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Data parameters: timet, source locationxs, and receiver locationxr, (vector)half
offseth = xr−xs

2
, scalar half offseth = |h|. Experiment =shot, single experiment

data =shot record.
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Typical Marine Record
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Shot record, Gulf of Mexico (thanks: Exxon)
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Mechanical Characteristics of Sedimentary Rock
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Well logs from North Sea borehole. Top curve:vp (m/s); middle curve:ρ (kg/m3);
bottom curve:vs (m/s). (thanks: Mobil R&D, Viking Graben). Features:large
variance on both short (wavelength) and long (km) distance scales.
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1. The Acoustic Model of Reflection

Seismology
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Constant Density Acoustic Model

acoustic potentialu(x, t), sound velocityc(x) related to pressurep and particle
velocityv by

p =
∂u

∂t
, v =

1

ρ
∇u

Second order wave equation for potential
(

1

c(x)2
∂2

∂t2
−∇2

)

u(x, t) = w(t)δ(x − xs)

plus initial, boundary conditions. RHS models localized energy source, “no low
frequencies” -many wavelengthsbetween source and target.Useful idealization:
w(t) = δ(t), in which caseu = G(xs,x, t)(Green’s function of the wave equation).

Forward map:F [c] ≡ p|Y , whereY = {(t,xr,xs) : 0 ≤ t ≤ T, ...} is acquisition
manifold.
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2. Least Squares
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Nonlinear inverse scattering

Inverse problem: givend ∈ L2(Y ) find c ∈ C s. t.F [c] ' d.

A few questions:

• What is C?

• What is'?

• If ' means “close inL2”, could pose asleast squaresproblem: findc ∈ C as

c = argmin ‖F [c] − d‖2

Theory is inadequate - few rigorous answers to questions like these - but relevant
properties ofF understoodin broad outline.
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The bad news...

• Results of numerical experimentation disappointing (Tarantola 1986, many oth-
ers)

• If δc is smooth, thenF [c] andF [c + δc] tend to benearly orthogonaleven when
δc is small⇒ least squares function tends tosaturate, i.e. remain near its maxi-
mum, except whenc is “right on average”.

• fluctuations in angle betweenF [c], F [c+ δc] asδc varies⇒ stationary points far
from global min,even when data is free of noised = F [c]!!!

• Problems are so large that iterative methods (variants of Newton) are only feasi-
ble appraoch (3D: millions of unknowns, billions of equations)⇒ can only find
stationary points;

• Therefore this approachdoesn’t work: it has hadno practical impact.
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3. Linearization
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(Partly) linearized inverse scattering

Formally,F [v(1 + r)] ' F [v] +F [v]r whereF [·] is linearized forward mapdefined
by

(

1

v(x)2
∂2

∂t2
−∇2

)

δG(xs,x, t) = 2
r(x)

v2(x)

∂2G

∂t2
(xs,x, t)

F [v]r =
∂δG

∂t

∣

∣

∣

∣

Y

• basis of most practical data processing procedures.

• v is no more known thanr, inverse problem for[v, r] still nonlinear!

• linearization error contains many effects observable in field data, notablymul-
tiple reflections, which can be quite strong, or even dominant -so major open
issue in this subject is how to go beyond linearization!!!
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Linearization error

Critical question: If there is any justiceF [v]r = directional derivativeDF [v][vr]

of F - but in what sense? Physical intuition, numerical simulation, and not nearly
enough mathematics: linearization error

F [v(1 + r)] − (F [v] + F [v]r)

• smallwhenv smooth,r rough or oscillatory on wavelength scale - well-separated
scales

• largewhenv not smooth and/orr not oscillatory - poorly separated scales

No mathematical results are known which justify/explain these observations in any
rigorous way, except in 1D(Lewis & WWS IP 91).
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The good news...

We actually know something aboutF [v], besides its representation whenw(t) =
δ(t):

F [v]r(t,xr,xs) =
∂2

∂t2

∫

dx

∫

dτ G(x,xr, t − τ )G(x,xs, τ )
2r(x)

v2(x)

Geometric optics provides asymptotic, high-frequency representations ofG and
these lead to oscillatory integral representation ofF [v]. Consequences:

• rigorous results on solvability of least linear least squares problem (“linearized
inversion”)minr ‖F [v]r − (d−F [v])‖2 (Beylkin 1985, Rakesh 1988, Smit et al.
1998, Nolan 1997, Stolk 2000),

• practical computational techniques - can representF [v]† as aGeneralized Radon
Transform(Beylkin 1985)

Knowledge of long model scales + data⇒ estimates of short model scales.
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minr ‖F [v]r − (d −F [v])‖2, given v
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Approximate linear least squares solution après Beylkin (“GRT inversion”), Mis-
sissippi Canyon, Gulf of Mexico, 2D survey (750 MB, 500 shots). Thanks: Exxon.

14



But what aboutv?

The long scale velocity modelv is no more known that anything else,a priori.

Even if linearization assumed to be sufficiently accurate, the “partially linearized”
least squares problem

minv,r ‖F [v]r − (d −F [v])‖2

for v and r has same intractable character as fully nonlinear least squares inversion.
Therefore this approachdoesn’t workeither: it has hadno practical impact.

[Aside: no, it doesn’t help to measure error in some way otherthanL2!]

So how are velocities found?

15



4. Extensions
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Extended models

Extensionof F [v] (akaextended model): manifoldX̄ and mapsχ : E ′(X) → E ′(X̄),
F̄ [v] : E ′(X̄) → D′(Y ) so that

F̄ [v]
E ′(X̄) → D′(Y )

χ ↑ ↑ id
E ′(X) → D′(Y )

F [v]

commutes, i.e.

F̄ [v]χr = F [v]r

Extension is “invertible” iffF̄ [v] has aright parametrixḠ[v], i.e. I − F̄ [v]Ḡ[v]is
smoothing, or more generally if̄F [v]Ḡ[v] is pseudodifferential (“inverse except for
wrong amplitudes”). Also require existence of a left inverseη for χ: ηχ = id.

NB: The trivial extension -X̄ = X, F̄ = F - is virtually never invertible.
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Grand Example

The Standard Extended Model:̄X = X × H, H = offset range.

χr(x,h) = r(x), ηr̄(x) = 1

|H|

∫

H dh r̄(x,h) (“stack”).

r̄ ∈ range ofχ ⇔ plots of r̄(·, ·, z,h) (“(prestack) image gathers”) appearflat.

F̄ [v]r̄(xr,xs, t) =
∂2

∂t2

∫

dx

∫

dτ G(x,xr, t − τ )G(x,xs, τ )
2r̄(x,h)

v2(x)

(recallh = (xr − xs)/2)

NB: F̄ is “block diagonal” - family of operators (FIOs) parametrized byh.
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Reformulation of inverse problem

Givend, find v so thatḠ[v]d ∈ the range ofχ.

Claim: if v is so chosen, then[v, r] solves partially linearized inverse problem with
r = ηḠ[v]d.

Proof: Hypothesis means

Ḡ[v]d = χr

for somer (whence necessarilyr = ηḠ[v]d), so

d ' F̄ [v]Ḡ[v]d = F̄ [v]χr = F [v]r

Q. E. D.
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Application: Migration Velocity Analysis

Membership in range ofχ is visually evident

⇒ industrial practice: adjust parameters ofv by hand(!) until visual characteristics
of R(χ) satisfied - “flatten the image gathers”.

For the Standard Extended Model, this means: untilḠ[v]d is independent ofh.

Practically: insist only that̄F [v]Ḡ[v] be pseudodifferential, so adjustv until Ḡ[v]d

is “smooth” inh.
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Left: shot record (d) from North Sea survey (thanks: Shell Research), lightly pre-
processed.
Right: restriction ofḠ[v]dobs to x, y = const (function of depth, offset): shows rel.
sm’ness inh (offset) for properly chosenv.
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5. Annihilators
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Automating the reformulation

SupposeW : E ′(X̄) → D′(Z) annihilates range ofχ:

χ W
E ′(X) → E ′(X̄) → D′(Z) → 0

and moreoverW is bounded onL2(X̄). Then

J [v; d] =
1

2
‖WḠ[v]d‖2

minimizedwhen[v, ηḠ[v]d] solves partially linearized inverse problem.

Construction ofannihilatorof R(F [v]) (Guillemin, 1985):

d ∈ R(F [v]) ⇔ Ḡ[v]d ∈ R(χ) ⇔ WḠ[v]d = 0
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Annihilators, annihilators everywhere...

For Standard Extended Model, several popular choices:

•

W = (I − ∆)−
1

2∇h

(“differential semblance” - WWS, 1986)

•

W = I −
1

|H|

∫

dh

(“stack power” - Toldi, 1985)

•

W = I − χF [v]†F̄ [v]

⇒ minimizingJ [v, d] equivalent to reduced least squares.
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But not many are good for much...

Sinceproblem is huge and data is noisy, onlyW giving rise to differentiablev, d 7→

J [v, d] are useful - must be able to use Newton!!! Once again, idealizew(t) = δ(t).

Theorem (Stolk & WWS, 2003):v, d 7→ J [v, d] smooth⇔ W pseudodifferential.

i.e. only differential semblancegives rise to smooth optimization problem even
with noisy data.

Some theory, many successful numerical tests of differential semblance using syn-
thetic and field data: WWS et al., Chauris & Noble 2001, Mulder& tenKroode
2002. deHoop et al. 2004.
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6. Beyond linearization
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Invertible Extensions

Beylkin (1985), Rakesh (1988): if‖∇2v‖C0 “not too big” (no caustics appear), then
the Standard Extension is invertible.

Nolan & WWS 1997, Stolk & WWS 2004: if‖∇2v‖C0 is too big (caustics, multi-
pathing), Standard Extension isnot invertible! Not in any version - common offset,
common source, common scattering angle,...

Brings the whole program to a screeching halt, unless there are other, inequivalent
extensions.
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Claerbout’s extension

χr(x,h) = r(x)δ(h), ηr̄(x) “=” r̄(x,0) (Claerbout’s zero-offset imaging condition)

r̄ ∈ range ofχ ⇔ plots of r̄(·, ·, z, h) (i.e. image gathers) appearfocussedath = 0

F̄ [v]r̄(xr,xs, t) =
∂2

∂t2

∫

dx

∫

dh

∫

dτ G(x+h,xr, t−τ )G(x−h,xs, τ )
2r̄(x,h)

v2(x)

This extension is invertible, assuming (i)r̄(x,h) = r̂(x, h1, h2)δ(h3) (horizontal
offset only) and (ii) ”DSR hypothesis”: waves propagate up and down, not side-
ways (“rays do not turn”) [Stolk-DeHoop 2001] and sometimesunder more general
conditions [WWS 2003].
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Focussing at the right velocity
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Offset Image Gather, x=1 km
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OIG, x=1 km: vel 10% high
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OIG, x=1 km: vel 10% low

Claerbout extension inverse (Ḡ) applied to data from randomr, constantv. From
left to right: correctv, 10% high, 10% low. Observefocussingath = 0 for correct
v.
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Differential Semblance for Claerbout’s Extension

Wr̄(x,h) = hr̄(x,h), J [v, d] =
1

2
‖WḠ[v]d‖2

Same smoothness properties as DS for Standard Extension.

P. Shen (2004): implementation, optimization via quasi-Newton algorithm, syn-
thetic and field data.

Conclusion: successfully estimatesv in settings (strong refraction) in which Stan-
dard Extension based DS fails.

30



Claerbout’s Extension as a linearization

Write differential equation forF̄ [v], by applying wave operator to both sides of
integral representation:̄F [v]r = δū|Y where
(

v−2
∂2

∂t2
−∇2

)

δū(x,xs, t) =

∫

H

dh 2r̄(x − h,h)v−2(x − h)
∂2G

∂t2
(x − 2h,xs, t)

Observethat this equation describes the linearization of the system

V −2

[

∂2u

∂t2

]

−∇2u(x,xs, t) = w(t)δ(x − xs),

in which the “velocity”V is anoperator: formally,

V w(x) =

∫

H

dhKV (x − h,h)w(x− 2h)

and the linearization takes place atV with KV (x,h) = v(x)δ(h) = χv(x,h).
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The Nonlinear Claerbout Extension

That is, you can view Claerbout’s extension of the linearized scattering problem as
the linearization of an extension of the original scattering problem:

v−2

[

∂2u

∂t2

]

−∇2u(x,xs, t) = w(t)δ(x − xs),

wherev is the operator of multiplication by the positive functionv, versus

V −2

[

∂2u

∂t2

]

−∇2u(x,xs, t) = w(t)δ(x − xs),

with self-adjoint positiveV .

This generalized nonlinear scattering problem makes sense: J.-L. Lions showed in
the late ’60s how to demonstrate the well-posedness of the initial value problem for
operators like the above, with self-adjoint positive operator coefficients [also Stolk
2000].
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Extended Inverse Scattering

The extended inverse scattering problem takes the place of the right inverse map̄G
of the linear Claerbout extension: define theextended forward map̄F by F̄ [V ] =

u|Y , whereu solves

V −2

[

∂2u

∂t2

]

−∇2u(x,xs, t) = w(t)δ(x − xs),

plus appropriate initial and boundary conditions. Given a nominal noise levelε, an
ε-solution of the extended inverse scattering problem is a positive self-adjointV so
that

‖F̄ [V ] − d‖ ≤ ε (1)

In itself, this problem is grossly underdetermined - so use it as a constraint!
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Nonlinear Differential Semblance

Thenonlinear differential semblanceproblem is: givend, ε, find V to minimize

J [V, d, ε] ≡ ‖WKV ‖
2

subject to the constraint (1), whereW = multiply by h andKV is the distribution
kernel ofV .

This problem statement combines the differential semblance automation of indus-
trial velocity analysis with modeling of the nonlinear effects (multiple reflections
etc.) observable in actual data.

Many open questions:

• What is a good class of operators? Must have well-behaved kernels!

• How to sensibly define the norm inJ

• etc.
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Conclusion

• Straightforward least squares formulation of (waveform) reflection seismic in-
verse problemintractable - very irregular with large residual stationary points
⇒ no influence on practice.

• Linearizedextensionsprovide framework for both (industry standard) interpre-
tive velocity analysis and automated techniques based on construction ofrange
annihilators- reformulation of inverse problem.

• Only (pseudo)differential annihilatorsyield smooth objective functions, suc-
cessful automatic solution of partially linearized inverse problem.

• Claerbout’s extension suitable for use in “complex structure” (strong refraction).

• Claerbout’s extension also has a nonlinear generalizationRightarrow approach
the the full nonlinear inverse scattering problem.

Will it work? Stay tuned!
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