
2. High frequency asymptotics and imaging operators
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Importance of high frequency asymptotics: when linearization

is accurate, properties of F [v] dominated by those of Fδ[v] (=

F [v] with w = δ). Implicit in migration concept (eg. Hagedoorn,

1954); explicit use: Cohen & Bleistein, SIAM JAM 1977.

Key idea: reflectors (rapid changes in r) emulate singularities;

reflections (rapidly oscillating features in data) also emulate

singularities.

NB: “everybody’s favorite reflector”: the smooth interface across

which r jumps. But this is an oversimplification - reflectors in

the Earth may be complex zones of rapid change, pehaps in all

directions. More flexible notion needed!!
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Paley-Wiener characterization of smoothness: u ∈ D′(Rn) is

smooth at x0 ⇔ for some nbhd X of x0, any φ ∈ E(X) and N ,

there is CN ≥ 0 so that for any ξ 6= 0,

|F(φu)(τξ)| ≤ CN(τ |ξ|)−N

Harmonic analysis of singularities, après Hörmander: the wave

front set WF (u) ⊂ Rn ×Rn − 0 of u ∈ D′(Rn) - captures orien-

tation as well as position of singularities.

(x0, ξ0) /∈WF (u) ⇔, there is some open nbhd X×Ξ ⊂ Rn×Rn−0

of (x0, ξ0) so that for any φ ∈ E(X), N , there is CN ≥ 0 so that

for all ξ ∈ Ξ,

|F(φu)(τξ)| ≤ CN(τ |ξ|)−N
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Housekeeping chores:

(i) note that the nbhds Ξ may naturally be taken to be cones

(ii) WF (u) is invariant under chg. of coords if it is regarded as a

subset of the cotangent bundle T ∗(Rn) (i.e. the ξ components

transform as covectors).

[Good refs: Duistermaat, 1996; Taylor, 1981; Hörmander, 1983]

The standard example: if u jumps across the interface f(x) =

0, otherwise smooth, then WF (u) ⊂ Nf = {(x, ξ) : f(x) =

0, ξ||∇f(x)} (normal bundle of f = 0).
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WF (H(f)) = {(x, ξ) : f(x) = 0, ξ||∇f(x)}
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Fact (“microlocal property of differential operators”):

Suppose u ∈ D′(Rn), (x0, ξ0) /∈ WF (u), and P (x, D) is a partial

differential operator:

P (x, D) =
∑
|α|≤m

aα(x)Dα

D = (D1, ..., Dn), Di = −i
∂

∂xi

α = (α1, ..., αn), |α| =
∑
i

αi,

Dα = D
α1
1 ...Dαn

n

Then (x0, ξ0) /∈WF (P (x, D)u) [i.e.: WF (Pu) ⊂WF (u)].
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Proof: Choose X × Ξ as in the definition, φ ∈ D(X) form the

required Fourier transform∫
dx eix·(τξ)φ(x)P (x, D)u(x)

and start integrating by parts: eventually

=
∑
|α|≤m

τ |α|ξα
∫
dx eix·(τξ)φα(x)u(x)

where φα ∈ D(X) is a linear combination of derivatives of φ and

the aαs. Since each integral is rapidly decreasing as τ → ∞ for

ξ ∈ Ξ, it remains rapidly decreasing after multiplication by τ |α|,
and so does the sum. Q. E. D.
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Key idea, restated: reflectors (or “reflecting elements”) will be

points in WF (r). Reflections will be points in WF (d).

These ideas lead to a usable definition of image: a reflectivity

model r̃ is an image of r if WF (r̃) ⊂ WF (r) (the closer to

equality, the better the image).

Idealized migration problem: given d (hence WF (d)) deduce

somehow a function which has the right reflectors, i.e. a function

r̃ with WF (r̃) 'WF (r).

NB: you’re going to need v! (“It all depends on v(x,y,z)” - J.

Claerbout)
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With w = δ, acoustic potential u is same as Causal Green’s

function G(x, t; xs) = retarded fundamental solution:(
1

v2

∂2

∂t2
−∇2

)
G(x, t; xs) = δ(t)δ(x− bxs)

and G ≡ 0, t < 0. Then (w = δ!) p = ∂G
∂t , δp = ∂δG

∂t , and(
1

v2

∂2

∂t2
−∇2

)
δG(x, t; xs) =

2

v2(x)

∂2G

∂t2
(x, t; xs)r(x)

Simplification: from now on, define F [v]r = δG|x=xr - i.e. lose a

t-derivative. Duhamel’s principle ⇒

δG(xr, t; xs) =
∫
dx

2r(x)

v(x)2

∫
dsG(xr, t− s; x)

∂2G

∂t2
(x, s; xs)
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Geometric optics approximation of G should be good, as v is
smooth. Local version: if x “not too far” from xs, then

G(x, t; xs) = a(x; xs)δ(t− τ(x; xs)) +R(x, t; xs)

where the traveltime τ(x; xs) solves the eikonal equation

v|∇τ | = 1

τ(x; xs) ∼
|x− xs|
v(xs)

, x→ xs

and the amplitude a(x; xs) solves the transport equation

∇ · (a2∇τ) = 0

All of this is meaningful only if the remainder R is small in a
suitable sense: energy estimate (Exercise!) ⇒∫

dx
∫ T

0
dt |R(x, t; xs)|2 ≤ C‖v‖C4
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Numerical solution of eikonal, transport: ray tracing (Lagrangian),

various sorts of upwind finite difference (Eulerian) methods. See

Sethian lectures, WWS 1999 MGSS notes (online) for details.

“Not too far” means: there should be one and only one ray of

geometric optics connecting each xs or xr to each x ∈ suppr.

For “random but smooth” v(x) with variance σ, more than one

connecting ray occurs as soon as the distance is O(σ−2/3). Such

multipathing is invariably accompanied by the formation of a

caustic (White, 1982).

Upon caustic formation, the simple geometric optics field de-

scription above is no longer correct (Ludwig, 1966).
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sin1: velocity field

2D Example of strong refraction: Sinusoidal velocity field v(x, z) =

1 + 0.2 sin πz
2 sin 3πx
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sin1: rays with takeoff angles in range 1.41372 to 1.72788

Rays in sinusoidal velocity field, source point = origin. Note for-

mation of caustic, multiple rays to source point in lower center.
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Assume: supp r contained in simple geometric optics domain
(each point reached by unique ray from any source point xs).

Then distribution kernel K of F [v] is

K(xr, t,xs; x) =
∫
dsG(xr, t− s; x)

∂2G

∂t2
(x, s; xs)

2

v2(x)

'
∫
ds

2a(xr,x)a(x,xs)

v2(x)
δ′(t− s− τ(xr,x))δ′′(s− τ(x,xs))

=
2a(x,xr)a(x,xs)

v2(x)
δ′′(t− τ(x,xr)− τ(x,xs))

provided that ∇xτ(x,xr) +∇xτ(x,xs) 6= 0 ⇔ velocity at x of ray
from xs not negative of velocity of ray from xr ⇔ no forward
scattering. [Gel’fand and Shilov, 1958 - when is pullback of
distribution again a distribution].

14



Q: What does ' mean?

A: It means “differs by something smoother”.

In theory, can complete the geometric optics approximation of

the Green’s function so that the difference is C∞ - then the two

sides have the same singularities, ie. the same wavefront set.

In practice, it’s sufficient to make the difference just a bit s-

moother, so the first term of the geometric optics approximation

(displayed above) suffices (can formalize this with modification

of wavefront set defn).

These lectures will ignore the distinction.
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So: for r supported in simple geometric optics domain, no for-

ward scattering ⇒

δG(xr, t; xs) '

∂2

∂t2

∫
dx

2r(x)

v2(x)
a(x,xr)a(x,xs)δ(t− τ(x,xr)− τ(x,xs))

That is: pressure perturbation is sum (integral) of r over re-

flection isochron {x : t = τ(x,xr) + τ(x,xs)}, w. weighting,

filtering. Note: if v =const. then isochron is ellipsoid, as

τ(xs,x) = |xs − x|/v!

(y,x )+  (y,x )ττt=

x x

y

s

r s

r
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Zero Offset data and the Exploding Reflector

Zero offset data (xs = xr) is seldom actually measured (contrast

radar, sonar!), but routinely approximated through NMO-stack

(to be explained later).

Extracting image from zero offset data, rather than from all

(100’s) of offsets, is tremendous data reduction - when approx-

imation is accurate, leads to excellent images.

Imaging basis: the exploding reflector model (Claerbout, 1970’s).
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For zero-offset data, distribution kernel of F [v] is

K(xs, t,xs; x) =
∂2

∂t2

∫
ds

2

v2(x)
G(xs, t− s; x)G(x, s; xs)

Under some circumstances (explained below), K ( = G time-

convolved with itself) is “similar” (also explained) to G̃ = Green’s

function for v/2. Then

δG(xs, t; xs) ∼
∂2

∂t2

∫
dx G̃(xs, t,x)

2r(x)

v2(x)

∼ solution w of (
4

v2

∂2

∂t2
−∇2

)
w = δ(t)

2r

v2

Thus reflector “explodes” at time zero, resulting field propagates

in “material” with velocity v/2.
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Explain when the exploding reflector model “works”, i.e. when

G time-convolved with itself is “similar” to G̃ = Green’s function

for v/2. If supp r lies in simple geometry domain, then

K(xs, t,xs; x) =
∫
ds

2a2(x,xs)

v2(x)
δ(t− s− τ(xs,x))δ′′(s− τ(x,xs))

=
2a2(x,xs)

v2(x)
δ′′(t− 2τ(x,xs))

whereas the Green’s function G̃ for v/2 is

G̃(x, t; xs) = ã(x,xs)δ(t− 2τ(x,xs))

(half velocity = double traveltime, same rays!).
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Difference between effects of K, G̃: for each xs scale r by smooth

fcn - preserves WF (r) hence WF (F [v]r) and relation between

them. Also: adjoints have same effect on WF sets.

Upshot: from imaging point of view (i.e. apart from amplitude,

derivative (filter)), kernel of F [v] restricted to zero offset is same

as Green’s function for v/2, provided that simple geometry hy-

pothesis holds: only one ray connects each source point to each

scattering point, ie. no multipathing.

See Claerbout, BEI, for examples which demonstrate that mul-

tipathing really does invalidate exploding reflector model.
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Inspirational interlude: the sort-of-layered theory =“Standard

Processing”

Suppose were v,r functions of z = x3 only, all sources and re-

ceivers at z = 0. Then the entire system is translation-invariant

in x1, x2 ⇒ Green’s function G its perturbation δG, and the ide-

alized data δG|z=0 are really only functions of t and half-offset

h = |xs − xr|/2. There would be only one seismic experiment,

equivalent to any common midpoint gather (“CMP”).

This isn’t really true - look at the data!!! However it is approxi-

mately correct in many places in the world: CMPs change very

slowly with midpoint xm = (xr + xs)/2.
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Standard processing: treat each CMP as if it were the result of

an experiment performed over a layered medium, but permit the

layers to vary with midpoint.

Thus v = v(z), r = r(z) for purposes of analysis, but at the end

v = v(xm, z), r = r(xm, z).

F [v]r(xr, t; xs)

'
∫
dx

2r(z)

v2(z)
a(x, xr)a(x, xs)δ

′′(t− τ(x, xr)− τ(x, xs))

=
∫
dz

2r(z)

v2(z)

∫
dω

∫
dxω2a(x, xr)a(x, xs)e

iω(t−τ(x,xr)−τ(x,xs))
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Since we have already thrown away smoother (lower frequency)

terms, do it again using stationary phase. Upshot (see 2000

MGSS notes for details): up to smoother (lower frequency) error,

F [v]r(h, t) ' A(z(h, t), h)R(z(h, t))

Here z(h, t) is the inverse of the 2-way traveltime

t(h, z) = 2τ((h,0, z), (0,0,0))

i.e. z(t(h, z′), h) = z′. R is (yet another version of) “reflectivity”

R(z) =
1

2

dr

dz
(z)

That is, F [v] is a a derivative followed by a change of variable

followed by multiplication by a smooth function. Substitute t0
(vertical travel time) for z (depth) and you get “Inverse NMO”

(t0 → (t, h)). Will be sloppy and call z → (t, h) INMO.
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Anatomy of an adjoint:∫
dt
∫
dh d(t, h)F [v]r(t, h) =

∫
dt
∫
dh d(t, h)A(z(t, h), h)R(z(t, h))

=
∫
dz R(z)

∫
dh

∂t

∂z
(z, h)A(z, h)d(t(z, h), h) =

∫
dz r(z)(F [v]∗d)(z)

so F [v]∗ = − ∂
∂zSM [v]N [v],

N [v] = NMO operator N [v]d(z, h) = d(t(z, h), h)

M [v] = multiplication by ∂t
∂zA

S = stacking operator

Sf(z) =
∫
dh f(z, h)
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So

F [v]∗F [v]r(z) = −
∂

∂z

[∫
dh

dt

dz
(z, h)A2(z, h)

]
∂

∂z
r(z)

Microlocal property of PDOs ⇒ WF (F [v]∗F [v]r) ⊂ WF (r) i.e.

F [v]∗ is an imaging operator.

If you leave out the amplitude factor (M [v]) and the derivatives,

as is commonly done, then you get essentially the same expres-

sion - so (NMO, stack) is an imaging operator!

It’s even easy to get an inverse out of this - exercise for the

reader.

Now make everything dependent on xm and you’ve got standard

processing. (end of layered interlude).
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Multioffset Imaging: if d = F [v]r, then

F [v]∗d = F [v]∗F [v]r

In the layered case, F [v]∗F [v] is an operator which preserves wave
front sets. Whenever F [v]∗F [v] preserves wave front sets, F [v]∗

is an imaging operator.

Beylkin, JMP 1985: for r supported in simple geometric optics
domain,

• WF (Fδ[v]∗Fδ[v]r) ⊂WF (r)

• if Sobs = S[v]+Fδ[v]r (data consistent with linearized model),
then Fδ[v]∗(Sobs − S[v]) is an image of r

• an operator Fδ[v]† exists for which Fδ[v]†(Sobs − S[v]) − r is
smoother than r, under some constraints on r - an inverse
modulo smoothing operators or parametrix.
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Outline of proof: (i) express F [v]∗F [v] as “Kirchhoff modeling”

followed by “Kirchhoff migration”; (ii) introduce Fourier trans-

form; (iii) approximate for large wavenumbers using stationary

phase, leads to representation of F [v]∗F [v] modulo smoothing

error as pseudodifferential operator (“ΨDO”):

F [v]∗F [v]r(x) ' p(x, D)r(x) ≡
∫
dξ p(x, ξ)eix·ξr̂(ξ)

in which p ∈ C∞, and for some m (the order of p), all multiindices

α, β, and all compact K ⊂ Rn, there exist constants Cα,β,K ≥ 0

for which

|Dα
xD

β
ξ p(x, ξ)| ≤ Cα,β,K(1 + |ξ|)m−|β|, x ∈ K

Explicit computation of symbol p - for details, .
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Imaging property of Kirchhoff migration follows from microlocal
property of ΨDOs:

if p(x,D) is a ΨDO, u ∈ E ′(Rn) then WF (p(x,D)u) ⊂
WF (u).

Will prove this. First, a few other properties:

• differential operators are ΨDOs (easy - exercise)

• ΨDOs of order m form a module over C∞(Rn) (also easy)

• product of ΨDO order m, ΨDO order l = ΨDO order ≤ m+l;
adjoint of ΨDO order m is ΨDO order m (much harder)

Complete accounts of theory, many apps: books of Duistermaat,
Taylor, Nirenberg, Treves, Hörmander.
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Proof of microlocal property: suppose (x0, ξ0) /∈WF (u), choose

neighborhoods X, Ξ as in defn, with Ξ conic. Need to choose

analogous nbhds for P (x,D)u. Pick δ > 0 so that B3δ(x0) ⊂ X,

set X ′ = Bδ(x0).

Similarly pick 0 < ε < 1/3 so that B3ε(ξ0/|ξ0|) ⊂ Ξ, and chose

Ξ′ = {τξ : ξ ∈ Bε(ξ0/|ξ0|), τ > 0}.

Need to choose φ ∈ E ′(X ′), estimate F(φP (x, D)u). Choose

ψ ∈ E(X) so that ψ ≡ 1 on B2δ(x0).

NB: this implies that if x ∈ X ′, ψ(y) 6= 1 then |x− y| ≥ δ.
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Write u = (1− ψ)u+ ψu. Claim: φP (x, D)((1− ψ)u) is smooth.

φ(x)P (x, D)((1− ψ)u))(x)

= φ(x)
∫
dξ P (x, ξ)eix·ξ

∫
dy (1− ψ(y))u(y)e−iy·ξ

=
∫
dξ

∫
dy P (x, ξ)φ(x)(1− ψ(y))ei(x−y)·ξu(y)

=
∫
dξ

∫
dy (−∇2

ξ )MP (x, ξ)φ(x)(1−ψ(y))|x−y|−2Mei(x−y)·ξu(y)

using the identity

ei(x−y)·ξ = |x− y|−2
[
−∇2

ξ e
i(x−y)·ξ

]
and integrating by parts 2M times in ξ. This is permissible

because φ(x)(1− ψ(y)) 6= 0⇒ |x− y| > δ.
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According to the definition of ΨDO,

|(−∇2
ξ )MP (x, ξ)| ≤ C|ξ|m−2M

For any K, the integral thus becomes absolutely convergent after

K differentiations of the integrand, provided M is chosen large

enough. Q.E.D. Claim.

This leaves us with φP (x, D)(ψu). Pick η ∈ Ξ′ and w.l.o.g. scale

|η| = 1. Fourier transform:

F(φP (x, D)(ψu))(τη) =
∫
dx

∫
dξ P (x, ξ)φ(x)ψ̂u(ξ)eix·(ξ−τη)

Introduce τθ = ξ, and rewrite this as

= τn
∫
dx

∫
dθ P (x, τθ)φ(x)ψ̂u(τθ)eiτx·(θ−η)
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Divide the domain of the inner integral into {θ : |θ − η| > ε} and

its complement. Use

−∇2
xe
iτx·(θ−η) = τ2|θ − η|2eiτx·(θ−η)

and integration by parts 2M times to estimate the first integral:

τn−2M

∣∣∣∣∣
∫
dx

∫
|θ−η|>ε

dθ (−∇2
x)M [P (x, τθ)φ(x)]ψ̂u(τθ)

× |θ − η|−2Meiτx·(θ−η)
∣∣∣

≤ Cτn+m−2M

m being the order of P . Thus the first integral is rapidly de-

creasing in τ .
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For the second integral, note that |θ − η| ≤ ε ⇒ θ ∈ Ξ, per the

defn of Ξ′. Since X ×Ξ is disjoint from the wavefront set of u,

for a sequence of constants CN , |ψ̂u(τθ)| ≤ CNτ−N uniformly for

θ in the (compact) domain of integration, whence the second

integral is also rapidly decreasing in τ . Q. E. D.

And that’s why Kirchhoff migration works, at least in the simple

geometric optics regime.

33



Recall: in layered case,

F [v]r(h, t) ' A(z(h, t), h)
1

2

dr

dz
(z(h, t))

F [v]∗d(z) ' −
∂

∂z

∫
dhA(z, h)

∂t

∂z
(z, h)d(t(z, h), h)

F [v]∗F [v]r(z) = −
∂

∂z

[∫
dh

dt

dz
(z, h)A2(z, h)

]
∂

∂z
r(z)

thus normal operator is invertible and you can construct approx-

imate least-squares solution to F [v]r = d:

r̃ ' (F [v]∗F [v])−1F [v]∗d

Relation between r and r̃: difference is smoother than either.

Thus difference is small if r is oscillatory - consistent with con-

ditions under which linearization is accurate.
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Analogous construction in simple geometric optics case: due to

Beylkin (1985).

Complication: F [v]∗F [v] cannot be invertible - because WF (F [v]∗F [v]r)

generally quite a bit smaller than WF (r).

Inversion aperture Γ[v] ⊂ R3 × R3 − 0: if WF (r) ⊂ Γ[v], then

WF (F [v]∗F [v]r) = WF (r) and F [v]∗F [v] “acts invertible”. [con-

struction of Γ[v] - later!]

Beylkin: with proper choice of amplitude b(xr, t; xs), the modified

Kirchhoff migration operator

F [v]†d(x) =
∫ ∫ ∫

dxr dxs dt b(xr, t; xs)δ(t−τ(x; xs)−τ(x; xr))d(xr, t; xs)

yields F [v]†F [v]r ' r if WF (r) ⊂ Γ[v]
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For details of Beylkin construction: Beylkin, 1985; Miller et al

1989; Bleistein, Cohen, and Stockwell 2000; WWS MGSS notes

1998. All components are by-products of eikonal solution.

aka: Generalized Radon Transform (“GRT”) inversion, Ray-

Born inversion, migration/inversion, true amplitude migration,...

Many extensions, eg. to elasticity: Bleistein, Burridge, deHoop,

Lambaré,...

Apparent limitation: construction relies on simple geometric op-

tics (no multipathing) - how much of this can be rescued? cf.

Lecture 3.
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Example of GRT Inversion (application of F [v]†): K. Araya (1995),

“2.5D” inversion of marine streamer data from Gulf of Mexico:

500 source positions, 120 receiver channels, 750 Mb.
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