology
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Marine Acquisition
90%+ of all data
collected worldwide
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Data parameters: timet, source locationxs, and receiver locationxr, (vector)half
offseth = xr−xs

2
, scalar half offseth = |h|. Experiment =shot, single experiment

data =shot record.
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Typical Marine Record
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Shot record, Gulf of Mexico (thanks: Exxon)

5



Mechanical Characteristics of Sedimentary Rock
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Well logs from North Sea borehole. Top curve: compressionalwave velocity (m/s);
middle curve: density (kg/m3); bottom curve: shear wave velocity (m/s). (thanks:
Mobil R&D, Viking Graben)
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Constant Density Acoustic Model

acoustic potentialu(x, t) related to pressurep and particle velocityv by

p =
∂u

∂t
, v =

1

ρ
∇u

Second order wave equation for potential
(

1

c(x)2
∂2

∂t2
−∇2

)

u(x, t) = w(t)δ(x − xs)

plus initial, boundary conditions. RHS models localized energy source, “no low
frequencies” -many wavelengthsbetween source and target.Useful idealization:
w(t) = δ(t).

Forward map:F [c] ≡ p|Y , whereY = {(t,xr,xs) : 0 ≤ t ≤ T, ...} is acquisition
manifold.
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2. Linearization
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Nonlinear inverse scattering

Inverse problem: givend ∈ L2(Y ) find c ∈ C s. t.F [c] ' d.

Many difficulties:

• What is C?

• What is'?

• If ' means “close inL2”, could pose asleast squaresproblem: findc ∈ C to
minimize‖F [c] − d‖2.

• Results of numerical experimentation mixed.

• Theoretical foundation inadequate - few results re relevant properties ofF .
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(Partly) linearized inverse scattering

Formally,F [v(1 + r)] ' F [v] +F [v]r whereF [·] is linearized forward mapdefined
by

(

1

v(x)2
∂2

∂t2
−∇2

)

δu(x, t) = 2
r(x)

v2(x)

∂2u

∂t2
(x, t)

F [v]r = δp|Y

• basis of most practical data processing procedures.

• Beylkin (1985) and many others: good understanding of thelinear mapr 7→

F [v]r and the associatedlinear inverse problem forr givenv;

• v is no more known thanr, inverse problem for[v, r] still nonlinear!
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Linearization error

Critical question: If there is any justiceF [v]r = directional derivativeDF [v][vr]

of F - but in what sense? Physical intuition, numerical simulation, and not nearly
enough mathematics: linearization error

F [v(1 + r)] − (F [v] + F [v]r)

• smallwhenv smooth,r rough or oscillatory on wavelength scale - well-separated
scales

• largewhenv not smooth and/orr not oscillatory - poorly separated scales

2D finite difference simulation: shot gathers with typical marine seismic geometry.
Smooth (linear)v(x, z), oscillatory (random)r(x, z) depending only onz(“layered
medium”). Source waveletw(t) = bandpass filter.
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Left: Total velocityc = v(1 + r) with smooth (linear) backgroundv(x, z), oscilla-
tory (random)r(x, z). Std dev ofr = 5%.
Right: Simulated seismic response (F [v(1 + r)]), wavelet = bandpass filter 4-10-
30-45 Hz. Simulator is (2,4) finite difference scheme.
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Model in previous slide as smooth background (left,v(x, z)) plus rough perturba-
tion (right,r(x, z)).
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Left: Simulated seismic response of smooth model (F [v]),
Right: Simulated linearized response, rough perturbationof smooth model (F [v]r)
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Model in previous slide as rough background (left,v(x, z)) plus smooth 5% pertur-
bation (r(x, z)).
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Left: Simulated seismic response of rough model (F [v]),
Right: Simulated linearized response, smooth perturbation of rough model (F [v]r)
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Left: linearization error (F [v(1+ r)]−F [v]−F [v]r), rough perturbation of smooth
background
Right: linearization error, smooth perturbation of rough background (plotted with
same grey scale).
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Implications

• Some geologies have well-separated scales - cf. sonic logs -linearization-based
methods work well there. Other geologies do not - expect trouble!

• v smooth,r oscillatory⇒ F [v]r approximatesprimary reflection = result of
wave interacting with material heterogeneity only once (single scattering); error
consists ofmultiple reflections, which are “not too large” ifr is “not too big”,
and sometimes can be suppressed.

• v nonsmooth,r smooth⇒ error consists oftime shiftsin waves which are very
large perturbations as waves are oscillatory.

No mathematical results are known which justify/explain these observations in any
rigorous way, except in 1D.
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3. Why Least Squares doesn’t work

19



minc ‖F [c] − d‖2

• Problems are so large that iterative methods (variants of Newton) are only option
(3D: millions of unknowns, billions of equations)⇒ can only find stationary
points;

• For any choice of norm in domain,DF has very poor condition - very large,
very small singular values (cf. examples);

• Poor approximation ofF by linearization⇒ poor approximation of least squares
function by quadratic;

• Observed behaviour isnonconvex⇒ many stationary points exist with large
residuals.

• Same remarks apply (and are a bit easier to justify) forpartially linearized least
squaresminv,r ‖F [v]r − (d − F [v])‖2.
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The good news...

We actually know something aboutF [v], besides its representation whenw(t) =
δ(t):

F [v]r(t,xr,xs) =
∂2

∂t2

∫

dx

∫

dτ G(x,xr, t − τ )G(x,xs, τ )
2r(x)

v2(x)

• F [v] : E ′(X) → D′(Y ) (X = Earth) is aFourier Integral Operatorassociated to
acanonical relation(Lagrangian submanifold ofT ∗(X × Y )) (Rakesh, 1988);

• when canonical relation is graph, representation asGeneralized Radon Trans-
form (Beylkin, 1985)⇒ many practical computations;

• when canonical relation is a graph (Beylkin 1985, Rakesh 1988) and sometimes
even when it isn’t (Smit, Verdel, tenKroode 1998, Nolan 1997, Stolk 2000),
F [v]∗F [v] is pseudodifferential operator⇒ construction ofleft parametrixor
approximate microlocal inverse.
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minr ‖F [v]r − (d −F [v])‖2, given v
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Approximate linear least squares solution après Beylkin (“GRT inversion”), Mis-
sissippi Canyon, Gulf of Mexico, 2D survey (750 MB, 500 shots). Thanks: Exxon.
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4. Extensions
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Extended models

Extensionof F [v] (akaextended model): manifoldX̄ and mapsχ : E ′(X) → E ′(X̄),
F̄ [v] : E ′(X̄) → D′(Y ) so that

F̄ [v]
E ′(X̄) → D′(Y )

χ ↑ ↑ id
E ′(X) → D′(Y )

F [v]

commutes, i.e.

F̄ [v]χr = F [v]r

Extension is “invertible” iffF̄ [v] has aright parametrixḠ[v], i.e. I − F̄ [v]Ḡ[v]is
smoothing, or more generally if̄F [v]Ḡ[v] is pseudodifferential (“inverse except for
wrong amplitudes”). Also require existence of a left inverseη for χ: ηχ = id.

NB: The trivial extension -X̄ = X, F̄ = F - is virtually never invertible.
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Grand Example

The Standard Extended Model:

• X̄ = X × H, H = offset range.

• χr(x,h) = r(x) (so r̄ ∈ range ofχ ⇔ plots of r̄(·, ·, z,h) (“image gathers”)
appearflat)

•

F̄ [v]r̄(xr,xs, t) =
∂2

∂t2

∫

dx

∫

dτ G(x,xr, t − τ )G(x,xs, τ )
2r̄(x,h)

v2(x)

(recallh = (xr − xs)/2)

NB: F̄ is “block diagonal” - family of operators (FIOs) parametrized byh.
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Reformulation of inverse problem

Givend, find v so thatḠ[v]d ∈ the range ofχ.

Claim: if v is so chosen, then[v, r] solves partially linearized inverse problem with
r = ηḠ[v]d.

Proof: Hypothesis means

Ḡ[v]d = χr

for somer (whence necessarilyr = ηḠ[v]d), so

d ' F̄ [v]Ḡ[v]d = F̄ [v]χr = F [v]r

Q. E. D.
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Application: Migration Velocity Analysis

Membership in range ofχ is visually evident

⇒ industrial practice: adjust parameters ofv by hand(!) until visual characteristics
of R(χ) satisfied - “flatten the image gathers”.

For the Standard Extended Model, this means: untilḠ[v]d is independent ofh.

Practically: insist only that̄F [v]Ḡ[v] be pseudodifferential, so adjustv until Ḡ[v]d

is “smooth” inh.
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Left: shot record (d) from North Sea survey (thanks: Shell Research), lightly pre-
processed.
Right: restriction ofḠ[v]dobs to x, y = const (function of depth, offset): shows rel.
sm’ness inh (offset) for properly chosenv.
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5. Annihilators

29



Automating the reformulation

SupposeW : E ′(X̄) → D′(Z) annihilates range ofχ:

χ W
E ′(X) → E ′(X̄) → D′(Z) → 0

and moreoverW is bounded onL2(X̄). Then

J [v; d] =
1

2
‖WḠ[v]d‖2

minimizedwhen[v, ηḠ[v]d] solves partially linearized inverse problem.

Construction ofannihilatorof R(F [v]) (Guillemin, 1985 - cf deHoop’s talks):

d ∈ R(F [v]) ⇔ Ḡ[v]d ∈ R(χ) ⇔ WḠ[v]d = 0
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Annihilators, annihilators everywhere...

For Standard Extended Model, several popular choices:

•

W = (I − ∆)−
1

2∇h

(“differential semblance” - WWS, 1986)

•

W = I −
1

|H|

∫

dh

(“stack power” - Toldi, 1985)

•

W = I − χF [v]†F̄ [v]

⇒ minimizingJ [v, d] equivalent to least squares.
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But not many are good for much...

Sinceproblem is huge, only W giving rise to differentiablev 7→ J [v, d] are useful -
must be able to use Newton!!! Once again, idealizew(t) = δ(t).

Theorem (Stolk & WWS, 2003):v 7→ J [v, d] smooth⇔ W pseudodifferential.

i.e. onlydifferential semblancegives rise to smooth optimization problem, regard-
less of source bandwidth.

NB: Least squares embedded in larger family of optimizationformulations, some
(others) of which are tractable.

Numerical evidence using synthetic and field data: WWS et al., Chauris & Noble
2001, Mulder & tenKroode 2002. deHoop et al. 2004.
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6. Etc.
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Invertible Extensions

• Beylkin (1985), Rakesh (1988): if‖∇2v‖C0 “not too big” (no caustics appear),
then the Standard Extended Model is invertible.

• Nolan & WWS 1997, Stolk & WWS 2004: if‖∇2v‖C0 is too big (caustics,
multipathing), Standard Extended Model isnot invertible! Not in any version -
common offset, common source, common scattering angle,...

• Stolk & deHoop 2001:Claerbout extensionis invertible under much weaker
condition (absence of turning rays).

• WWS, Stolk, Biondi 2003: generalized Claerbout extension to accommodate
turning rays.
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Beyond Born

Nonlinear effects not included in linearized model:multiple reflections. Conven-
tional approach: treat ascoherent noise, attempt to eliminate - active area of re-
search going back 40+ years, with recent important developments.

Why not model this “noise”?

Proposal:nonlinear extensionswith F [v]r replaced byF [c]. Create annihilators in
same way (now also nonlinear), optimize differential semblance.

Nonlinear analog of Standard Extended Model appears to beinvertible - in fact
extended nonlinear inverse problem isunderdetermined.

Open problems: no theory. Also must determinew(t) (Delprat & Lailly 2003).
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And so on...

• Elasticity: theory of Born inversion at smooth background in good shape (Beylkin
& Burridge 1988, deHoop & Bleistein 1997). Theory of extensions, annihilators,
differential semblance partially complete (Brandsberg-Dahl et al 2003).

• Anisotropy - see deHoop’s talk, this meeting.

• Anelasticity - in the sedimentary section,Q = 100 − 1000, lower in gassy sedi-
ments and near surface. No results.

• Source determination - actually always an issue. Some success in casting as an
inverse problem - Minkoff & WWS 1997, Routh et al SEG 2003.

• ...
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Conclusion

• Least error formulation of (waveform) reflection seismic inverse problemin-
tractable- very irregular with large residual stationary points⇒ no influence on
practice.

• Linearizedextended modelsprovide framework for both (industry standard) in-
terpretive velocity analysis and automated techniques based on construction of
range annihilators.

• Only (pseudo)differential annihilatorsyield smooth objective functions.

• Not all extensions suitable for use in “complex structure” (strong refraction).

• May be able to account for more nonlinearity (multiple reflections) via nonlinear
extensions.

37



Thanks to...

National Science Foundation
Department of Energy

Sponsors of The Rice Inversion Project
Veritas, Schlumberger, and Seismic Consultants for graphics

Exxon, Mobil, and Shell for data
The Organizers, for inviting me.

http://www.trip.caam.rice.edu

38



7. Selected References

39



Cohen, J. K. and Bleistein, N.: An inverse method for determining small variations
in propagation speed,SIAM J. Appl. Math. 32, 1977, pp. 784-799.

Rakesh: A linearized inverse problem for the wave equation,Comm. PDE 13, 1988,
pp. 573-601.

Beylkin, G.: Imaging of discontinuities in the inverse scattering problem by inver-
sion of a causal generalized Radon transform,J. Math. Phys 26, 1985, pp. 99-108.

Ten Kroode, A. P. E., Smit, D. J., and Verdel, A. R.: A microlocal analysis of
migrationWave Motion 28, 1998, pp. 149-172.

40



deHoop, M. and Bleistein, N.: Generalized Radon Transform inversions for reflec-
tivity in anisotropic elastic media,Inverse Problems 16, 1998, pp. 669-690.

Brandsberg-Dahl, S., De Hoop, M., and Ursin, B.: Focussing in dip and AVA
compensation on scattering angle/azimuth common image gathers,Geophysics 68,
2003, pp. 232-254.

Stolk, C. and Symes, W. W.: Smooth objective functionals forseismic velocity
inversion,Inverse Problems 19, 2003, pp. 73-89.

Stolk, C. and Symes, W. W.: Kinematic artifacts in prestack depth migration,Geo-
physics 68, May-June 2004.

Minkoff, S. E. and Symes, W. W.: Full waveform inversion of marine reflection
data in the plane wave domain,Geophysics 62, 1997, pp. 540-553.

41



Grau, G. and Versteeg, R.:The Marmousi Experience: Practical Aspects of Inver-
sion, IFP-Technip, Paris, 1991.

Lions, J. L.:Nonhomogeneous Boundary Value Problems and Applications, Springer
Verlag, Berlin, 1972.
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