2. High frequency asymptotics and imaging operators



Importance of high frequency asymptotics: when linearization
is accurate, properties of F[v] dominated by those of Fjs[v] (=
F[v] with w = §). Implicit in migration concept (eg. Hagedoorn,
1954); explicit use: Cohen & Bleistein, SIAM JAM 1977.

Key idea: reflectors (rapid changes in r) emulate singularities;
reflections (rapidly oscillating features in data) also emulate
singularities.

NB: “everybody’s favorite reflector’” : the smooth interface across
which r» jumps. But this is an oversimplification - reflectors in
the Earth may be complex zones of rapid change, pehaps in all
directions. More flexible notion needed!!



Paley-Wiener characterization of smoothness: v € D/(R") is
smooth at xg < for some nbhd X of xqg, any ¢ € £(X) and N,
there is C > 0 so that for any & = O,

F(pu)(r€)| < On(rle) N

Harmonic analysis of singularities, aprés Hormander: the wave
front set WF(u) C R* x R®" — 0 of u € D'(R") - captures orien-
tation as well as position of singularities.

(x0,&0) € WF(u) <, thereis some open nbhd X x= C R"xR"-0
of (xp,&p) so that for any ¢ € £(X), N, there is C > 0 so that
for all £ € =,

IF(pu)(r€)| < Cn ()™



Housekeeping chores:

(i) note that the nbhds = may naturally be taken to be cones
(ii) WF(u) is invariant under chg. of coords if it is regarded as a
subset of the cotangent bundle T*(R"™) (i.e. the £ components

transform as covectors).

[Good refs: Duistermaat, 1996; Taylor, 1981; Hormander, 1983]

The standard example: if u jumps across the interface f(x)
0, otherwise smooth, then WF(u) C Ny = {(x,&) : f(x)
0, &||Vf(x)} (normal bundle of f = 0).



H(¢)=0
0 <0 0=0
H(¢)=1

0>0
WFH(f)) ={(x,8) : f(z) =0, £[|[Vf(zx)}



Fact (“microlocal property of differential operators”):

Suppose u € D'(R"), (xq,&) ¢ WF(u), and P(x,D) is a partial
differential operator:

P(x,D) = ) aa(z)D®

la|<m

o
D= (D1y,....Dn), D, = —i—
8332'

a=(ai,...,an), |la = Zai,
7

D% = DI!..Dg"
Then (xq,&) ¢ WF(P(x,D)u) [i.e.: WF(Pu) C WF(u)].



Proof: Choose X x = as in the definition, ¢ € D(X) form the
required Fourier transform

/ dz ™ (78 (%) P(x, D)u(x)
and start integrating by parts: eventually
= 3 7 [ dwe™Da(0u(x)
la|<m
where ¢ € D(X) is a linear combination of derivatives of ¢ and
the anS. Since each integral is rapidly decreasing as » — oo for

¢ € =, it remains rapidly decreasing after multiplication by rlol,
and so does the sum. Q. E. D.



Key idea, restated: reflectors (or ‘reflecting elements”) will be
points in WF(r). Reflections will be points in WEF(d).

These ideas lead to a usable definition of image: a reflectivity
model 7 is an image of r if WF(¥) ¢ WF(r) (the closer to
equality, the better the image).

Idealized migration problem: given d (hence WF(d)) deduce
somehow a function which has the right reflectors, i.e. a function

7 with WE(F) ~ WF(r).

NB: you're going to need v! ("It all depends on v(x,y,z)" - J.
Claerbout)



With w = 9, acoustic potential « is same as Causal Green’s
function G(x,t; xs) = retarded fundamental solution:

1 92 5
U—Qﬁ —V G(X,t;Xs) = 5(t>5(X— bazs)
and G =0,t<0. Then (w=24!) p=9, sp=2C and

1 92 5 _ 2 9°G, |
(U_Q@ v ) BG(x,t %s) = =2 (5, Xe)r ()

Simplification: from now on, define Flv]r = §G|,— - i.e. lose a
t-derivative. Duhamel’s principle =

2r(x)
v(x)?

2
/ ds G(xr,t — s; X)%TS(X, S; Xs)

5G(Xfr,t;Xs) :/dx



Geometric optics approximation of G should be good, as v is
smooth. Local version: if x “not too far’ from xg, then

G(x,t;xs) = a(x;x5)0(t — 7(x;x5)) + R(x,t; X5)
where the traveltime 7(x; xs) solves the eikonal equation
v|Vr| =1
X — X4
v(Xs) ’
and the amplitude a(x;xs) solves the transport equation
V- (a®°V71) =0

All of this is meaningful only if the remainder R is small in a
suitable sense: energy estimate (Exercise!) =

T7(X; Xg) ~ X — Xg

T
[ de [ dtIRGx, %) < Cllollea
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Numerical solution of eikonal, transport: ray tracing (Lagrangian),
various sorts of upwind finite difference (Eulerian) methods. See
Sethian lectures, WWS 1999 MGSS notes (online) for details.

“Not too far’” means: there should be one and only one ray of
geometric optics connecting each xs or x,, to each x € suppr.

For “random but smooth” v(x) with variance o, more than one
connecting ray occurs as soon as the distance is 0(0_2/3). Such
multipathing is invariably accompanied by the formation of a
caustic (White, 1982).

Upon caustic formation, the simple geometric optics field de-
scription above is no longer correct (Ludwig, 1966).
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sinl: velocity field

2D Example of strong refraction: Sinusoidal velocity field v(z, z) =
1 + 0.2sin %5 sin 37z
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sinl: rays with takeoff angles in range 1.41372 to 1.72788
T T T T T T

Rays in sinusoidal velocity field, source point = origin. Note for-
mation of caustic, multiple rays to source point in lower center.
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Assume: suppr contained in simple geometric optics domain
(each point reached by unique ray from any source point xg).

Then distribution kernel K of F[v] is

aQG(X ) 2
——(x,s
or2 N v2(x)

K(xp,t,Xg;X) :/dSG(XT,t—S;X)

= [ s 2RO DX s s, 20085 7))

_ 2a(x,xr)a(x,Xs)
B v2 (%)
provided that Vx7(x,x,) + Vx7(x,x5) 7 0 < velocity at x of ray

from xs not negative of velocity of ray from x, < no forward
scattering. [Gel'fand and Shilov, 1958 - when is pullback of

distribution again a distribution].

5//(t — T(X, XT‘) — T(Xa XS))
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Q: What does ~ mean?
A: It means ‘differs by something smoother’.

In theory, can complete the geometric optics approximation of
the Green’s function so that the difference is C°° - then the two
sides have the same singularities, ie. the same wavefront set.

In practice, it's sufficient to make the difference just a bit s-
moother, so the first term of the geometric optics approximation
(displayed above) suffices (can formalize this with modification
of wavefront set defn).

T hese lectures will ignore the distinction.
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So: for r supported in simple geometric optics domain, no for-
ward scattering =

0G (Xr, t; Xg) =~

s / iz 2 2( ;a(x xr)a(x, xs)6(t — 7(x, %) — 7(x, X5))

That is: pressure perturbation is sum (integral) of » over re-
flection isochron {x : t = 7(x,xr) + 7(x,x5)}, w. weighting,
filtering. Note: if v =const. then isochron is ellipsoid, as
T(Xs,X) = |x5 — X| /0!

Xy Xs

e

t=T(y. X )+ Y. X)
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Zero Offset data and the Exploding Reflector

Zero offset data (xs = xy) is seldom actually measured (contrast
radar, sonar!), but routinely approximated through NMO-stack
(to be explained later).

Extracting image from zero offset data, rather than from all
(100's) of offsets, is tremendous data reduction - when approx-
imation is accurate, leads to excellent images.

Imaging basis: the exploding reflector model (Claerbout, 1970's).
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For zero-offset data, distribution kernel of F[v] is

2
v2(x)
Under some circumstances (explained below), K ( = G time-
convolved with itself) is “similar’ (also explained) to G = Green's
function for v/2. Then

2
K(xs,t,x5,X) = %/ ds G(xs,t — 35;x)G(X, s; Xs)

2r(x)
v2(x)

02 8
0G (Xs,t; Xg) ~ ﬁ/ dx G(Xg,t,X)

~ solution w of

Thus reflector “explodes” at time zero, resulting field propagates
in “material” with velocity v/2.
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Explain when the exploding reflector model “works”, i.e. when
G time-convolved with itself is “similar’ to G = Green's function
for v/2. If supp r lies in simple geometry domain, then

2a2(x, Xs)
v2 (%)

K (s, £, Xs: X) = / ds 5(t— s — 7(x5,%))6" (s — 7(x, X5))

_ 2a2(x,Xs)
v2(x)

whereas the Green's function G for v/2 is

§"(t — 27(x,x5))

G(x,t;xs) = a(x,x5)0(t — 27(x,%5))

(half velocity = double traveltime, same rays!).

19



Difference between effects of K, G: for each xs scale r by smooth
fcn - preserves WF(r) hence WF(F[v]r) and relation between
them. Also: adjoints have same effect on WF' sets.

Upshot: from imaging point of view (i.e. apart from amplitude,
derivative (filter)), kernel of F'[v] restricted to zero offset is same
as Green's function for v/2, provided that simple geometry hy-
pothesis holds: only one ray connects each source point to each
scattering point, ie. no multipathing.

See Claerbout, BEI, for examples which demonstrate that mul-
tipathing really does invalidate exploding reflector model.
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Inspirational interlude: the sort-of-layered theory ="Standard
Processing”

Suppose were v,r functions of z = x3 only, all sources and re-
ceivers at z = 0. Then the entire system is translation-invariant
in x1,xo = Green’s function G its perturbation 0G, and the ide-
alized data 6G|,—g are really only functions of t and half-offset
h = |xs — xr|/2. There would be only one seismic experiment,
equivalent to any common midpoint gather (“CMP"),

This isn't really true - look at the datal!ll However it is approxi-
mately correct in many places in the world: CMPs change very
slowly with midpoint x,, = (x + x5)/2.
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Standard processing: treat each CMP as if it were the result of
an experiment performed over a layered medium, but permit the
layers to vary with midpoint.

Thus v = v(z),r = r(z) for purposes of analysis, but at the end

v=vXm,2),r =1(Xm, 2).

Flv]r(xr, t; Xs)

~ | dxigga()c, £ )a(x, 25)8" (t — 7(x, 2r) — 7(x,75))

. QT(Z) 2 iw(t—7(x,2r)—7(x,25))
— / dz 02(2) dw/dww a(x,xr)a(Xx,zs)e
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Since we have already thrown away smoother (lower frequency)
terms, do it again using stationary phase. Upshot (see 2000
MGSS notes for details): up to smoother (lower frequency) error,

Flv]r(h,t) ~ A(z(h,t),h)R(z(h,t))

Here z(h,t) is the inverse of the 2-way traveltime

t(h,z) = 27((h,0,%),(0,0,0))
i.e. z(t(h,2"),h) = 2'. R is (yet another version of) “reflectivity”

1dr
R(z) = 5@(2)
That is, F[v] is a a derivative followed by a change of variable
followed by multiplication by a smooth function. Substitute tg
(vertical travel time) for z (depth) and you get “Inverse NMQO”"
(tog — (t,h)). Will be sloppy and call z — (t,h) INMO.
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Anatomy of an adjoint:

/ dt / dh d(t, B Fu]r(t, h) = / dt / dh d(t, B)A(z(t, h), B)R(2(t, h))

— / dz R(2) / dh—(z R)A(z, h)d(t(z, h), h) = / dz r(2) (Fv]*d) (2)

so F[v]* = —%SM[’U]N[’U],
N[v] = NMO operator N[v]d(z,h) = d(t(z,h),h)
M[v] = multiplication by 9¢A

S = stacking operator
Sf(z) = [ dhf(zh)
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So

Flol*Flo]r(z) = —= [/ B (z RYA2(z, ) —r(z)

Microlocal property of PDOS = WF(F[’U]*F[’U]T) C WF(r) i.e.
F[v]* is an imaging operator.

If you leave out the amplitude factor (M[v]) and the derivatives,
as is commonly done, then you get essentially the same expres-
sion - so (NMOQO, stack) is an imaging operator!

It's even easy to get an inverse out of this - exercise for the
reader.

Now make everything dependent on x,;, and you've got standard
processing. (end of layered interlude).

25



Multioffset Imaging: if d = F'[v]r, then
Flv]*d = F[v]"F[v]r

In the layered case, F[v]*F[v] is an operator which preserves wave
front sets. Whenever F|[v]*F[v] preserves wave front sets, F|[v]*
IS an imaging operator.

Beylkin, JMP 1985: for r supported in simple geometric optics
domain,

o WF(Fs[v]*Fs[vlr) C WF(r)
o if SOPS = S[v]+F;s[v]r (data consistent with linearized model),
then Fjs[v]*(S°PS — S[v]) is an image of r

e an operator Fjs[v]T exists for which Fjs[v]T(S°PS — S[v]) — r is
smoother than r, under some constraints on r - an inverse
modulo smoothing operators or parametrix.
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Outline of proof: (i) express F[v]*F[v] as “Kirchhoff modeling”
followed by “Kirchhoff migration”; (ii) introduce Fourier trans-
form; (iii) approximate for large wavenumbers using stationary
phase, leads to representation of F[v]*F[v] modulo smoothing
error as pseudodifferential operator ("“WDQ"):

Flv]"Fv]r(x) ~ p(x, D)r(x) = / dé p(x, €)e™ 7 (€)

in which p € C°, and for some m (the order of p), all multiindices
«, 3, and all compact K C R", there exist constants Caﬁ,K >0
for which

IDEDp(x,6)| < Cop (1 + )™ 1Pl x e K

Explicit computation of symbol p - for details, .
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Imaging property of Kirchhoff migration follows from microlocal
property of WDQOs:

if p(z,D) is a WDO, u € &(R"™) then WF(p(z,D)u) C

Will prove this. First, a few other properties:
e differential operators are WDOs (easy - exercise)
e WDOs of order m form a module over C°°(R"™) (also easy)

e product of WDO order m, WDO order! = WDO order < m—I(;
adjoint of WDO order m is WDO order m (much harder)

Complete accounts of theory, many apps: books of Duistermaat,
Taylor, Nirenberg, Treves, HOrmander.
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Proof of microlocal property: suppose (xq,&p) ¢ WF(u), choose
neighborhoods X, = as in defn, with = conic. Need to choose
analogous nbhds for P(xz, D)u. Pick § > 0 so that Bzs(xg) C X,
set X/ = B5(Xo).

Similarly pick 0 < € < 1/3 so that B3.(&y/|€0]) € =, and chose
=" = {r€: ¢ € Be(&o/l¢0l), ™ > 0}.

Need to choose ¢ ¢ &'(X’), estimate F(¢pP(x,D)u). Choose
Y € E(X) so that ¥ =1 on Bys(Xg).

NB: this implies that if x € X/, ¥(y) # 1 then |x —y| > 6.
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Write u = (1 — ¥)u + Yu. Claim: ¢P(x,D)((1 —¢)u) is smooth.
B()P(x, D)((1 = 1)u)) (x)
= 6(x) [ dg P(x,)e™ [ dy (1~ p(y)uly)e ¥

= [ dg [ dy P(x,©)6() (1 — w(3))e ) Cu(y)

= [ d¢ [ dy (-FBMP(x, )6 (1 —w(y)|x—y| MWty (y)
using the identity
e X=Y)E = 1x — y| 2 [_vgei(x—}’)'é]

and integrating by parts 2M times in & This is permissible
because ¢(x)(1 —¥(y)) #0 = |x —y| > 4.
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According to the definition of WDO,
(-VDMP(x,¢)| < Clg|™2M

For any K, the integral thus becomes absolutely convergent after
K differentiations of the integrand, provided M is chosen large
enough. Q.E.D. Claim.

This leaves us with ¢P(x, D)(ypu). Pick n € =/ and w.l.0.g. scale
Im| = 1. Fourier transform:

F(&P(x, DY) (rn) = [ do [ dé P(x,)d(x)u(€)e™ )

Introduce 70 = &, and rewrite this as
— / da / 46 P(x, 70) b (x)fu(r0) ™ (0 =n)
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Divide the domain of the inner integral into {6 : |0 —n| > €} and
its complement. Use

_vgez’Tx-(G—n) — T2|9 . ,’7|2€’iTX-(9—77)

and integration by parts 2M times to estimate the first integral:
Fn—2M ‘ / da /|9 | 6 (=V2YM[P(x, 70)b(x)]bu(r0)
—Tn|>€

> |0 o n|—2M€iTX-(9—?7)‘

< CTn—I—m—QM

m being the order of P. Thus the first integral is rapidly de-
creasing in .
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For the second integral, note that |0 —n| < e = 0 € =, per the
defn of =/. Since X x = is disjoint from the wavefront set of w,

for a sequence of constants Cy, |Yu(r0)| < Cyr—N uniformly for
6 in the (compact) domain of integration, whence the second

integral is also rapidly decreasing in 7. Q. E. D.

And that's why Kirchhoff migration works, at least in the simple
geometric optics regime.
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Recall: in layered case,

Flolr(h, 1) = AC=(h,£), )5 7 (=5, 1))

Flu]*d(z) ~ —£/ dhA(z,h)%(z,h)d(t(z,h),h)

Flo]*Flo]r(z) = —= [/ R (z RYA2(z, ) —r(z)
thus normal operator is |nvert|ble and you can construct approx-
imate least-squares solution to F'[v]r = d:
7~ (Fo]*F[v]) " Fv]*d

Relation between r and r: difference is smoother than either.
Thus difference is small if r is oscillatory - consistent with con-
ditions under which linearization is accurate.
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Analogous construction in simple geometric optics case: due to
Beylkin (1985).

Complication: F[v]*F[v] cannot be invertible - because W F(F'[v]*F[v]r)
generally quite a bit smaller than WEF(r).

Inversion aperture IMv] € R3 x R3 - 0: if WF(r) C M[v], then
WF(F[v]*Flvlr) = WF(r) and F[v]*F[v] “acts invertible”. [con-
struction of I'[v] - later!]

Beylkin: with proper choice of amplitude b(x,,t; xs), the modified
Kirchhoff migration operator

Floltd(x) = / / / dy das dt b(xp, t: X5)8(—7(x: xX5)—7(x: %) )d(Xp, : X5)
vields F[v]TF[v]r ~r if WE(r) C [[v]
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For details of Beylkin construction: Beylkin, 1985; Miller et al
1989; Bleistein, Cohen, and Stockwell 2000; WWS MGSS notes
1998. All components are by-products of eikonal solution.

aka: Generalized Radon Transform (“GRT") inversion, Ray-
Born inversion, migration/inversion, true amplitude migration,...

Many extensions, eg. to elasticity: Bleistein, Burridge, deHoop,
Lambaré,...

Apparent limitation: construction relies on simple geometric op-
tics (no multipathing) - how much of this can be rescued? cf.
Lecture 3.
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Example of GRT Inversion (application of F[v]1): K. Araya (1995),
“2.5D" inversion of marine streamer data from Gulf of Mexico:

500 source positions, 120 receiver channels, 750 Mb.
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