
Adjoints without Tears

William Symes

Rice University

February 2012

Why adjoints

Model space M, data space D

[M, D open subsets of Hilbert spaces]

Prediction or modeling or “forward” operator F :M→D

Inverse problem: given d ∈ D (“observed data”), find m ∈M so
that

F [m] ' d

Why adjoints

Least squares formulation: choose x to minimize

J[m] =
1

2
‖F [m]− d‖2

Algorithms: any relative of Newton needs gradient

∇J[m] = DF [m]T r , r = F [m]− d

Note that only the matrix-vector product is needed, not the matrix
of DF [m]T in any basis

Derivatives, adjoints, and time-stepping

Seismic inverse problems - forward map defined via solution of
wave equations - time or frequency domain

Finite difference in time:

un+1 = un + ∆t h[m, un], n = 0, ...N − 1 u0 = 0

u = state vector = time snap-shot (Cauchy data) of dynamical
fields (pressure, velocity, stress,...), un ' u(n∆t).

Discrete time data: F [m]n = Sun, S = sampling operator

NOTE: un implicitly function of m.

Derivatives, adjoints, and time-stepping

Differentiation: formal, implicit

δun+1 = δun + ∆tDm h[m, un]δm + ∆tDu h[m, un]δun,

n = 0, ...,N − 1; δu0 = 0

Then DF [m]δm = Sδun. Define vectors, matrices:

Ui = δui ; Bi = ∆tDm h[m, ui];

Hi ,i = I ; Hi+1,i = −∆tDu h[m, ui]; Hi ,j = 0, i 6= j , j + 1

Then
HU = Bδm

Derivatives, adjoints, and time-stepping

so
DF [m]δm = SH−1Bδm

whence
DF [m]T r = BT (HT)−1ST r

Pull this apart:

DF [m]T r = BTW , HTW = ST r

W = (w0, ...,wN)T = adjoint state vector

Derivatives, adjoints, and time-stepping

picking this apart further, B is a block-column matrix, so

BTW =
N∑

n=0

Bnwn (1)

also

wn = wn+1 + ∆tDu h[m, un]Twn+1, i = 0, ...,N − 1; wN = 0 (2)

Leads to Adjoint State Method:

I solve equation (2) backwards in time, starting with n = N − 1;

I in course of iteration, accumulate DF [m]T r = BTW by
adding in successive terms in sum (1).

Derivatives, adjoints, and time-stepping

Notes:

I in seismic imaging literature, equation (1) is (a version of) the
imaging condition, and equation (2) is the backpropagation or
reverse-time equation

I all of the preceding has complete analogue for continuum
problems (differential equations) - see Plessix 2006,...,Chavent
1974 - comes from control theory of PDEs (J.-L. Lions, 1968)

I computations up to this point coded abstractly in IWAVE++,
no need to write these loops!!!

I Remaining problem: figure out how to compute derivatives
Du h[m, un]δun, Bn+1δm = Dm h[m, un]δm and their adjoints
Du h[m, un]Twn+1, BT

n+1wn+1 = Dm h[m, un]Twn+1

Rules for differentiating stencils

A typical time-stepping rule: (2,4) staggered grid pressure update
in 1D, pn

j ' p(n∆t, j∆x) etc.:

pn+1
j = pn

j + (c1(v
n+1/2
j+1/2 − v

n+1/2
j−1/2) + c2(v

n+1/2
j+3/2 − v

n+1/2
j−3/2)) ∗ κj

c1, c2 are scheme constants. Velocity grid offset by 1/2 cell in
space and time from pressure grid.

Part of un+1 = un + ∆t h[m, un], where un = (pn, vn+1/2),
m = (κ, ρ)

Rules for differentiating stencils

Translation into code: update form - only one time level of p, v
retained (κ ∼ mp) - stencil in update form

p[j] += mp[j] * (c1*(v[j]-v[j-1])+

c2*(v[j+1]-v[j-2]));

Differentiate using formal Leibnitz rule: v, mp are indep. variables,
gives perturbation stencil

dp[j] += mp[j] * (c1*(dv[j]-dv[j-1])+

c2*(dv[j+1]-dv[j-2])) +

dmp[j] * (c1*(v[j]-v[j-1])+

c2*(v[j+1]-v[j-2]));

Rules for adjoint stencils

I identify input perturbation variables on the RHS, as opposed
to constants

dp[j] += mp[j] * (c1*(dv[j]-dv[j-1])+

c2*(dv[j+1]-dv[j-2])) +

dmp[j] * (c1*(v[j]-v[j-1])+

c2*(v[j+1]-v[j-2]));

Rules for adjoint stencils

I for each input perturbation variable, add an update rule with
the same multiplier and the output variable to obtain adjoint
stencil:

dv[j] += mp[j]*c1*dp[j];

dv[j-1] += -mp[j]*c1*dp[j];

dv[j+1] += mp[j]*c2*dp[j];

dv[j-2] += -mp[j]*c2*dp[j];

dmp[j] += dp[j] * (c1*(v[j]-v[j-1])+

c2*(v[j+1]-v[j-2]));

Important note: loop limits (on j) should be same as in reference
stencil

Rules for adjoint stencils

I rewrite non-increment update (=) as increment (+=), apply
preceding rule

Example: Dirichlet boundary condition stencil for (2,4) scheme
dp[-1] = - dp[1];

dp[0]= 0;

rewrite in increment form:
dp[-1] += -dp[-1] - dp[1];

dp[0] += -dp[0];

so adjoint is
dp[1] += -dp[-1];

dp[0] += -dp[0];

dp[-1] += -dp[-1] ;

(can translate back to assignment form - careful about order!)

Rules for adjoint stencils

I reverse the order of blocks of independent updates

Example: in 1D (2,4) scheme, natural order of pressure
perturbation array update is

I update interior nodes (1, 2,....) of dp using perturbation
stencil;

I update boundary nodes (-1, 0) of dp using Dirichlet stencil

In adjoint pressure perturbation update, reverse order:

I update boundary nodes (-1, 0, 1) of dp using adjoint Dirichlet
stencil

I update dv, dmp at whatever node indices occur in adjoint
stencil loop

Rules for adjoint stencils

Exercise for reader: apply these rules to matrix multiplication
(after all, a stencil is a compact representation of a sparse matrix
multiply!) and verify that in fact they produce a correct algorithm
for multiplication by the transpose matrix.

A semi-serious example

adjexpl.c

code for forward, linearized, and adjoint operators, (2,4) staggered
grid scheme for 2D acoustics.

Includes dot product test for components (individual stencils
operators composing Du h(m, u),Dm h(m, u), sampling operator
S), and full program (DF [m]δm, DF [m]T r).

Will be posted with talk slides

A semi-serious example

Dot product test evaluates alleged adjoint pair of operators A,B:
compare

p1 = (Ax)T y and p2 = xTBy

for random x , y . B = acceptable approximation to AT ⇒
p1 = p2 + ε, ε = low multiple (102) of macheps. Practically:
adjoint coding error ⇒ p1, p2 not that close (discretization vs.
roundoff).

adjexpl.c includes dot product test - passes, you try it!

A more serious example: IWAVE++

IWAVE = framework for regular grid FD modeling with high
accuracy schemes, boundary conditions, standard data formats,
loop and task level parallelism via MPI & OpenMP

I started as SEAM QC code (Fehler & Keliher 2012), released
SEG 09, v2.0 coming 12Q2

I common services - malloc, MPI comm, i/o, job control, etc.

I apps - staggered grid acoustics, isotropic elasticity, more to
come

IWAVE++ = imaging and inversion framework based on IWAVE,
RVL = Rice Vector Library = optimization and linear algebra
services

A more serious example: IWAVE++

RVL provides dot product etc., IWAVE++ includes middleware
interface

AND handles time-loop aspects of adjoint state (checkpointing)

[demo]

A more serious example: IWAVE++

What IWAVE++::asg++ must deal with that adjexpl.c ignores:

I PML boundary conditions - no big deal, just more arrays,
equations

I trace sampling (S) includes spline interpolation onto output
time grid - internal, archival time steps generally not same -
adjoint sampling implemented in IWAVE trace i/o

I material parameter array loads/saves (part of B) involves grid
extension, index shifts - may involve stencil (eg. shifted
density grids) hence communication - IWAVE grid i/o uses
MPI Reduce

I parallelism - column orientation of adjoint ⇒ different
communication pattern than forward modeling

A more serious example: IWAVE++

Domain decomposition & adjoint loops: schematic forward stencil

y1 + = a1 ∗ x1 + ...

y2 + = b1 ∗ x1 + ...

Blue = domain 1; green = domain 2

IWAVE: every field variable belongs to one domain
(“computational”), is shared with other domains via ghost cells

x1 is in send buffer for its domain 1, x1 is in receive buffer of
domain 2

Forward outputs y1, y2 each fully updated in proper computational
domain.

A more serious example: IWAVE++
Adjoint:

x1 + = a1 ∗ y1 + ...

x1 + = b1 ∗ y2 + ...

Update for x1 partially complete in each domain - neither is correct!

Solution:

I make temp copy of send buffer (contains variables belonging
to domain, to be shared with neighbor domains)

I reverse communication pattern of forward: copy receive
buffers from each neighbor into send buffer (MPI SendRecv),
add to temp copy

I after all neighbors visited, copy temp buffer into send buffer -
now all variables belonging to domain are fully updated

[demo]

Conclusion

I machine precision adjoints on large scale feasible “without
tears”, avoid coupling of optimization, simulator accuracy
control

I simple rules produce correct time-step code for both serial and
parallel adjoint state

I abstract interface code (IWAVE++) can provide convenient
and portable time loop services

I IWAVE++ release to TRIP sponsors 12Q2

Thanks to: IWAVE team (Igor, Tanya, Xin, Dong, Marco), NSF,
sponsors of TRIP

