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Introduction

FWI is still very expensive.
Make it cheaper either by reducing the cost of seismic modeling
(source encoding), or by reducing the number of iterations by
improving the convergence rate of the inversion scheme.
Most current industrial-scale applications of FWI use algorithms based
on the calculation and some kind of preconditioning of the gradient of
the objective function.
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Introduction

Pratt et al. (1998) noted that the effects of the application of the
inverse Hessian to the gradient included the correction of the effects of
the (limited) acquisition aperture and spatially-varying illumination,
and source deconvolution.
It has been widely observed that the calculation of the gradient of a
least-squares FWI objective function corresponds to a RTM of the
residuals using the correlation imaging condition;
This inspired them to instead consider the application of a
deconvolution imaging condition to calculate the update direction.
This is trivial in the frequency domain, where we perform our FWI
gradient calculation, and automatically compensates for the
source-side illumination as well as performing the source
deconvolution. That is, it applies a partial inverse Hessian correction
to the gradient.
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Method

Objective function (square of L2-norm):

E = δd tδd∗

Velocity update (steepest descent method):

p(k+1) = pk − αOpE

where OpE is the gradient of the objective function with respect to
the model parameter. It is computed as:

OpE = −Re
∑
shots

(
ut
∂S t

∂p
v

)
where v = S−tδd∗ is the back-propagated residual wave field and S is
the wave propagator: Su = f .
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Method

The Gauss-Newton approximation to the Hessian can be expressed as:

(HGN)ij =
∑
shots

∑
r

(
w t ∂S

∂pi
u(r)

)t (
w t ∂S

∂pj
u(r)

)∗

where w t = S−1 is the back-propagator corresponding to the
receiver-side illumination pattern.
The update direction corresponds to the deconvolution imaging
condition:

OpE = −Re
∑
shots

(
ut
∂S t

∂p
vW

)
where W is a second-order diagonal matrix defined by:

W = diag([1/(u1u
∗
1 + ε) · · · 1/(unu∗n + ε)])
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Implementation

Define the damping parameter as water level:

ε = λ∗avg([u1u
∗
1 · · · unu∗n])

where λ is a constant and avg denotes average over the elements of
the vector, following the similar approach by Valenciano and Biondi
(2003) in their study on the deconvolution imaging condition for
wave-equation migration.
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Model geometry

velocity: 1.5− 5.5km
shots: 93 (interval: 100 m)
receiver: 185 (interval: 50 m)
12 iterations at three frequencies: 1, 2.5, and 4 Hz .
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Marmousi model

Figure : The true Marmousi model and the initial model used in the FWI tests in
this study. The model is 9.2km wide and 2km deep.
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Convergence at 1Hz

Figure : The convergence history of FWI inverting 1Hz frequency component by
the conventional gradient method (red) and the de-convolution gradient method
(blue).
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Convergence 2.5Hz

Figure : The convergence history of FWI inverting 2.5Hz frequency component by
the conventional gradient method (red) and the de-convolution gradient method
(blue).
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Convergence 4Hz

Figure : The convergence history of FWI inverting 4Hz frequency component by
the conventional gradient method (red) and the de-convolution gradient method
(blue).
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Example

Figure : True model (top), regular FWI and FWI by deconvolution gradient
(bottom).
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Conclusions

We have presented a simple, inexpensive way to accelerate
convergence in FWI by partial compensation of illumination. The
method involves applying a deconvolution-type RTM "imaging
condition" to calculate the update direction, rather than the
cross-correlation one which yields the classical gradient direction.
This corresponds to preconditioning the gradient by a factor of the
diagonal of the Gauss-Newton approximation to the hessian matrix.
The method seems to have a greater impact in later iterations of a
given series, and at higher frequencies;
This may be because the variation in illumination becomes more
pronounced in these cases. The irregularity in the convergence may be
linked to the estimation of the damping parameter in the
deconvolution, which is known to be a delicate issue in applying the
analogous imaging condition in migration.
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