Reducing the Computational Complexity
of Adjoint Computations

William W. Symes

CAAM, Rice University, 2007

Agenda

e Discrete simulation, objective definition

¢ Adjoint state method

e Checkpointing

e Griewank’s optimal schedule

e Implementation

e Examples

e Continuum adjoint state and adaptive time stepping

e SUMmMary

Discrete Time Evolution

u't =H"c,u"],n=01,..,N -1
Note:

e u" € U approximates state state spacé/ att =t¢,,n =0, ...]V;

e time-dependence of RHS accommodates possible time-depeadf control
c € C, C' = control space, and of other factors;

e control c can be initial data and/or material parameter fields or soteam or
actuator history or pump rate or ...

e RHS (H") represents solution operator of discrete dynamics - cagither ex-
plicit or implicit. Originates in a continuum dynamics sgst (PDE), via finite
element / difference / volume method.

Objective or Cost Functions

ulc] = (v’ ul, ..., u")! € UY =time history of simulation - implicitly a function
of c.

S : UY — E =sampling operator assume linear for simplicity,, though this is
not really necessary. Sample spdacenay belU(Meyer control) or time series of
projections ofU/ (seismic traces, trajectory projections,...) or ...

G : E — R =“goodness” function

Objectiveor costfunctionJ : C' — R via

Adjoint State Method

For computing the gradient of:

e computeulc] = (u’,,u™)7;

e initialize g € C andw"*! € U to zero. Thenfon = N —1,...0

Wn+1 _ Dan+2[C,un+1]TWn+2—|- [ST(VG>[S[H[C]H]n+1
g = g+ D.H"c,u"|w"

e Wwhenn = 0 is reachedy J[c] = g.

Observation:u evolvesforward in step indexw backwardin step index, but they
are needed at indicesn + 1 respectivelyn = N — 1, ...0.

Computational Complexity

Strategies for simultaneous accesaitow” ™! — in all casesv”*! evolved back-
wards fromn = N ton = 0.

1. For eacm, evolveu” fromn = 0, or
2. Computeu’, ..., u”, store all; For each retrieveu”, or

3. Computen’,u", store evenykth statek > 1; for eachn, interpolaten state
from closest stored states, or

4. Computen’, ...u", evolveu” backwards in time from = N .

Computational Complexity

Cost: in units of simulation steps (flops) to computeand number of state vectors
stored:

1. working storage (1 state vector) for h\it /2 steps - prohibitive;

2. N steps,V state vectors;

3. alsoN steps,V/k state vectors, but loss of accuracy due to use of interpolati
rather than evolution;

4.2N steps, 1 state vector, but only possible for conservativené reversible
problems.

Example: Reverse Time Migration

(“RTM”): Adjoint state method applied to least squaresdasai seismogram. The-
ory = in some instances, gradient of least squares residuabigeof subsurface.

Increasingly popular because of its insensitivity to caempl of acoustic wavepaths
(full session, 06 SEG).

3D RTM - typical state space dimensien10'® w (= 10° space gridx 10* shots),
N ~ 10*. Flops per space-time gridpoint for standard regular griefidifference
schemes~ 10°.

= cost per time step- 10 flops. Storage per state vectar10” w (natural algo-
rithms work per shot).

Example: Reverse Time Migration
Upshot:

e strategy 1 hopeles$)(10°®) flops);
e probably also strategy 2({ — 100TB storage);

e absorbing boundary conditions make wave equation tinexensible, but some
schemes admit variants of strategy 4 with considerabletiaddi storage (not
available with attenuation modeling).

Commercial 2D prototypes use strategy 3 with~ 10. Even for 2D &107?),
application is 1/O bound; for 3D, requires 1 - 10 TB.

Checkpointing
Alternative to strategies 1-4. Requires allocation of

e Ny buffers, each storing one state vector;
e No >> Np checkpoints = integers betweemnd V.

Forward sweep (n=0,...,N): solve forward evolution prabte computai’, ..., u";
store Nz checkpoints in the buffers, including the first (always nafgl last.

Backwards sweep (n=N-1,...,0): begin by using strategyakting at the last check-
point When then = last checkpoint, re-use its buffer to store another chackp

computing its state by application of strategy 1 startiranfrthe previous stored
checkpoint. Continue using strategy 1, starting from rieXtst checkpoint [this
must be the replacement for the last checkpoint, unlessstpraviously stored].
Continue. At end of algorithm, buffers store some numberntaties starting with

n = 0; finish using strategy 2.

Checkpointing

Example withN = 15, Ng =3, No =6

Meaning of colums:

e bufk records checkpoint stored in buffer k;

e recomprecords the previously computed steps which ra@mputedn each
step of the backwards sweep,dashif no recomputation necessary in step;

¢ bold facedcheckpoints used as Cauchy data for strategy 1,

e italic: n for whichu” combined withw” ! in evaluation of gradient update.

During forward sweep checkpoints 0, 6, 11 recorded in bsffei2, and 3.

10

step| bufl|buf2| buf3| recomp
14| O 6 | 11 | 12,1314
13| O 6 | 11 12,13
12| 0 6 | 11 12
11| O 6 | 11 7,8
10| O 6 | 8 9,10
9 | O 6 | 8 9

8 | O 6 | 8 -
710 6 | 8 7

6 | O 6 | 8 -

51 0 1 | 3 (1,2,3,45
4 |1 0 1 3 4

3| 0 1 3 -

2 | O 1 | 3 2

1| 0 1 3 -

O] O 1 3 -

11

Griewank’s Optimal Checkpoint Schedule

Big question: how do you choose checkpoints to

e minimize the amount of recomputation for given storagecatmn (Vg), or

e minimize the amount of storage required for a given levekeabmputation.

Solution by GriewankOpt. Meth. and Softwarel992, published as Alg. 799,
Griewank and Walthe ACM TOMS2000, in terms ofecomputation ratio= total
number of forward steps required to compute adjoint /

12

Griewank’s Optimal Checkpoint Schedule

Example,N = 10000:

buffersy 3 | 5 [10/15/20|25|30|35/40]| 60
ratio |27.9/11.3/5.8/4.5/3.8/3.6/3.4/3.1/2.9/2.8

Storage for 36 state vectoes total cost of adjoint~ 3 times forward simulation +
1.5 times for adjoint stepi(" ! — w") ~ 4.5 times simulation cost.

Comparisons: with straight app of strategy 2, cost is 2.2$isimulation cost and
300 times as much storag&trategy 3 requires “only” 30 times as much storage
but loses accuracy.

Example: for 3D RTM, use of opt. checkpointing drops requstrage ta@(100)
GB, may eliminate disk i/o.

13

Implementation

Within TSOpt framework, adjoint step with optimal checkpointing implemed
via three classes:

Real Funct i on: abstract interface specializingpcal Dat aCont ai ner, rep-
resenting a function of a real variable vigat (Scal ar t) method.

G i ewankReal Funct i on: implementation oReal Funct i on using aSt enci |
object to compute and store checkpointed state vectonsinseinterpolation of
nearest stored checkpoints to requested “tinisses TOMS Alg 799 code!!!

Dynam cs: base class for time stepping, includedj St ep method, which ac-
cepts a state vector arg of typecal Dat aCont ai ner .

14

Example

2D RTM using standard centered difference (2,4) schemeemgnted in TSOpt.

Parallelization over shots (i.e. individual simulatious) parallelDat aCont ai ner
subclasd/Pl _PackageCont ai ner . [For 3D, parallelization of individual simu-
lations will be required as well.]

Applied to Marmousi benchmark synthetic data: 240 shotgj&@& 4 ms. Model is
826 x 2350 gridpoints (4nmx 4m), absorbing boundaries on all sides (PML). With
iInternally computed time gridy: 8000 time steps.

Time per simulation on AMD Opteron 275: 10 min. Time to sinmelantire data
set on Rice Cray XD-1 Opteron cluster using 120 cores: 20 min.

Time for adjoint state computation using 32 checkpoint$) d@res (recomp ratio
= 3): 90 min.

15

Continuum Adjoint State and Adaptive Time
Stepping

With adaptive time stepping, grid for simulatiomust in general be independent of
grid for linearized and adjoint simulation. [Trivial exalepadaptive quadrature.]

Therefore must return tcontinuumadjoint state method for the differential equa-
tion

d

= = Hle.uf]; u(0) =,

and the objectivel defined as before,

VJlc] = Dulc]'S"VGI[S[u[c]]]

N /0 dt DHlu[c](t), e,] w(t),

16

Continuum Adjoint State and Adaptive Time
Stepping

where thecontinuum adjoint statev satisfies

d

(1) + DyH[ule] (1), e) wit) = STV G[S[ule] ()]

How to approach this computation: use a comparably accacaieme to solve this
adjoint state equation, and a “real function” class {tkke ewankReal Funct i on

to return the values aofi[c|(¢) required, as efficiently as possible for a given allo-
cation of auxiliary storage. NB: these values wiiverbe those computed in the

computation ofu/c| by time stepping!

More details: stay tuned fdvlarco Enriquez MA thesis

17

Summary

e Adjoint state method poses interesting computational ¢exity problem;

e Griewank solved it, and provided C and F77 realizations irVAGTOMS 799
(2000);

e This is enabling technology: it brings problems into readhol would other-
wise be untouchable, and reduces the floating point and nmyecoonplexity of
large-scale sim-driven opt problems (eg. 3D RTM) to manhlgelavels;

e TSOpt incorporates Griewank’s optimal checkpointing scbge

e Modification for adaptive gridding straightforward: sinGeiewank checkpoint-
Ing doesdiscretebackwards stepping optimally, it is also the optimal toal fo
extracting state at arbitrary times (augmented by intatpmh).

18

