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e Seismic waves are reflected where the medium varies discanisly.

e From the recorded reflections that can be observed in the tagroblem is
reconstruct the discontinuities.

e The simplest theory to explain the reflections is the linemnétant density)
acoustics model: the significant property of the Earth isthee speed.




The scale gap

e Seismic imaging methods are typically based on the smitththe seismic
model into a reflecting part (short-scale) and a propaggarg(long-scale).

e This scale separation can be established theoreticalljh®masis of the Born
approximation (Lailly, 1983). In practice,

— Long scale fluctuations (km for sediments) of the velocity a¥solved via
velocity analysis

— Short scale variations (10’s m) of the velocity (i.e. theeaetivity) are re-
solved viamigration or linearized inversion.

e The traditional seismic imaging techniquesrut appear to estimate the inter-
mediate scale wavelengths 60m - 300m).




What can we get from reflection seismology?

According to Claerbout (IEl, page 47) and Tarantola (1988)smic data dmot
contain reliable information on the intermediate scalegsbdcity.
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Note: The above conclusion is purely empirical. No theoretiadib has been set
forth to back it up.




Proposed work

¢ \We think we can provide a new way to look at this familiar "fact

e However, because the seismic problem is nonlinear - theseamponents of
the velocity, one would expect “energy” or (lack of) "infoatnon” to cascade
between scales.

e Try to understand the influence of the medium scale on théutsso of the long
(background velocity) and short (image) scales.

e Take this intermediate scale velocity into account and ttea arandom process
precisely to model the associated uncertainty (and itsemprences).

e Goal: Estimate the background velocity bymbiningideas on time reversal and
Imaging in randomly inhomogeneous media set forth by BorBapanicolaou
et al., and the velocity estimation methods of differergeblance type.
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The forward map

e Constant density linear acoustics model: the mechanicggsties of the Earth
are represented by the velocity

e Linearization: splitt = ¢y + dc where:

—¢q IS the smooth background velocity (the macro-model medium)

—oc Is a first-order perturbation which contains the high-fieaey content of
the wave speed (define theflectivity by r ~ dc/cy).

e High-frequency asymptotics.
The reflection data is predicted by the linearized forwarg fia]
(co,7) — Fleo)r

N.B. the forward mapF'|cy| is a linear operator acting on the reflectivitand
parametrized by,. The dependence af is (highly) nonlinear!




The seismic inverse problem

e The seismic inverse problem problem can be stated as fallgiwven observed
seismic datal, determine:; andr so thatF[cy|r ~ d.

e Caveat as stated, this inverse problemnsgractable e.g. the data fitting formu-
lation via least-squares requires global methods suchradated annealing.

e Solution: decouple the problem into two steps.

1. Assume;, known; then try to reconstruct the reflectivitythis ismigration).
In this case, the resulting data formulation is a lineartlsgsiares, hence
“easy” to solve.

2. Use the redundancy in the data; we hdve (z,, v, 7., y,,t) € R’ andr =
r(x,y,2) € R3, so the data can be partitioned irtd subsets (calletins),
and each of these subsets may be used for an independendgtracoan of
the reflectivity (basis fovelocity analysisi.e. for reconstructingy).




The convolutional model (1/2)

e Assume a laterally homogeneous medium,d.e. c(z).

—Each data bin is parametrized by off$et= (zs — x,,ys — ¥,,0). There-
fore, independent reconstructions of the reflectivitsre regarded as offset
dependent, i.ex = r(z, h).

e In practice, the following time-depth conversion is used:

“ dz
0 /0 co(z) = Co( 0), r 7“( 05 )

IS the vertical (zero-offset) two-way travel time.

e Denote byT'(ty, k) the two-way travel time function corresponding to defih
and offseth and byTj(¢, h) the inverse function, i.e.

T (To(t,h),h) =t, Ty (T(to, k), h) = t,
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The convolutional model (2/2)

e With these conventions, the forward modeling operator ysn(é&s, 1999)
d(t,h) = f(t) % r(To(t, h), h) = Fylcolr(t, h),
e Ilgnore convolution (assume perfect source signature detaon, i.e. f ~ 9).
e Optimum choice of reflectivity for each offseh:
r(to, h) = d(T(ty, h), h) = Gylcold(ty, h)

HereGj[c] is the inverse of},|cy| (obtained by an inverse change of variables).
Note that it produces which depends (artificially) on!

e Note: for more complex modelg;, is an asymptotic inverse tg,, i.e.
Ghleo) = Fy, eol ~ (Fyilcol Fuleo]) ™ Fyleo] ~ Fyleq).

The proof involves showing that; F}, is pseudodifferential. The aggregate op-
eratorGG performs the so-callechigrationof the seismic data.
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The semblance principle

e Semblance principle if the background model, is “right”, then all ther(h)’s
should be thesame or at least similar (there is only one Earth!).

e Given an operatoll measuring semblance, thelocity analysigroblem can
be cast as an optimization problem: given datdetermine:; so as to optimize

Wr such thatr = G|cgld (i.e. F|colr ~ d)

e Specialization to layered acoustics modé{» must vanish whenm is indepen-
dent of offseth. Therefore, we take

W = 8/0h.
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Differential semblance optimization

e Formulation via differential semblance (Gockenbach, 1894 Song, 1994).

ngin Jco| = %||HWG[co]d||2

0
Here H is a smoothing pseudodifferential operator designed tp kire spec-
trum of the functional output comparable to that of the data.

e Remark: if ¢ is correct WG|cy| annihilateghe data.

e Many theoretical results on DSO (Symes, 1999, Stolk & Syi2683, Stolk,
2002): e.g. in the layered medium case, all stationary pahthe above objec-
tive are global minimizers (Symes, 1999).

¢ Also, there have been many numerical implementations of DisS@aldata sets
to support these results (Chauris, 2000, Chauris & Nobl@10
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Time reversed acoustics

¢ In time-reversal experiments, a signal emitted by a loedligource is recorded
by an array of transducers. It is then re-emitted into theiomdeversed in
time, i.e. the tail of the signal is sent back first.

e Because of the time-reversability of the wave equation, dhek-propagated
signal retraces its path backwards and refocuses apprteiynreear the source
(since the array is limited in size).

e Time reversal has two striking propertiesrandomlyinhomogeneous media:

—the presence of inhomogeneities in the medium improvesefioeusing res-
olution: this is thesuper-resolutioreffect.

—the refocused signal does not depend on the realizatior oattdom medium:
It Is self-averagindi.e. deterministic).
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Three scale asymptotics

Thesettingis as follows: single scattering approximation, 3-scalggsotics:

e “Deterministic” reflectors are structures on wavelengtalsa (corresponding
to the short-scale component of velocity).

e Propagation distancé is also the scale of the background velocity “macro-
model” (the component which may be estimated via VA).

e The intermediate scale velocity is assumedatodomly fluctuat®n the scalé.

Asymptotic assumption high-frequencyegimel < [ <« L, I.e.
e WWaves propagate over many correlation lengthsséipathingis significant.

e random fluctuations are slowly varying on the wavelengtlesca. the geomet-
rical optics approximation is appropriate.
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Setup for “imaging” a point source target (Borcea et al, 2003
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Modeling of the point source example (1/3)

e Wave propagation modeled by (stochastic) acoustic wavatenu Note that
the right-hand-side (the source)j&x, t) = f(t)d(x —y).

e The data measured at receiwgris given by the time convolution

3, 1) = ()1 Gl ya ) (1) = 5 [ Fl)Gloy.wle e

whereG solves the Helmholtz equation

AG(x,y,w) + n*(x)G(x, y,w) = —d(x —y)
lim r (8@/6’7“ — zkn@) =0, r=|x—-yl.

Herek = w/cy is the wavenumber; is the reference speed,= ¢y/c(x) is the
randomindex of refraction, and(x) is therandompropagation speed.
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The scattering regime

We assume that the refraction index is randomly fluctuatimguithe (constant)
background velocity on the scale

n‘(x)=1+opu (?)
where

e [ isthe correlation length, i.e. the scale at which the mediuctuates.

e 0 < 1 (weak fluctuations - waves scattered mostly in the direatiopropaga-
tion).

e /1 IS a stationary, isotropic random field with megarix)) = 0, and covariance

R(x) = R(|x]) = (u(x' +x)u(x)).
which decays ato so that there are no long range correlations of the fluctngtio
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Modeling of the point source example (2/3)

e Define the operataF’ mapping the sourceto datad: F'g = d.
e Abusing notation, the least-squares solution is

g~ (F*F)'F*d ~ F*d.
e To compute the adjoint, start with the definition

(Fd,g) = (d, Fyg) =

¢ \We obtain the so-calleploint spread function

F*d = FTR der,— *thr,y 1)

Note: adjoint = time reversal + backpropagatlon!
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Modeling of an active target (3/3)

e Assuming that the source is real, i.e.

AN

=7t = [l =fl-w),

time reversal iquivalentto complex conjugation in frequency domain:

1) = (1) 1 Gy, ) (=0) = o [ Flw) Gy e o

e Therefore, we obtain:

N
CTR(yS ) = ) d(x,, —t) % G(x,, y° 1)
1
2T
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Refocusing resolution

The TR point-spread function is evaluated at éh@ct rangen = 0 and at the
arrival time ¢ = 0:

¢ In homogeneousnedia, the (deterministic) cross-range resolution cambe/s
to be ;L /a. Clearly, thelarger the physical aperture of the array, thdetter
the resolution.

e Amazingly, ininhomogeneous media, the cross-range résolis A\ /a., where
a, > a IS theeffective aperturef the array.

N.B. A certain number of approximations and calculations havsetmade to ob-
tain, in each case, explicit formula that yield these resmiuestimates.

21



Super-resolution in iInhomogeneous media

Forward propagation Time-reversed fields

Intuitive explanation: because afultipathing waves that move away from the
array get scattered onto it by the inhomogenettethe refocusing is much tighter
than in homogeneous media \¢L/a.), a. is theeffective aperturef the array.
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Self-averaging property

The super-resolution phenomenon happene$sentiallyevery realization of the
random medium! The time-reversed backpropagated fiekklisaveraging.e.
deterministic). In the limi{ /L — 0, we have:

< (FTR(yS, t))2> ~ <FTR(yS, t>>2
Thus (thereby using Chebyshev inequality)
<(FTR<y57t) . <FTR<y57t)>)2>

Py 6) = (07 0) [ > 0} < 5 ~ 0

That Is:
[Mi(y5 1) = (T (y”, 1))

The refocused field istatistically stablgi.e. it doesnot depend on the particular
realization of the random medium.
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The moment formula

e Because of the self-averaging property, the product ofoem@reen’s functions
In the point spread functional may be replaced by its expecta

e The stochastic analysis yields the so-calieoiment formula

kage?

<G(XT7 y,w)@(xr,ys, w)> ~ @O(XM Y, W>GO(XT7 ysaw)e_ 2L

Note that all of the statistics of the medium are confined tmgle parameter,
the effective aperture, (the super-resolution arises from the Gaussian factor).

e Key to self-averaging is theear cancellatioof the random phases. Heuristi-

cally, G ~ Aeilkr+9) and since the TR functional contain&’ (nearbypaths),
the random phasesalmost cancel.
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Application to seismic imaging
e Setting: three scale asymptotits« [ < L.

e With the Born approximation, the scattered field measuredrateiver,. is

AN

AN AN

)= [ 1)@y 000 v.idy| e

o 2T

Note that the above Green'’s functions are random (they cohtdh long scale
and medium scale components of the velocity).

e Contrast with TR : the fluctuations in the medium an®t known, so migration
IS donefictitiously, in the background medium.

¢ \We obtain terms such e@go l.e. there remain random phases in migration
operators corresponding to long random paths from the sdorthe reflector
and back to the receivelack of statistical stability.
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Local data covariances

e To achieve statistical stability, we must cancel randonsphan the datd.

e Idea (Borcea et al., 2003): divide the data set into smaller @artsconstrucio-
cal data covariancdyy cross-correlating nearlitsacesi(x, x,, t) andd(xy, x,/, t),
l.e.

AN AN

1 [~ .
d<Xsa Xry t) * d<Xs’7 Xyl t) — a_ / d<XS7 Xry w) (Xs’a Xyl W)ewtdw

2T J_ o

Note that we obtain the terms:

G(x5y,w)G(xy,y,w) and G(x,.,y,w)G(x,y,w)
e In essence, this approach can be viewed @sagrocessingtep in which, start-
iIng with the randomly fluctuating dat& x,, x,, ), we obtain areduced, self-
averagingdata set.
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Reflector

A data pre-processing step
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Cross-correlation tomography (1/8)

e \We have seen how to construct self-averaging data sets. &bgebd is it for
velocity analysis?

e The ideas introduced above have been applied by Borcea drdgues to the
problem of “imaging” targets embedded in random media.

e The proposed work addresses (in a first stage) the issueiimiatisty the back-
ground velocity; we will see that this entails establishiregv differential sem-
blance principles

e We first show that cross-correlation of seismic traces daasorvelocity infor-
mation. The question is: how to get it?
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Cross-correlation tomography (2/8)

e Suppose there are fluctuations,
e Assume layered Earth model, i®.= cy(ty).
e Assume there is a single reflector at “depth”

e Use thehyperbolic moveout approximation: for “small” offsetsh,

2 h? L[ 2
T(tg,h) =4[t ta) = 1 —
(to, 1) 0T 2 ) crms(t0) I /0 &

e Define two key quantities:

0T B h
p(t,h) = B (To(t, h), h) = i Tyt ) (theray slownesk
s(t,h) = %(t, h) (thestretch factoy
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Cross-correlation tomography (3/8)

Because there is only one reflector, the trace has only omg aifg so
d(t,h) = f(t =T(to, h)) .
Therefore:
(d(°7 h) * d('? h/)) (t) — f * f (t + T(t()a h) _ T(t()v h/))

A first-order Taylor approximation yields

() d(- 1) (1) = (F % ) (0 (to. B} — B
~ () s = 1)

l.e. the cross-correlatiod x d’ containsarrival time slownesshencebackground
velocity information!
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Cross-correlation tomography (4/8)

e Recall that the (simplified) convolutional model writes:
d(ta h) — T(TO(ta h))

¢ [dea: To obtain the background velocity, construct an operatackvwhen ap-
plied to the data with theorrectbackground medium yields a vanishing out-
come.

e Denote bycj the correctbackground velocity, with corresponding traveltime
T*(ty, h) and inverse traveltimeé; (¢, h).

e Assume model-consistent data (i.e. noise-frdé).h) = r*(1;(t, h)).
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Cross-correlation tomography (5/8)

1y
e A short calculation shows thataa—h(t h) = —s(t,h)p(t, h).

e We will also need:

od 6T5‘ or* or* ) aTdk -1 od
E(t’ h) = 5 (t, h) It (Ty(t,h)) = T (T3 (t, h)) = [ Y (t,h)] = ——(t, h)

andod/oh is computed in a similar way.

e Choose a trial velocity,, compute correspondingj,, and define theveighted
cross-correlations

Colt, b ) — / e h)%j;o(f, ) / D] ar
Colt, b ) — / At 47 h)%fl (r. h) / )| ar

©.¢)
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Cross-correlation tomography (6/8)

o0C; N oC},
oh' Ot

Define the functional: (¢, h) = [ ] (t,h, W' = h).

Then it can be shown that:

B T oT, 0T 0Ty Ty -
[(t,h)_/d(tJrT,h){ [ah -t ah] (r. h) [87 (T,h)] b, h)dr

Note that/ (¢, h) vanisheawhenT; = T, i.e. whenc, = ¢. Using the quantities
defined above, we can rewril¢t, i) as

I(t,h) = /_OO d(t+7,h)s(T,h) [p(T,h) — p*(7, h)|d(T, h)dT

oo

This functional measures threismatch of event slownesweighted by data auto-
correlation and stretch factor.
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Cross-correlation tomography (7/8)

¢ With the hyperbolic moveout approximation, we obtain:

I(t,h) = / N d(t+ 7, h)s(, h>§ [Coms — G ] (To(7, h)) d(, h)dT
¢ \elocity analysis algorithm:
min J = §[17(t, 1)
Use gradient-based optimization methods (assuniirggsmooth ing).

e This approach clearly is a variant of differential semboptimization. It is
also a waveform variant gtereotomography(Sword, 1986, Biondi, 1990, Bil-
lette and Lambaa, 1998).
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Cross-correlation tomography (8/8)

Conjectures

e ODbjective just defined hagobalminimums, as has been proved for other DSO
variants (e.g. the layered medium case as shown above).

e When intermediate scale random fluctuations are allowed;bss-correlations
with slowly-varying weights are statistically stable, as is the casieoumt weights.
e The gradient of/ is also statistically stable.

e Stationary points off with cross-correlation weights computed from long-scale
velocity component are optimal estimators of backgroundoity.

Ultimately: Velocity analysis is essentially stable against randonmukttcons on
the medium scalé
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Conclusions

e The proposed work represents the first attempt at estimetengelocity macro-
model in this three-scale asymptotics regime. i.e. wheedamty at the middle
scales is modeled by a random field.

e As such, it also represents an innovative way of combining wery different
theories: the traditional (deterministic) approach topheblem coupled to the
tools and ideas used to study time reversal in random media.

e I[N essence, it is an attempt to build a theoretical basis $eessing the influ-
ence of the intermediate scale of velocity on the estimatiotihe background
velocity.
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Future work

Immediate;

e Work through the set of conjectures set forth. In particulae first step is to
verify that the weighted cross-correlations are self-ageng.

e Implementation in SVL and TSOpt for numerical investigatan real data sets.

Possible extension

e Extension to more complex models.

e Investigation of the applicability of the imaging resultstaned by Borcea, Pa-
panicolaou and colleagues to migration.
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