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1. The Acoustic Model of Reflection
Seismology




Marine Acquisition
90%-+ of all data
collected worldwide

Seismic Data
Acquisition
in the Ocean

Tail Buoy

Seismic Vessel

{Recarding Instruments On Board)

Air Gun

(Energy Source)

Hydrophones

Sound Waves

(Energy)

.. —— Sandstone
. —— Siltstone

Limestone

— Qil Reservoir

Salt Dome

= Shale




Data parameters: time source locatiorx,, and receiver locatior,, (vector)half
offseth = *7==, scalar half offset. = |h|. Experiment =shot single experiment
data =shot record
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Typical Marine Record
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Shot record, Gulf of Mexico (thanks: Exxon)




Mechanical Characteristics of Sedimentary Rock
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Well logs from North Sea borehole. Top curve: compressio@ake velocity (m/s);
middle curve: density (kgf?); bottom curve: shear wave velocity (m/s). (thanks:
Mobil R&D, Viking Graben)




Constant Density Acoustic Model

acoustic potentiali(x, t) related to pressureand particle velocitw by

ou 1
p—a, V—;VU

Second order wave equation for potential

(s~ ) ) = it

plus initial, boundary conditions. RHS models localize@rgry source, “no low
frequencies” - many wavelengthBetween source and targdtiseful idealization:

w(t) = 5(t).

Forward map: F|c| = ply, whereY = {(t,x,,x,) : 0 <t < T, ...} is acquisition
manifold




2. Linearization




Nonlinear inverse scattering

Inverse problem: giverd € L*(Y) findc € C's. t. Flc| ~ d.

Many difficulties:

e What is C?
e \What is~?

o If ~ means “close in.?”, could pose aseast squareproblem: findc € C to
minimize ||F|c| — d||*.

e Results of numerical experimentation mixed.

e Theoretical foundation inadequate - few results re relepesperties ofF.




(Partly) linearized inverse scattering

Formally, Flv(1 +r)| ~ Flv] + F|v|r whereF[-] is linearized forward majplefined
by

1 0? 92 Sulx f) — T(X)@%X
(U(X)20t2 V)5 X1 =2 s o )

Flv|r = oply

e basis of most practical data processing procedures.

e Beylkin (1985) and many others: good understanding oflithear mapr —
F|v]r and the associatdohear inverse problem for givenw;

e v is no more known than, inverse problem fopv, r| still nonlinear!
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Linearization error

Critical question: If there is any justicE|v|r = directional derivativeD F[v||vr]
of F - but in what sense? Physical intuition, numerical simalatand not nearly
enough mathematics: linearization error

Flo(l+ 1) — (Flv] + Flvlr)

e smallwhenv smooth; rough or oscillatory on wavelength scale - well-separated
scales

¢ large whenwv not smooth and/or not oscillatory - poorly separated scales

2D finite difference simulation: shot gathers with typicanne seismic geometry.
Smooth (lineary(x, z), oscillatory (randomj(zx, z) depending only oz (“layered
medium”). Source waveleb(t) = bandpass filter.
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Left: Total velocityc = v(1 + r) with smooth (linear) background, =), oscilla-
tory (random)r(zx, z). Std dev ofr = 5%.

Right: Simulated seismic responsg[((1 + r)|), wavelet = bandpass filter 4-10-
30-45 Hz. Simulator is (2,4) finite difference scheme.
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Model in previous slide as smooth background (left;, z)) plus rough perturba-
tion (right, r(z, 2)).
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Left: Simulated seismic response of smooth modéh(),
Right: Simulated linearized response, rough perturbaif@mooth model £'[v]r)
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Model in previous slide as rough background (lefty, z)) plus smooth 5% pertur-
bation {(z, 2)).
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Left: Simulated seismic response of rough mocgh(),
Right: Simulated linearized response, smooth perturbatisough model '[v]r)
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X_r (km)

Left: linearization error £lv(1+1)] — F|v] — F'|v]r), rough perturbation of smooth

background
Right: linearization error, smooth perturbation of rougitkground (plotted with

same grey scale).
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Implications

e Some geologies have well-separated scales - cf. sonic logsarization-based
methods work well there. Other geologies do not - expectiledu

e v smooth,r oscillatory=- F'|v]r approximategprimary reflection = result of
wave interacting with material heterogeneity only oncadi® scattering); error
consists oimultiple reflections, which are “not too large” if- is “not too big”,
and sometimes can be suppressed.

e v nonsmoothy smooth=- error consists ofime shiftsin waves which are very
large perturbations as waves are oscillatory.

No mathematical results are known which justify/explagsthobservations in any
rigorous way, except in 1D.
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3. Why Least Squares doesn’t work
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mine || F[d — d||?

e Problems are so large that iterative methods (variants aidie are only option
(3D: millions of unknowns, billions of equations} can only find stationary
points;

e For any choice of norm in domaid)F has very poor condition - very large,
very small singular values (cf. examples);

e Poor approximation af by linearization=- poor approximation of least squares
function by quadratic;

e Observed behaviour isonconvex=- many stationary points exist with large
residuals.

e Same remarks apply (and are a bit easier to justifyphatially linearized least
squaresnin, . || F[v]r — (d — Fv])||.
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The good news...

We actually know something aboitjv], besides its representation wheit) =
o(t):

2r(x)

vi(x)

2
Flolr(t,x,,x,) = %/ dx / dr G(x,x,,t — T)G(X, X4, T)

e Fv] : £'(X) — D'(Y) (X = Earth) is aFourier Integral Operatorassociated to
acanonical relation(Lagrangian submanifold af*(X x Y')) (Rakesh, 1988);

e when canonical relation is graph, representatioiisaseralized Radon Trans-
form (Beylkin, 1985)=- many practical computations;

e When canonical relation is a graph (Beylkin 1985, Rakesl8188d sometimes
even when it isn’t (Smit, Verdel, tenKroode 1998, Nolan 198tolk 2000),
Fv]*Fv] is pseudodifferential operatoe- construction ofleft parametrixor
approximate microlocal inverse.
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ming || F'lv]r — (d — f[v])”z, given v
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Approximate linear least squares solutionegpBeylkin (“GRT inversion”), Mis-
sissippi Canyon, Gulf of Mexico, 2D survey (750 MB, 500 shof$hanks: Exxon.
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4. Extensions
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Extended models

Extensiorof F'[v] (akaextended modglmanifold X and mapsg : £'(X) — &'(X),
Flv]: &(X) — D'(Y) so that
Flv]
&(X) — DY)
x 1 T i
&(X) — DY)

commutes, i.e.

Flv|xr = Fvlr

Extension is “invertible” iff F'[v] has aright parametrixG[v], i.e. I — F[v|G[v]is
smoothing, or more generally f[v|G|v] is pseudodifferential (“inverse except for
wrong amplitudes”). Also require existence of a left inedor y: ny = id.

NB: The trivial extension X = X, F' = F' - is virtually never invertible.
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Grand Example
The Standard Extended Model:

e X = X x H, H = offset range.

e x7(x,h) = r(x) (sor € range ofy < plots of (-, -, 2z, h) (“image gathers”)
appeaifflat)
L
_ 27 (x, h)
Flo|r(x,, X, t) / dx / dr G(x,x,,t — 7)G(X, X5, T) o2(x)

(recallh = (x, — x4) /2)

NB: I is “block diagonal” - family of operators (FIOs) paramesizbyh.
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Reformulation of inverse problem

Givend, find v so thatG[v]d € the range of.

Claim: if v is so chosen, thejm, r| solves partially linearized inverse problem with
r = nGlv]d.

Proof. Hypothesis means

Glvld = xr

for somer (whence necessarily= nG|v]d), SO

Q. E.D.
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Application: Migration Velocity Analysis

Membership in range of is visually evident

= Industrial practice: adjust parametersydfy hand(!) until visual characteristics
of R(x) satisfied - “flatten the image gathers”.

For the Standard Extended Model, this means: writild is independent oh.

Practically: insist only thaf'[v]G[v] be pseudodifferential, so adjustuntil G[v]d
IS “smooth” inh.
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Left: shot recordd) from North Sea survey (thanks: Shell Research), lightx pr
processed.

Right: restriction ofG[v]d°™ to x, y = const (function of depth, offset): shows rel.
sm’ness im (offset) for properly chosen.
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5. Annihilators
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Automating the reformulation

SupposdV : £'(X) — D'(Z) annihilates range of:

X W
E'X) — &X) — D(Z) — 0

and moreovefV is bounded ord.?(X). Then
1
Tosd) = 5| W Glold]?
minimizedwhen[v, nG[v]d] solves partially linearized inverse problem.

Construction ofannihilator of R(F'[v]) (Guillemin, 1985 - cf deHoop’s talks):

d € R(Fv]) < Gld € R(x) & WG[v|d =0
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Annihilators, annihilators everywhere...

For Standard Extended Model, several popular choices:

W= (I —A)2Vy,
(“differential semblance” - WWS, 1986)

1
W=1—-— | dh
|H|
(“stack power” - Toldi, 1985)

W =1—xF[]'Fu]

= minimizing J|v, d| equivalent to least squares.
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But not many are good for much...

Sinceproblem is hugeonly W giving rise to differentiable — J[v, d] are useful -
must be able to use Newton!!! Once again, idealizée) = 6(¢).

Theorem (Stolk & WWS, 2003):v — J[v, d] smooth< W pseudodifferential.

l.e. onlydifferential semblancgives rise to smooth optimization problem, regard-
less of source bandwidth.

NB: Least squares embedded in larger family of optimizat@mulations, some
(others) of which are tractable.

Numerical evidence using synthetic and field data: WWS etCddauris & Noble
2001, Mulder & tenKroode 2002. deHoop et al. 2004.
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6. EtcC.
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Invertible Extensions

e Beylkin (1985), Rakesh (1988): jfV?v||0 “not too big” (no caustics appear),
then the Standard Extended Model is invertible.

e Nolan & WWS 1997, Stolk & WWS 2004: if|V?v||-0 is too big (caustics,
multipathing), Standard Extended Modehist invertible! Not in any version -
common offset, common source, common scattering angle,...

e Stolk & deHoop 2001:Claerbout extensioms invertible under much weaker
condition (absence of turning rays).

e WWS, Stolk, Biondi 2003: generalized Claerbout extensmmad¢commodate
turning rays.
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Beyond Born

Nonlinear effects not included in linearized modaiultiple reflections Conven-
tional approach: treat aoherent noiseattempt to eliminate - active area of re-
search going back 40+ years, with recent important devetopsn

Why not model this “noise”?

Proposal:nonlinear extensionwith F'lv|r replaced byF|[c|. Create annihilators in
same way (now also nonlinear), optimize differential seanbeé.

Nonlinear analog of Standard Extended Model appears tonmtible - in fact
extended nonlinear inverse problenuisderdetermined

Open problems: no theory. Also must determiine) (Delprat & Lailly 2003).
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And so on...

e Elasticity: theory of Born inversion at smooth backgroumdood shape (Beylkin
& Burridge 1988, deHoop & Bleistein 1997). Theory of ext&ms, annihilators,
differential semblance partially complete (BrandsbeagiDet al 2003).

e Anisotropy - see deHoop’s talk, this meeting.

e Anelasticity - in the sedimentary sectia,= 100 — 1000, lower in gassy sedi-
ments and near surface. No results.

e Source determination - actually always an issue. Some ssi@cge&asting as an
iInverse problem - Minkoff & WWS 1997, Routh et al SEG 2003.
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Conclusion

e Least error formulation of (waveform) reflection seismigarse problemn-
tractable- very irregular with large residual stationary poiatsno influence on
practice

e Linearizedextended modelsrovide framework for both (industry standard) in-
terpretive velocity analysis and automated techniquesdas construction of
range annihilators

e Only (pseudo)differential annihilatorgield smooth objective functions.
e Not all extensions suitable for use in “complex structurt@ng refraction).

e May be able to account for more nonlinearity (multiple reil@ts) via nonlinear
extensions.
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