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Data parameters: time source locatiorx,, and receiver locatior,, (vector)half
offseth = ===, scalar half offset, = |h|. Experiment =shot single experiment
data =shot record
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Typical Marine Record
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Shot record, Gulf of Mexico (thanks: Exxon)




Mechanical Characteristics of Sedimentary Rock
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Well logs from North Sea borehole. Top curwg:(m/s); middle curvep (kg/m?);
bottom curve:v, (m/s). (thanks: Mobil R&D, Viking Graben). Featurelrge
variance on both short (wavelength) and long (km) distance scales.
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1. The Acoustic Model of Reflection
Seismology




Constant Density Acoustic Model

acoustic potentiaki(x,t), sound velocityc(x) related to pressurg and particle
velocity v by

ou 1
p = 5 VvV = qu

Second order wave equation for potential

(= 2) ) = e

plus initial, boundary conditions. RHS models localize@rgy source, “no low
frequencies” -many wavelengthBetween source and targdfiseful idealization:
w(t) = 0(t), in which case: = G(x,, x,t)(Green’s function of the wave equation).

Forward map: Flc] =
manifold

ply, whereY = {(t,x,,x,) : 0 <t <T,...} is acquisition




2. Least Squares




Nonlinear inverse scattering

Inverse problem: giverd € L*(Y) findc € C's. t. Flc| ~ d.

A few guestions:

e What is C?
e \What is~?

o If ~ means “close ir.?”, could pose aseast squareproblem: findc € C as

¢ = argmin || F[c] — d||?

Theory is inadequate - few rigorous answers to questiomsthikse - but relevant
properties ofF understoodn broad outline




The bad news...

e Results of numerical experimentation disappointing (el 1986, many oth-
ers)

e If 6c is smooththenF|c] andF|c + dc| tend to benearly orthogonakven when
oc IS small=- least squares function tendsdaturate i.e. remain near its maxi-
mum, except when s “right on average”.

e fluctuations in angle betweehc|, F|c+ dc| asdc varies=- stationary points far
from global min,even when data is free of noige= F|c|!!!

e Problems are so large that iterative methods (variants oftdie are only feasi-
ble appraoch (3D: millions of unknowns, billions of equasd=- can only find
stationary points;

e Therefore this approaatoesn’t work it has hadho practical impact




3. Linearization
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(Partly) linearized inverse scattering

Formally, Flv(1+r)| ~ Flv] + F|v|r whereF[-] is linearized forward majplefined
by

1 0° ) r(x) 0°G
(U(X)20t2 -V ) 0G (x4, X, 1) = 22}2(}(> 572 (x5, X, 1)

Flulr = 8;—?

Y

e basis of most practical data processing procedures.
e v is no more known than, inverse problem fopv, r| still nonlinear!

e linearization error contains many effects observable il fiata, notablymul-
tiple reflections, which can be quite strong, or even dominagb-major open
Issue in this subject is how to go beyond linearization!!!
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Linearization error

Critical question: If there is any justicE|v|r = directional derivativeD F |[v||vr]
of F - but in what sense? Physical intuition, numerical simalatand not nearly
enough mathematics: linearization error

Flo(1+r)] — (Flv] + Flo)r)

e smallwhenv smooth; rough or oscillatory on wavelength scale - well-separated
scales

¢ large whenwv not smooth and/or not oscillatory - poorly separated scales

No mathematical results are known which justify/explassthobservations in any
rigorous way, except in 1Lewis & WWS IP 91).
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The good news...

We actually know something aboutv], besides its representation whett) =
o(t):

Flolr(t, x,, x;) = %/ dx / dr G(x,x,,t — 7)G(x, XS,T)?Q;EB

Geometric optics provides asymptotic, high-frequencyrespntations ofy and
these lead to oscillatory integral representatio’pf|. Consequences:

e rigorous results on solvability of least linear least sgsgsroblem (“linearized
inversion”)min, || F[v]r — (d — F[v])||* (Beylkin 1985, Rakesh 1988, Smit et al.
1998, Nolan 1997, Stolk 2000),

e practical computational techniques - can repregénll as aGeneralized Radon
Transform(Beylkin 1985)

Knowledge of long model scales + data estimates of short model scales.
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ming || F'lv]r — (d — f[v])”z, given v
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Approximate linear least squares solutionegpBeylkin (“GRT inversion”), Mis-
sissippi Canyon, Gulf of Mexico, 2D survey (750 MB, 500 shof$hanks: Exxon.
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But what about?

The long scale velocity modelis no more known that anything elsepriori.

Even if linearization assumed to be sufficiently accurdte,“partially linearized”
least squares problem

min,, ||[Flo]r — (d — Fv))|?

for v and r has same intractable character as fully nonlinear leastrequnversion.
Therefore this approadtoesn’t workeither: it has hato practical impact

[Aside: no, it doesn’t help to measure error in some way otihan L2!]

So how are velocities found?
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4. Extensions
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Extended models

Extensiorof F'[v] (akaextended modglmanifold X and mapsg : £'(X) — &'(X),
Flv]: &(X) — D'(Y) so that
Flv]
&(X) — DY)
x 1 T i
&(X) — DY)

commutes, i.e.

Flv|xr = Fvlr

Extension is “invertible” iff F'[v] has aright parametrixG[v], i.e. I — F[v|G[v]is
smoothing, or more generally f[v|G|v] is pseudodifferential (“inverse except for
wrong amplitudes”). Also require existence of a left inedor y: ny = id.

NB: The trivial extension X = X, F' = F' - is virtually never invertible.
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Grand Example

The Standard Extended Modet: = X x H, H = offset range.

xr(x,h) = r(x), nr(x) = |—;[‘ [ dh7(x, h) (“stack”).

7 € range ofy < plots of 7(-, -, z, h) (“(prestack) image gathers”) appdat.
o 27 (x, h)
Fl|r(x,, X, t) / dx / dr G(x,%x,,t — 7)G(X, X, T) o)

(recallh = (x, — x;)/2)

NB: F'is “block diagonal” - family of operators (FIOs) paramegizbyh.
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Reformulation of inverse problem

Givend, find v so thatG[v]d € the range of.

Claim: if v is so chosen, thejm, r| solves partially linearized inverse problem with
r = nGlv]d.

Proof. Hypothesis means

Glvld = xr

for somer (whence necessarily= nG|v]d), SO

Q. E.D.
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Application: Migration Velocity Analysis

Membership in range of is visually evident

= Industrial practice: adjust parametersydfy hand(!) until visual characteristics
of R(x) satisfied - “flatten the image gathers”.

For the Standard Extended Model, this means: writild is independent oh.

Practically: insist only thaf'[v]G[v] be pseudodifferential, so adjustuntil G[v]d
IS “smooth” inh.
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Left: shot recordd) from North Sea survey (thanks: Shell Research), lightx pr
processed.

Right: restriction ofG[v]d°™ to x, y = const (function of depth, offset): shows rel.
sm’ness im (offset) for properly chosen.

time (s)
time (s)
5

21



5. Annihilators
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Automating the reformulation

SupposdV : £'(X) — D'(Z) annihilates range of:

X W
E'X) — &X) — D(Z) — 0

and moreovefV is bounded ord.?(X). Then

Tlo:d) = S| WGl

minimizedwhen[v, nG[v]d] solves partially linearized inverse problem.

Construction ofinnihilator of R(F[v]) (Guillemin, 1985):

d € R(Fv]) < Gld € R(x) & WG[v|d =0
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Annihilators, annihilators everywhere...

For Standard Extended Model, several popular choices:

W= (I —A)2Vy,
(“differential semblance” - WWS, 1986)

1
W=1—-— | dh
|H|
(“stack power” - Toldi, 1985)

W =1—xF[]'Fu]

= minimizing J|v, d| equivalent to reduced least squares.
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But not many are good for much...

Sinceproblem is huge and data is noisynly W giving rise to differentiable, d —
J|v, d] are useful - must be able to use Newton!!! Once again, idealiz) = §().

Theorem (Stolk & WWS, 2003):v,d — J|v, d| smooth< W pseudodifferential.

l.e. only differential semblancgives rise to smooth optimization problem even
with noisy data.

Some theory, many successful numerical tests of diffeabséimblance using syn-
thetic and field data: WWS et al., Chauris & Noble 2001, Mul&etenKroode
2002. deHoop et al. 2004.
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6. Beyond linearization
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Invertible Extensions

Beylkin (1985), Rakesh (1988): [itV?v|| -0 “not too big” (no caustics appear), then
the Standard Extension is invertible.

Nolan & WWS 1997, Stolk & WWS 2004: if V*v|| 0 is too big (caustics, multi-
pathing), Standard Extensionnst invertible! Not in any version - common offset,
common source, common scattering angle,...

Brings the whole program to a screeching halt, unless therether, inequivalent
extensions
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Claerbout’s extension

xr(x,h) = r(x)dé(h), n7(x) “="r(x,0) (Claerbout’s zero-offset imaging condition)

r € range ofy < plots of7(-, -, z, h) (i.e. image gathersappeafocussedth = 0

Flo]r(x,, X, t /dx/dh/dT (x+h, %, t—7)G(x—h,x,, T )27“(< ?>

This extension is invertible, assuming fijx, h) = 7(x, hy, h2)d(h3) (horizontal
offset only) and (ii) "DSR hypothesis”: waves propagate mo @own, not side-
ways (“rays do not turn”) [Stolk-DeHoop 2001] and sometimader more general
conditions [WWS 2003].
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Focussing at the right velocity

Offset Image Gather, x=1km OIG, x=1 km: vel 10% high 0IG, x=1km: vel 10% low

Claerbout extension invers&') applied to data from random constant.. From
left to right: correcty, 10% high, 10% low. Obserfecussingath = 0 for correct
V.
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Differential Semblance for Claerbout’s Extension

Wr(x, h) = hi(x, h), Jv,d] = %HWG[U]CZH?

Same smoothness properties as DS for Standard Extension.

P. Shen (2004): implementation, optimization via quaswide algorithm, syn-
thetic and field data.

Conclusion: successfully estimatesn settings (strong refraction) in which Stan-
dard Extension based DS fails.
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Claerbout’s Extension as a linearization

Write differential equation for'[v], by applying wave operator to both sides of
integral representatior? [v|r = ju|y where

v_Qa—Q — V%) du(x, x,,t) = / dh2r(x —h,h)v?(x — h)aQ—G(X — 2h, x4, 1)
@t2 ) “™S9 T = ) @t2 ) “XS9
Observethat this equation describes the linearization of the syste
0%
—2 2 _
V [—8t2] — Vu(x,x,,t) = w(t)d(x — Xy),

In which the “velocity” V' is anoperator. formally,
Vw(x) = / dh Ky (x —h, h)w(x — 2h)
H

and the linearization takes placelawith Ky (x,h) = v(x)d(h) = yv(x, h).
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The Nonlinear Claerbout Extension

That is, you can view Claerbout’s extension of the linearigeattering problem as
the linearization of an extension of the original scattggpnoblem:

v [8t2] Vou(x, X, t) = w(t)d(x — Xy),
wherev is the operator of multiplication by the positive functioyversus
V2 gl — Vu(x, x,,t) = w(t)d(x — x,)
at2 ) “XSy _ S/
with self-adjoint positivé/.

This generalized nonlinear scattering problem makes sdnde Lions showed in
the late '60s how to demonstrate the well-posedness of tti@ value problem for
operators like the above, with self-adjoint positive opa&raoefficients [also Stolk
2000].
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Extended Inverse Scattering

The extended inverse scattering problem takes the pladeafght inverse map:
of the linear Claerbout extension: define the¢ended forward mag by F[V] =
uly, whereu solves

0%

V-2 [@] — V2u(x, X5, t) = w(t)d(x — x),

plus appropriate initial and boundary conditions. Giverommmal noise levet, an

e-solution of the extended inverse scattering problem issitige self-adjointl” so
that

|FV]—df < e (1)

In itself, this problem is grossly underdetermined - so tiss & constraint!
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Nonlinear Differential Semblance

Thenonlinear differential semblangagroblem is: givend, ¢, find V' to minimize
J[V.d, el = |WKy|?

subject to the constraint (1), wherg = multiply by h and K, is the distribution
kernel of V.

This problem statement combines the differential semblamtomation of indus-
trial velocity analysis with modeling of the nonlinear et (multiple reflections
etc.) observable in actual data.

Many open questions:

e What is a good class of operators? Must have well-behaveukletr
e How to sensibly define the norm h
e efC.
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Conclusion

e Straightforward least squares formulation of (waveforefjection seismic in-
verse problemntractable- very irregular with large residual stationary points
= no influence on practice

e Linearizedextensiongprovide framework for both (industry standard) interpre-
tive velocity analysis and automated technigues based wstre@tion ofrange
annihilators- reformulation of inverse problem.

e Only (pseudo)differential annihilatorgield smooth objective functions, suc-
cessful automatic solution of partially linearized inneeoblem.

e Claerbout’s extension suitable for use in “complex stregt(strong refraction).

e Claerbout’s extension also has a nonlinear generalizé&tightarrow approach
the the full nonlinear inverse scattering problem.

Will it work? Stay tuned!
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National Science Foundation
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Sponsors of The Rice Inversion Project
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All of you, for listening

http://wwv. trip.caamrice. edu
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