


CAAM®6G41 Spring 2007

The Eikonal equation [|V®(z)|| = n(x) : mod-

els, theory, simulation.

C h d Dte r O . http://www.tangentspace.net/cz/archives/2006/11/eikonal-equa

e \Where :



e \When :

e Homework - Grading 7

Outline :



Where does it come from 7?7 What is it used for ?

Formal asymptotic solutions of Helmholtz

Eikonal and Ray tracing

Going behind caustics (Maslov theory)

Wigner Transform

GTD

Gaussian Beams



e Other examples of occurence of the Eikonal equation



What do we know about ?

LLaw of refraction : History - Fermat principle

Euler Lagrange and ray tracing (CV)

Lagrangian — Eulerian : Classical solutions

Basics on Viscosity solutions

Optimal control interpretation of the viscosity solution

Explicit formula Lax-Oleinik



e in the (Max,+) Algebra ...

e Relationship with Hyperbolic Conservation Laws ...



How do we compute it ?

Quick recap on classic methods for ray tracing

The need for more : wavefront construction

Viscosity solutions : derivation of a simple 1-D Upwind scheme

Convergence theory

Rouy-Tourin scheme in 2-D

Fast algorithms (Fast marching, Sweeping ...)



e "LAgrangian Schemes . Explicit formula Lax-Oleinik

e Fast Legendre Transfoms

e Algorithm in (Max,+) Algebra ..



Helmholtz equation

(see also W. Symes seminar notes on time domain ... and
www.cscamm.umd.edu/programs/hfw05/runborg survey hfw05.pdf )

Au(X) 4 E°n?(X)u(X) =0

(local) .... to make it well posed add
e a (possibly infinite) domain.
e Radiation conditions or absorbing boundary conditions .

e Source terms or boundary conditions (diffraction problem) .
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Formal asymptotic solution

Debye expansion (1911) - Chap 1. Equations with Rapidly Oscil-
lating solutions Partial Differential equations V., M.V. Fedoryuk

up(X) = P z Aj(X)

o (@ k)ﬂ ’
Apply H. operator and order in powers of k
Auy + k?n?u, = —k2(|[VP|2 —n?)+
ik(2V®D - VAg 4+ AgAd)+
(AAg+ ...)+

FAS :
(55 + 12} (A (X)) = 0(k )



The Eikonal equation (EE) - Ray Tracing Solution (RTS)

[V (X)]]? = n(X)?

Method of characteristics (assuming V& is smooth) :
LY (s) =Vd(Y(s)). Set P=VP(Y) then

Y aP  1_ 5
—— =P(s), — = =Vn?(Y
= P(s), - = SVnP(Y(s)
The phase &, can be computed as the integral of ||P||2 along a
ray Y (s), since
d ay

SOV () = V(Y () = [|P()]* = n*(V(s))

Rem. 1 : All this is completely local | BC IC 7

Rem. 2 : parameterization of paths can be changed (ex : dt =
n?(Y (s))ds is a possibility )



A word about Amplitudes

Setting B(s) = A(Y (s)) gives (TE) :
d dYy

£B(S) =— VA(Y (s)) = B(s) Ad(Y(s))

. Instead remark that TE :
V- (4°Vd) =0

Integrate on a "ray tube” {Y(s,yg)|0 < s <t|yo € B(yg,€)} and
use the divergence th. vyields

B?nJ v (s.50)= constant

Y0)
where J = det(ay(s’yO))



Ex. 1 : n=1 plane wave solution
u(X) = AeFHeX
if |€]] = 1.

RTS :
Y (s,Yp) = Yo+ £, P(s,Ypy) =&, P(Y(s,Yp)) = Po(Yp) + s
ICsonz=0: Yy=(x,0), P(0,Yp) =&, Po(x,z=0) = x2&; give

(X)) =¢£-X



Physical Optics

For a diffracion pbm (u = Cetk€0T 4 4 .,+) us the integral formu-
lation (v = 0 on the scatterer)

ou
= G(klx — 2'))—dz’
u(@) = [ Glkle /)5 do

and the geometric optic approximation u = Cetkes® — Cetke—9T 1o
replace by

u(x) = / G(k|lz — 2'|)(2Ciksing)dx’
0825 gt
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Ex. 2 : Hu = 0z, fundamental solution : Hankel function,
point source

w(X) = Hi(k|X — Xo|)

As k — 400 u(X) ~ (\/WMXQ_XO'EZ—?L%)QZ'I{\X—XO\

RTS :
Y (s,0) = Xg + s€g, P(s,0) =¢ép, P(Y(s,0)) = Pg(0) + s
ICs for 0 € [0,2n] : Y(0,0) = X, P(0,0) = €&y, Ppg(0) = 0 give

P (X) = |[X = Xo|
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Asymptotic interpretation of the R.B.C.

The solution behave asymptotically (in kr) as

ezk’r’

T
which is to say that far form source or scaterrer solution behaves

like geometric point source in homegenous space with amplitudes
modulated by 0 .

u~ A(0)
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n?(x,z) =€

n?(z,z) =1
re€[0,1—¢ n?(z,2)=1—2z, xz€[0,1—¢

r>1—c¢

gauche x <0

Ex. 3 : A fold caustic case
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Separation of variables — 1D

We can set u(z,z) = @(z)ek*SINa then

ﬂg(fﬂ) + kQ(COSQ a)ﬂg(a:) —0 ﬂg(:ﬂ) — etk Cosax + Re—tkx Cosa
@(x) + k2(cos? a — z)iig(z) = 0 f(z) = CAi(—k3p(z))+
p(z) = cos?a —z DBi(—k%p(ac))

As k — +oo : On the shadow side (p(z) < 0 )
Ai(~k3p(2)) — 0 Bi(~k3p(x)) — 4o

So we take D = 0, determine R,C with the compatibility condi-
tions at x = 0 and
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on the lighted side ( p(x) >0 )

C T 1.0 2 3 T . D 3
’L~Ld {G_ZZeZk(gpQ) _I_ezze—zk(gpQ)}_l_O(k_l)

— 1
2\/mp4

_ 3
(Stationnary phase on Ai(—k%p(x)) = erk(p(x)’f_%)dg)
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Next RTS

Only work in z € [0,1 — €], n?(x) = 1 — z, take Y(s,zg) =
(y(S,ZO),Z(S,ZO)> and P — (pyapZ) we get :

(y=py  y(0,20) =0
zZ =Pz 2(0,zg) = 20

{ Dy = —% py(0, z9) = COS
p =0 p2(0,29) = sina

\ d=1—-—y P(0,29) =sinazg

which yields Y (s, zg) = (—%82 + s cosa, s Sina + zq)
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Use z as parameterization and finally
At (z,z) = Y(S,zcj)c) — 2 phases :

dF(z,2) =z sina+ %p($)3/2 -+ %COS2 e

Away from a Fold caustic, stationary phase theorem gives

u = q e iT/4 ikPT 4 ot oim/4 kT + ok
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imag(u(x))

real(u(x))
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Global Asymptotic solutions (Maslov)

Need to know the " catastrophe” which ruins the standard FAS.
Simplest case is the " Fold caustic’ :

Consider (locally) the smooth manifold

M = {(y(z, 20), 2, py(2, 20),p2(2,20)) | 20 € Zpo, 2 € Z}

then " TH.” (H6rmander, Duistermaat, ...) : 3¢(X,0), X = (z, 2)
60 € 'R such that

1. M ={(X,Vx9¢)|0gp =0, z€ Z}.

2. VX € M, 30%(X) such that 9y¢(X,0F(X)) = 0 and

19



Opep (X, 07(X)) # 0.

. Use generalized ansatz u(X) = (2 )2 [A(X, 0, k)eko(X.0)qp

and expansion A(z,0,k) = 332§ 75;4;(X,0) then away from
7=0 (ik)J k)J

Caustic, stationnary phase Th. gives

W(X)=%" Ao(X, 6%(X)) _Fim/A ko (XEC0) 4 o1
+ |09 (X, 0F(X))|2
— superposition of simple AS. Computable by RTS (or in
this case with 2 Eikonal Equations).

. 029 (X, 6=(X)) = 0 indicate the caustic where the station-
nary point is degenerate and give a contirbution in O(k).



Rem. 1 : Other option is gind a change of variable such that
$(X,€) = $o(X) + p(X)¢ — & — Airy function.

Rem. 2 : Other catastrophe in 2D is the cusp which leads to
Pearcey and 3 branches.



other Ex. (from Runborg)

Example: Ray/Wavefront solutions
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Motivation 1 : Discretisation depend on k&

Finite Element Solution of the Helmholtz Equation with High
Wave Number Part II: The h-p Version of the FEM

Frank Ihlenburg; Ivo Babuska SIAM Journal on Numerical Anal-
ysis, Vol. 34, No. 1. (Feb., 1997), pp. 315-358.

For degree-p Lagrangian FE in 1D

Ju — up|| < C1(RE)P 4+ Cok(hk)PT!

Rule of thumbs : hk < 1 — Very Large systems to solve.

http://alphard.ethz.ch/hafner/Workshop/Hiptmair.pdf
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Numerical Dispersion

Helmholtz equation: model for propagation of time-harmonic waves

Au+K2u:f NnQcR! |, u=0 onaQ.

1 I N I,w"]' f N\ N\
Lo i A
o L @ = e =00 f =0, u) =
[ [ ] [ S L .
od/| | | ‘|‘ ﬂl' H‘- ‘J;'wl'_ fl ‘|‘ |_|| | l‘l ! ‘|‘ ‘\ lw‘ ‘|‘ exp(ikx), k = 40)
I i | | | |
Ozf lw'- l‘{ Ql "‘ |‘| |‘| |‘| '_'_"l |‘| "‘ "‘ 'H' |‘| ‘I‘ k < Galerkin solution, p.w. linear FE on
oal| [ © |‘| l‘f i wllg |‘| Jl- il |‘| _J' | I 'l‘f equidistant mesh
| ‘ IR | M [ |
04 \/ || | I I l'; ] | | || B> Phase error of Galerkin solution
-0.6| [l (IR Ak
U W U Y U = Numerical dispersion
o8 — Gale‘rkins‘olution"‘"f‘ ‘I‘..‘I' "‘I‘"; ‘I‘-.‘I‘. ‘I‘.‘I‘ I\.‘I‘ | "\ p
—1 | — Exact solution v v /
0 012 0.4 0.‘6 OiB 1

B> Main source of discretization error in numerical wave propagation
(at medium & high frequencies)

Numerical Dispersion 1
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Motivation 2 : Theory and practice of Migration Opera-
tors Mathematical Theory For Seismic Migration and spatial
resolution. G. Beylkin

check W. Symes seminar notes

http://www.trip.caam.rice.edu/txt/tripinfo/other list.html
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The Wigner Transform Approach

ve(z,y) = u(z + Sy)u(z — Sy), (z,y) € R?

fe(x, &) = Fy_eve(w,y) = [ e ¥ uve(z,y)dy

Some properties

lu(@)||* = ve(x,0) = {F~1f}(z,0) = [ f(x,)e’0de

eRe{u(z)Vu(z)} = Sve(z,0) = F{F1f}(2,0) = [iff(z,£)e0%dg
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Looking at the Wigner transform of Assymptotic Solutions gives
some insight :

u = A(z) ctko(z) _, ve(z,y) = A2(a;)eik(eyv¢(x)+0(e3)) + O(€2)
Taking € = k—1 and neglecting high order terms we get :
fz,8) = A2(x) [ e (Vo@)~Ody = A%(2)5(¢ — V(=)

Rem. 1 : Same with sums of AS
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The kinetic equation for

Au(z) + e ?n?(z)u(z) = 6(x)

Notice : V- Vzve = 5[Au(z +5y)u(x —5y) —u(z+ 5y) Au(r — 59)]
and thus we have :

iVy - Vave(z,y) + =[n?(z + Sy) — n?(z — Sy)]ve(z,y) = oc(z,y)

Fourier Transform and

§-Vafet Ze(z,§) *e fe = Qe(z,§)

26



AS ¢ — 0O
L ’L 2 € 2 €

So formaly (Taylor expand the n2 functions above around z) :

1
Ze(2,€) —es0 van%) - Ved(8)

Can also check that

Qe(z, &) = Fy_¢loe(x,y)] —emo 6(2)d(|€] = 1)

27



Finally :

£ f(,6) + Van®(2) - Vef (2, €) = 6(z — 20)5(/€] = 1)

which can be reformulated as a time dependent problem f(z,£&) =
I§° f(s,z,€&) ds (particles go at infty with time) :

88.]?(87:675) + 5 ’ v$f(37x7€> + %v$n2(x> ) V§f(8,£13,§> — Oa
f(0,2,8) = d(x — 20)d(|¢| = 1)

Back to Ray tracing : Set
fo(s,2,8) = Xpcod(z — Y (s,0))d(§ — P(s,0))

28



where {Y (s,0), P(s,0)} satisfy the RT equations

dy 1_ 5
== P(s), S = SVnA(Y(s)

with point source |n|t|al|sat|on ;

Y(0,0) =20, P(0,0) = (cosH,sinh)

satify the limit kinetic equation. Use a test function ¢g(x,£) and
setting < f,g >= [ fgdxd§. Then one can check formally that
(Y, P depend on s,0)

< 0sf0,9 >= YgeolYs - Vag(YV, P) + 42 - Veg(Y, P)}
= Ygcol{P Vug(Y,P) +3Vn2(Y) - Veg(Y, P)}
= <& Vag(z,8) + 3Vn2(z) - Veg(a,8), fo >
= — <& Vafo,g>—<3Vn2(z) Vefo, g >
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Rem . : Morrey Campanato semi-norms involved in Helmholtz
case (see B. Perthame et al, High Freqency limit of the Helmholtz

equation. Rev. Iber. Americana ... )
Rem. : As ¢ — 0 convergence is weak in S’
Wigner Functions versus WKB-Methods in Multivalued Geometrical

Optics, Christof Sparber ? , Peter A. Markowich. y. , Norbert

J. Mauser
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More : Level sets, Image processing PDE (second order
terms ...)

www.intlpress.com/CMS/issue4/levelset imaging chapter.pdf

www.math.uci.edu/“zhao/publication/publication.html

More : Shape From Shading

perception.inrialpes.fr/Publications/2006/PF06a/chapter-prados-faugeras.pdf

More : Geodesics Mesh Refinement, Creeping rays, RT iIn
Anisotropic media

www.nada.kth.se/“olofr/Publications/article-creep2-1.pdf

math.unice.fr/"rascle/psfiles/hr01.ps
31



Symes Quian elastic waves (See TRIP WWW)

More vaguely related but more Fashionable : BlackScholes
(finance) 2nd order terms...



Distance functions
d(x,rq) = |x — xg| satisfies |Vd| = 1.

Anticipating : ¢(x) = min, cpq d(z,zg) is the viscosity solution
of

Vol =1in 2, ¢ =0 on 0L2.

32



Level sets image processing

d{t0) — 4(r(t,a)) and set I(t,a) = {z,¢(z,t) = 0} then ¢ is
solutlon of

09

— 4+ v- Vo =20
5 + » =
Ex. 1 : Normal motion v = n|v¢| Note n may depend on =x.
Ex. 2 : Motion by mean curvature (Evans and Spruck .... )
Vo
v= V(g

Ex. 3 : Surface reconstruction : v = Vd, |Vd| = 1, d(x) =
O forxeS
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//f%

Figure 4: initial data




Figure 8: reconstruction of the dragon

(d) low resolution reconstruction
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Shape From Shading

.-'/-..F

/
ﬁ n
.

Surface Photo Retrieve the surface(s)
which gives the same photo

Problem
—_—

T 3,

Lambertian scene hypothesis (L, light and n, normal to the sur-

face vectors) I(z1,z0) = R(n(zq1,x2)) = cos(L,n) = % , Iz_l
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" Orthographic SFS” with a far light source
L = (I,~) is constant and such that |L| =1

Sz = (x1,20) — (z,u(x)) is a the surface parameterization so
that n(xz) = (—Vu(x), 1).

I(z) = —Vu(zx) -l +~
V14 |Vu(z)?
With L = (0,0,1) — |[Vu(z)|? = 12%@ —1
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Mesh refinements

Now use a Rien}annian metric G. Note : length of dx is defined
as |dz|g(y) = |G2dz|. If G = diag(lz,ly) and lx #= ly — anisotropy.

Again @ ¢(x) = mMing coq da(x,zp) is the viscosity solution of
1
|G2Vo| =1 in 2, ¢ = 0 ondSQ.

Now define G using a surface (x,z(x)) : G(x) = Id+Vz2® Vz or
Id+ H(2)'H(z).
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7=cHicC

Z(x




G(x)=G1(x), h(x)=h1(x), Vmin=.001 G(x)=G2(x), h(x)=h1(x), Vmin=.001

Figure 4a Figure 4b

G(x)=G1(x), h(x)=h2(x), Vmin=104(-8) G(x)=G1(x), h(x)=h1(x), Vmin=104(-6)

1

Figure 4c Figure 4d



Amisotropic Hamilton-Jacobi equations

17
5.2 Here we pregent some meshes
The relerence lenglh dgr and the olther parameters are delined below or in Seclion 5.1.
dgr=0.04, gmin=0.265, 978 Triangles dgr=0.03, qmin=0.255, 2196 Triangles
first order, nx=201 ny=201, dt=0.0025 cfl=1 first order, nx=201 ny=201, dt=0.0025 cfl=1
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Law of refraction : Small experiment - History/Motivation

Minimizing travel time (= = [ dist/speed) in a two layered medium.

Sin ¢1 . Sin ¢o
€1 2

History (Historia Mathematica 10 (1983) 48-62 The Mathemat-
ical Technique in Fermat’s deduction of the Law of refraction.
K. Andersen. )

e 1637 Descartes Dioptrique Assuming light goes faster in denser
media.
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e 1657 (letter to C. De la Chambre) principle of least time.

application of his method to find minima : Methodus ad
disquirendam et minimam Fermat. " adequation”

fla+e) >~ f(a)

then simplify, divide by e and finally "equate’. he obtained
expressions with "an irregular and fantastic proportion’” af-

ter long and tedious calculations and ""his natural inclination
towards indolence” had made him stop.

e 1662, completes computations. Finds Descartes’s law !

e (Differential Calculus) Leibnitz (1684) and Newtown (1687)
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The optical length of a Path

Fermat principle says Rays are the path Y that minimize (actually
extremize) traveltime

SV (1)) = [ n(Y ()Y ()lds + (¥ (0))

(n=12)

Simplify to 141 D problem (time 4+ space) : Y(s) = (¢,y(t))
(paraxial assumption)

44



Fix t, x,

t
min F(y,yo) = /O L(s,5(s),5(s))ds + ¢° (y0)

{yeC>®, yoeR y(t)=x}

with L(t,y,v) = n(t,y(£))y/1 + v2(t).

Classical problem (L.C. Young, Lecture on the Calculus of Vari-

ations ) important hypothesis : strict convexity of v — L(t,y,v).
Existence : (hints)
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First variation vanishes

Euler-Lagrange equations :
the Frechet derivative satisfy F/(y,yg) = 0

F(y+ h,yo + ho) — F(y,y0) = [y L(s,y + h(s),y + h(s)) — L(s,y(s),9(s))ds + ¢°(yo -

=[5 La(s,9(5), 9())n(s) + Lu(s,y(s), 9(s))h(s)ds + O(|h|?) + ¢2(yo)ho + O(h3)
1| = supsefog{Ih(s)] + |R(s)]}

= [o{La(5,5(5),9(5)) — L Lu(s,9(s),9(s)) }h(s)ds + O(|h[?) + ..
{L+(0,5(0),5(0)) — ¢2(y0) }ho + O(h3).

46



< ay (0, y) b >= [§{La(s,y(5),3(5)) = F5Lu(s,y(5), 5(s)) h(s)ds

3y0 E (40, y) ho = Lu(0,(0),(0)) — ¢2(y0)

{ La(s,5(s),5(5)) — L Lu(s,y(s),5(s)) = 0
Ly(0,4(0),9(0)) — ¢2(yo) = O.
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Recap. on the Legendre Fenchel transform (L, > 0)

Define

H(t7x7p) — L;—>p(t7map) — Sup {p’U T L(t,x,v)}
vERY

Then L(t, X, ’U) = L = SUDpeRd{p-U — H(t7 $,p)}

and H, = (L,)" 1 i.e.
v= Hp(t,z,p) < p= Ly(t,z,v)
and are the optimal args, and for (v,p) linked as above we have
L(t,z,v) = Ly(t,xz,v). v—H(t,z, Ly(t,x,v)) = p.Hp(t,z,p)—H(t,z,p))
and
Ly(t,z,v) = Hz(t,x,p)

48



Examples

1 1
L(v) = §v2 — H(p) = 5p2

(Burgers equation)

Lt,z,v) =n(t,z)y1+ V2 H(t,z,p) = —\/nQ(t,a:) —p2

(Eikonal equation)
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T he Hamiltonian system

Set
p(s) = Lu(s,y(s),y(s)),

which automatically gives

y(s) = Hp(s,y(s),p(s)), y(0) = yg (by construction).

take the time derivative of p

p(s) = —Hqz(s,y(s),p(s)), p(0) = ¢3(yo), (BEuler — Lagrange).
also remark that ¢(y(t)) = [§ L(s,y(s),v9(s))ds + ¢(yg) satisfies

d(s) = Hp(t,y(s),p(s)).p — H(s,y(s),p(s)), #(0) = ¢°(vo)
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Back to RT

In practice y,p, ¢ as functions of (¢,yg)

Apply H(t,z,p) = —\/n2(t, ) — p>

p
2

((y(s) = \/n:_pQ y(0,%0) = vo

7\

p(s) = —% p(0,y0) = ¢2(yo)

| d(s) = A #(0.20) = 6°(s0)

n

Setting ¢ = /n? —p? and %(s) = ¢ and then change parame-

terization dz = ds\/n? — p? to recover our original ray tracing
equations for {Y = (y,z2), P = (p,q)}.
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Lagrangian — Eulerian : Classical solutions
Consider Qp = {y(t,y0), V(t,y0) € [0,T] x R%}.

As long as J(t,yg) = det(%y’go}) #= 0. One can invert

yo — = = y(t,y0)

Then define ¥ (t,x) as

w(t7 y(ta yO)) — ¢(t7 yO)'

Y iIs smooth and

lbx(t, y(t7 yO)) — p(ta yO)
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The Hamilton-Jacobi equation

Time differentiate :
o (t, y(t,yo)) + Hp(t, y(t,yo0),p(t,y0)) - Vzo(t,y(t,yo)) =

p(87y0) ) Hp(say(sayO)ap(Sa yO)) - H(37 y(87 y0)7p(87y0))7

Write in EBulerian coordinates

{ y(t,yo) — @
p(ta yO) — vib’w(tay(tayo}) — vxw(t7 ZC)
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We get

Op(t, ) + H(t,z, Vb (t,z)) = 0, ¥(0,z) = ¢°(x).

Rem : dxp > 0 and H = —\/n? — p? (paraxial hypothesis), we find
the original 2-D the Eikonal equation.
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Classical solutions break down at caustics

Looking around a Caustic point : {y° = y(v5), ¢ = p(y5)}.

Fold :
oy __
8y0 T O
82
32yyo 7+— 0
Then (TE) :

(yo — 95)2 329

y(yo) =y"+ 0+ 5 e

(v5) + O{(yo — ¥5)*}
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Cusp :

Then :

y(yo) =y*+ 040+

PR
D
Hedle
<
T
o o

S)
<
S

(yo — 98)3 (93'y

6 93Yo

(y5) + O{(yo — 95)4}
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An example :

n(t,x) = 2.8 if |[x —0.2sin0.3¢] > 1 and n(t,z) = 2.8 + 0.4 x
exp—10(2—0.25in0.31)% g|ge

®o = 0 as initial condition.

red:rays/blue:semi-lag

3.5

2.5

0.5
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Basics on viscosity solutions

G. Barles, Solutions de viscosités des Equ. de H,-J., Springer
1994

P.L. Lions, Generalized solutions of H.-J. Equations, Pitmann
Some good ressources online , in French though ... .

www.math.psu.edu/bressan/PSPDF/simy.pdf

Has evolved into a very general theory of existence and approxi-
mation for non-linear equations.

F(z,u(zx), Du(z), D?u(z)) = 0
F(x,u, P, M) Needs :

- Uniform continuity. - (Strict) convexity in p.
- Coercivity in p. - Ellipticity in M.
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Consider simplified Pbm

ew + H(x,Du) =0 z € RY

(same with Dirichlet/Neumann or Cauchy problems).

Defs :

e u(z) € C(R?) is a viscosity sub(super)-solution if V¢ € C1
xg is a point of max. (min.) of u — ¢

= ecu—+ H(z,D¢p) < (>)0

e 1 IS a viscosity solution iff sub- and super-solution.
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First Remarks

e One can restrict to ¢ s.t. u(xg) = ¢(xq).

e One can restrict to strict min/max assumption : ¢ = ¢ +

alz — zg|?.

e Classical solutions are viscosity solutions.
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Exemple (1-d)

/| =1, w(0) =u(1l)=0 H') =] -1

Has no classical solutions.
Has many " generalized” W1 solutions.
Has a unique BUC viscosity solution.

Viscosity solution allows upward (but not downward) kinks :

L {,"-J":; (J:]
' 6 {:;L‘:]

- oM 'Ll“]

-

1/2 €T
g and oo are two possible functions: v : .
e can't verily wla) < o for every neighbourhood of ]E |‘T" {Tﬂl E |

Figure 2.2: Olugtration of: Yo € Viu{e) < o) = [¢'(x)| < 1
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Properties

maximum principle...

Prop. (Unicity) : Letw (resp. u) beal.s.c. (resp. u.s.c) super-
(resp. sub-) viscosity solution of then u < w.

Evanescent viscosity : Vé > 0O,

{ —0Au+eu+ H(x,Du) =02 € Q

has a unique C2 N WH> solution us which converges to the vis-
cosity solution (e = 0).

(Sketch of the proof).
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Back to the Calculus of Variation and Cauchy Pbm Con-

sider
{ Ou~+ H(z,Du) =0t >0, 2R

u(0,z) = ug(x)

Set L = H* (see recap. on Legendre Transform) and

. . t .
vt = ipfCoto) + it || Lt v.7)dt)
v(t) ==
7(0) = o

Then v is the unique BUC and Lipschitz viscosity solution of the
HJ equ.
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Sketch

e Inf is reached by v € C2, |¥| < Cy.

e v super-solution (inf prop.)

e v sub solution (pontryagin).

e Lipschitz.

_I_D’U/:L'U
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Intro. to explicit formula (Lax-Oleinik

Let H(p) be convex in and depending only on p. Remember
L = H*, then the viscosity solution of

ou~+ H(uz) =0, u(0,2) = ug(x)

can be written as (backward parameterization)

u(t, 2) = influo(y (D)) + [ H*(v)ds}

where ¥ = —v, v(0) = x. Then use Jensen inequality

t * *]— t . *:U_’Y(t)
/OH(v)dSZtH(?/Ovds)—tH( )
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i.e. straight lines from x — y = ~(¢) are optimal. We can rewrite

the viscosity solution as :

T —
t

u(t, @) = influo(y) + tH*(——)ds)

(Lax Oleinik formula).

For ex. H(p) = —\/1 — p? — H*(v) = /1 + v2 gives the distance

funtion from the Cauchy data.
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Link with conservation laws in 1D. Setting formally u = ¢y
yields

Orp + H(¢pz) = 0= Ou+ (H(u))z =0
Ex. : Burgers H(p) = %

Rem. 1 : H.-J. is similar to Homegenous GO.

Rem. 2 : Inf principle of the Viscosity solution is equivalent to

R.H. condition. Shock speed : s = “+‘2|'“_
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Back to RT (numerics)

AP = In2(v (s))

The phase &, can be computed as the integral of ||P||2 along a
ray Y (s), since

La(v(s) = TV () = [P()IP = n?(¥ ()

In practice solve for a family of rays parameterized by Yy or 6.
Generally with a RK or adapative RK method.

note : should say a word on symplectic solvers...
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Does it work ? : RT in Marmousi

http://www-rocq.inria.fr/ benamou/testproblem.html
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Dynamical (or Paraxial Ray tracing)

Ray methods in Seismology, Cerveny, Molotkov, Pscencik, Charles
U. Praha (77) ....

G. Lambare 2002 GO+ winter school notes

Idea : Linearize RTS (and change notations :(éx, dp) : first order
variation in (z,p) = (Y, P))

doxr __
s = 0P

d5p = V(QVnQ(a:))(Sa:
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parabolic paraxial wavefront

Figure 2.4: Parazial approzimation arround a central ray [Lambaré et al., 1996].



Propagator matrix

Because this is linear in the initial conditions, one can factor
various computations in a " propagator matrix”

(0z,6p)(s) = (=, 6p)(s0)P(s,s0)

(transpose)
d’P 0 Id
E - ( v(%vnQ(x)) 0 ) 737 73(50750) = Id

Rem. 1 : this can be computed very accurately along each ray.

Rem 2. : this provide a 2nd order accurate estimate of the
Lagrangian submanifold {(z(s,yo),pr(s,y0)) |yo € -..}.

z(yo + dyo,Po + dpo) = x(yo,Po) + --..
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Also give second order derivatives of travel time ... discuss
ray coordinates ...
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Wavefront construction

Main idea : maintain ray density through interpolation (adapta-
tive gridding). Need a good criterium.

Problem : stretching or concentration may also may also occur
in the p dimensions.
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space [(:c,z),(:r,px),(pmz), (P2, 22)].  The point source i a r=110 m and 2=110 m. .
The travel time step is .08 s, and the ray density criterion is ATmee = 10 m and
APmaz = 10 X 107 %sm™. [, the plane (z,2) the rays are straight lines and the waye-
front are circles [Lambaré et . , 1996].
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base of the cell

-

CONFIGURATION SPACE
CELL

a) ra

x distance
< dxVinje ?

"top of the cell

bicharacteristic

PHASE SPACE
b)
. .. x and p distances
bicharacteristic < dxSun ?
< dpSun ?

. Figure 3.7: Vinje's and Sun’s criteria for checking the size of the cells. (a) Vinje’s
criterion, where the x distance of the top of the cell must not exceed the value dryinje.

(b) Sun’s criterion, where the x and p distances of the top of the cell must not exceed the
values dzgyy, and dpsyn. [Lambaré et al., 1996].
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Sol 1 : Vinje ... x distance. Problem stretching or concentration
may also may also occur in the p dimensions.

Sol 2 : Sun ... use x and p distance.



base of the cell
= -77-- - pz
ew bichaxacteristic ™\
\gobic Hermit®inferpolatian) . N
N N : bicharacteristic
misfit
bicharacteristic < dxmax ?
< dpmax ?

top of the cell
Figure 3.8: Uniform ray density criterion for checking the size of the cells. The misfit
between the tangent plane {defined by the parazial approzimation) and the ezact manifold

must not evceed a given value in distance and slowness. A new bicheracteristic is inter-
polated at the base of the cell if the misfit exceeds (dTmag; SPmaz) [Lambaré et al., 1996].

Sol 3 : Lambare et al ...

Use paraxial quantities to estimate
error.
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Figure 3.11: Comparaison of ray density criteria on the comples velocity model presented
on Figure 3.5. The source is a at x=1000m, 2=1100m. The travel time step is .03 5. The
ray field is sampled according to : (a) Vinge’s criterion; (b) Sun's criterion; (¢) Uniform
ray density criterion. In order to compare equivalent results in terms of computational
cost, we choose the values of the ray-density criteria in such a way as to have the same
number of cells (about 2305 in each case) [Lambaré et al., 1 996].
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were generated [Lambaré et al., 1996].



Intro to Eulerian FD upwinding

Consider the simplest non trivial HJ equ. (¢ > 0)

ut +cuy =0

i.e. H(p) = cp (note L(v) = 0 for v = ¢ and oo else) with explicit
solution u(t,z) = ug(x — c¢t). Then discretize : u"f = u(kdt, jdz)
and "upwind” . Two solutions

( k

—uh
uf‘l‘l — u + dt J‘|‘1 J

k_.k

k+1 _ K YTt
| U, = u; + dt I
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Remarks

e Right upwinding does not converge (try ug = 0 for x > 0 and
#*= 0 for x < 0.

e Numerical propagation speed is j—;. consider sequences s.t.

(kdt,jdx) — (t,z) as (dt,dx) — 0 and define
¢ = limsup —

Then no convergence (wrong dependance) if ¢ < ¢. This is
the sense of the CFL condition :

c— <1
x
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o Left Upwinding can be rewritten

k1 _ at, . dt g
u; = (1— C@)uj —+ cUj g

Scheme is monotone (max principle) under CFL.



Back To H.Jin 141 D

Take (for instance) H(p) = —y/1 —p? and look a a time step
[tj,tj_|_1] around x;.

Assume further that the phase v is piewise linear with left and
right slopes ¢f.

Let y(t) be a ray beween (¢;,z) and (t;41,%;) such that z =
y(tj) < x;.

(1-1)dx 1dx (i+1)dx

(+1) dt /

j dt
y(t)
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Integrate the Lagrangian phase (Riemman problem)

Y(tig1, 7)) = o(tj41) = o(t) + fé‘Hlp(S)Hp(S, y(s),p(s)) — H(p(s))d:
= ¢(t;) + ¥z (x; —y(t;)) — dtH ()
= Y(t;, ;) — dtH (Y )

Looks like a FD scheme for the H.-J. equ.

YT =gl —dtH ()
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Upwinding : Minimize traveltime ...

(-)dx idx (@(+1)dx (-1)dx idx (i+1)dx
(+1) dt f ,/4 (j+1) dt 7%\?% ;
idt 7// \ jdt AN
A B
(-1)dx idx (@+1)dx (-1)dx idx (i+1)dx
G+1) dt NN 14 G dt—— NN R ‘\
jdt \ / jdt SRR
C D
A. ¢y >0, v >0
B. ¢ >0, w;jt <0
D. ¢ <0, ¥F <0



the " Godunov” scheme

Opbi(t) = —H (t,z;, 9% ;(1)) = 0, ¥;(0) = ¢°(;).

(1) = max((wh )T, (@ (0))7)

() = ¥i(t) —d;fi—l(t)7 yr () = ¢i+1(tc)i$— bi(t)

(p)T = maz(p,0) and p~ = min(p,0).
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Note on B.C. I.C CFL bound on Hy ....
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Generalization 1. (convex H with min at p = 0)

Recall H(t,z,p) = sup,{p.v — L(t,x,v)} and L = H* also convex
with min at v =0 (Hp = (Iy) 1) .

Remark that (omit (¢,z)) H(p) = max(H+(p), H—(p)) with

{ HT(p) =sup,>o{p.v — L(v)} = H(p™T)
H™(p) = supy<of{p.v — L(v)} = H(p™)

H.-J. becomes (upwinding)

O (t) = max(HT (L ;()), H= (5 ;(1))
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Generalisation 2 (Godunov numerical Hamiltonian)

Gro— ) —

where

Ext =
el(a,b .
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Lax-Friedrich

Y () + w;iu))_aw;iu) — ()

LF + - —
H>" (t, x;, ¢$,i(t)a %,z(t)) = H(t, z;, 2 dx

a chosen to maintain monotonicity (derivative of H).
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Higher Order (ENO, WENO ...), time integration ...

90






Recall ....
Recall H(t,z,p) = supy{p.v — L(t,z,v)} and L = H*.

Remark that (omit (¢,z)) H(p) = max(Ht(p), H(p)) with

{ HT(p) = supy,>o{p.v — L(v)}
H™(p) = supy<oi{p-v — L(v)}

H.-J. becomes (upwinding)

i (t) = max{H* (v, (), H (¥ (t)}

91



Time discretization (%)

wf—Fl — %k — dt * maX{H+(tk7 Ly, D_wf)a H_(tk7 Ly, D+¢f)}
where

vk i1~
Dlwf — dx : D’rwg{ — +C:Z[:l:

HT(p) =sup,>o{p.v — L(v)} H™(p) = supy<o{p-v— L(v)}
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Rewrite as :

i = min{U—yF, Uy}
where :
U—ypF = infyso{dt H*(tF, z;,0) + Loyl | 4+ (1 — L o)k}
Utk = infycofdt H*(t%, z;,0) — Lok | 4+ (1 + o) ¢k}

Important remark : can restrain to |v| <V = (||Hp||x). The CFL
condition can be written :
dt

V—<1
dx
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Fondamental properties of the numerical scheme

e Consistence : For a smooth function ¢, looking at a sequence
s.t. (kdt,jdz) — (t,x) as (dt,dr) — O and setting o =
o(t*, x;), we get

im{yf Tt — min(U—yF, Ut} = 819(t, 2) — H(t, @, ¢u(t, )
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e Monotone : Check that (gbf"‘l)i iS @ monotone (increasing)
function of (¥F);.

Just need 1 ij—i"" > 0, CFL condition is enough for U=*.
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e Stability : (under CFL) the discrete solution is uniformly
bounded (independently of (dt,dx).)

|UEF oo < dt]|H*|Joo + C|1F]oo

SO

k+1
15 0o < dt| H |00 4 C|19F oo

is enough for finite time horizon.
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Outline of convergence proof.

1. Using stability define :
E(t,x) — ”m(k dt,i dx)—(t,x) SUDLD,Z-{:

y(tﬂv) — ”m(kdt,id:ﬁ)ﬁ(t,x) inf¢£€

by construction ¢ < 1.

2. Show that (monotonicity + consistence) v is an upper semi
continuous viscosity sub-solution.
Show that (monotonicity 4+ consistence) 1 is a lower semi
continuous viscosity super-solution.

3. Then strong uniqueness garantees : ¢ < 1.
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Back to full 2-D (z,v)

E. Rouy and A. Tourin. A viscosity solutions approach to shape-f:
SIAM J. Numer. Anal. 3 (1992) 867--884.

The Eikonal equation
IV (X)) =n(X)? X = (z,y)

can be written (optimal control formulation)

sup {Vy(z,y).Q —n(x,y)} = 0.

Q<1
Sup is reached for q = |g—;‘ﬁ‘ SO can also use
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"Lagrangian’ discretisation

sup (M@0 — @) —v@y)
1Q[I<1 —dt

Rem. : This is first order (if the solution is smooth !)

W((z,y) — dt Q) — (x,y) = —dt Vip(z,y).Q + O(dt?)

Rem. : this is upwinding

Y(z,y) = ||cigﬂ21{¢((m’ y) —dtQ)} + dtn(x,y)

Recall
Y = Vi = Qopt“qubn
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Grid interpolation

Grid : (x;,y5) = (idz,jdy). Note ¥(z;,y;) = v;; and n(z;,y;) =
First assume that (z,y)—dtq) € T = {(x;,y;), (xj41,Y;), (x5, ¥j—1)}

(restrict Q to point in one of the quadrant).

1 using a “‘convex linear” combination of the value at grid points :

Y((z,y) —dtq) = av; + BYir1; +vYiit1
where o, B and ~ are such that
(z,y) —dtq= a(z;,y;) + B (xir1,95) + v (Tig1,Yj41))
a+ 6 +~v=1.

Rem : Again first order approximation.
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The optimization problem now depends on («,3,v). It can be

. dx d
worked out for the four quadrants and taking dt = y
q J Vdz+dy?

simplifies into the discrete Hamiltonian :

9ij (WVijs i1, Yij41,Yio1j, vij—1) = 0, V(4,5)

where

9i5 (ijs Vit 15 Yij+1, Yi1js Yij—1) =

ymax(at, 672 + max(ct,d)2 — n(w, ;).
a™ = max(0,a), b~ = max(0, —b) and

xwzj %; (- 1y b = D+¢z] wz—i—lj wz]

a = dx dx

Vi ¢z 1 -+ ¢z 41" Vi
y ¢Z] J J— d = D ww J 7 J

101



Relaxation

S. J. Osher and L. Rudin

Rapid convergence of approximate solution to shape form shading
problem.

Never Published

9ii (Vijs Yit1j, Yij+1,Yi-1j, Vij—1) = 0, V(4,5)
IS a system of nonlinear equations ... may be difficult to solve

directly. Instead is is easy to prove that the algorithm obtained
by the following relaxation scheme converges

Compute a sequence of (¥ )” solutions of

gzy(wzja Z_|_1j7¢w_|_1,¢z_ ja Z__]_) — 07 V(Z7])

Note this is like reintroducing time ...
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On the positive quadrant

we have to solve for t = ,jjf? (h = dx = dy)

\/((%4-1] —t)" )2 + ((sz]_l_l _ t)—>2 B ny; = 0

Solution is explicitely given as

+1 2 — n—113\2
‘% = 0.5 (¢zg+1 z-l-lj + \/2h z+1g — Yit1y if |¢@+1J Z+1J| < hnij

1
¢Z+ — mln(er_lJa z+1j) + hngj else

Extend to all four quadrant by seleecting min...
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Slightly faster way is to revisit as P1 interpolation on each tri-
angle made by the 5 point stencil.

Y((z,y) — dt (qz,qy)) = ¥;j — dt gz (Dzvi;) — dt gy (Dyvi;)

Three unknown (47%, Dav;j, Dytbi;) and 2 equations ((qz,qy) =
(h,0), (¢, qy) = (0, h))

1
¢Z+1 — hDywzg)

iﬂfjll] — n — hDCE¢’Lj)
then close with the Eikonal equatlon .

IVECOIR = n(X)? X = (2,9) & [(DF )2 + (D )y =

Extension to all four quadrant yield the scheme
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Fondamental properties of the numerical (implicit!) scheme

e Consistance : For a smooth function ¢, looking at a sequence
s.t. (idx,jdy) — (x,y) as (dy,dx) — O and setting ;; =
¢(zi,y;), we get

im g;; (VYij, Vi1, Vij41, Yie1j Yij—1) = [[Vé(z, 9)|| — n(z,y)
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e Monotonicity : if (u;;);; < (vij)i; then for all t and all i, we
have

Gij (B Wi 155 W41, Wi—15, Uij—1) < 935t Vi1 Vij4-15 Vie1j5 Vij—1)
(Upwind scheme acts as a "time"” dependent equation in the
ray direction).

106



e Stability : unconditionnaly stable (implicit !)
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Relaxation and convergence proof
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http://www.levelset.com/system/html/modules/sections/index.php?op=s
Interview with Stanley Osher at National University of Singapore
Stanley Osher is an extraordinary mathematician who has

It turned out that I had a friend who knew the District Attorney o:
was then doing video image enhancement with my colleague L. Rudin,
I: You could be rich. Hollywood would be paying you millions.

0: People work for salaries. There is money, ego and fun. It’s a wvc¢
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